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ON A RELATIONSHIP BETWEEN NORMAL-SHEAR COEFFICIENTS 
AND TENSILE MODULI IN ANISOTROPIC MATERIALS 

Summary 

In general, stress and deformation tensors of anisotropic linear elastic materials are 
related by the fourth order compliance/elasticity tensor. It has been observed that in the case 
of a planar (2D) orthotropic material the off-diagonal component of the compliance tensor 
known as normal-shear coefficient is equal to one half of the derivative of corresponding 
tensile compliance with respect to the angle of rotation of coordinate axes. A detailed analysis 
of the transformation law for the components of the compliance tensor is given, including the 
proof that the same relation also holds in the general case of planar anisotropic materials. In 
the selected illustrative examples polar diagrams of tensile moduli and normal-shear 
coefficients are shown for representative cases of woven fabrics and textile composites. 
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1. Introduction 

In the description of deformational behaviour of textile materials, such as woven or 
knitted fabrics and composites, the general form of Hooke’s law for anisotropic planar 
materials can be applied for the cases of in-plane load and deformation, at least in a limited 
range where generally nonlinear response can be linearized. It appears that the existence of 
unexpected non-zero normal-shear coefficients can be detected as a cause of unwanted 
“skewing” (loss of orthogonality between warp and weft yarns after weaving) in some types 
of woven fabrics, resulting in problems in textile production and processing [1]. For that 
reason, the normal-shear coefficients as components of the compliance tensor deserve careful 
attention. While they are equal to zero in principal material directions, they take non-zero 
values in the general rotated directions of coordinate system [2, 3]. 

A systematic approach to elastic properties of orthotropic materials, with an emphasis 
on tensor invariants, is given in [4] by Alfirević and Skozrit. In [5] it has been observed as an 
interesting fact that the double normal-shear coefficient coincides with the rate of change of 
the corresponding tensile compliance (inverse of tensile modulus) with respect to the angle of 
rotation of coordinate axes. The content of section 2 of this paper shows that this is not 
accidental, but rather follows from the general rules of tensor components transformation. To 
the author’s knowledge this simple relation has not been mentioned in the literature, possibly 

TRANSACTIONS OF FAMENA XLII-1 (2018) 51



Ž. Šomođi, E. Zdraveva On a Relationship Between 
 Normal-Shear Coefficients and  
 Tensile Moduli in Anisotropic Materials  

because expressions for general components of the fourth order elasticity/compliance tensors 
take a somewhat complex form. 

In the deformational characterization of 2D anisotropic materials it is usually 
convenient to represent tensile properties (elastic moduli) using a polar diagram. This gives 
grounds for equally convenient representation of normal-shear coefficients based on the 
geometric meaning of the first derivative. In section 3, some examples are provided in which 
this is illustrated on a selection of cases representative for woven fabrics and textile 
composites. 

2. Elastic material properties in initial and rotated coordinate systems  

Hooke’s law for an isotropic material under plane stress can be written in the vector – 
matrix notation in the following form: 
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In the case of an orthotropic material Hooke’s law takes a quite similar form for 
principal material directions; the differences from (1) are that principal tensile moduli 
(Young’s moduli) can generally be different and shear modulus G can be independent: 
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Indices T and L have the meaning of “transversal” and “longitudinal” as principal 
material directions. Poisson’s ratios LT andTL are related by the condition of symmetry of 
the compliance matrix in (2). 

In the case of general rotated coordinate axes x, y the above relation takes the general 
form in which the off-diagonal zero components of the matrix in (2) are replaced by the 
normal-shear coefficients : 
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Elastic properties, i.e. components of the compliance matrix in (3) can be expressed in terms 
of principal material properties and the angle of rotation of the coordinate axes between T, L 
and x, y. To this end, it is sufficient to apply the transformation law for the second order stress 
and strain tensors, see Fig. 1. 
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Fig. 1  Stress components in orthotropic material in principal and general directions (a), Mohr’s circle (b) 
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According to the graphical representation in Mohr’s circle, Fig. 1.b, the stress 
components in the T, L directions can be expressed in terms of components in x, y directions 
as 
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A similar inverse transformation holds for the rotation of the coordinate axes from T, L 
to x, y and written for the strain components it reads 
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Now substitute (4) in (2) and then the obtained expressions for TLandTL introduce 
into (5). The comparison of the results with (3) reveals that for the elastic properties in the x, 
y directions it holds: 
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The above expressions (6) represent the transformation rules for the 2D fourth order 
tensor in the case of orthotropic material compliance. They can be found in [2] and [3] in a 
somewhat rearranged form, and with seemingly a typing error in the expression for x. 

It is known in the analysis of plane stress that the derivative of the diagonal components 
in the matrix of the stress tensor is proportional to the off-diagonal component. For example, 
consider the expressions (4) and (5) to find that it holds 
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A close inspection of expressions (6) however reveals that there is also a very similar 
relation between tensile compliance 1/E and normal-shear coefficient : 
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This property of compliance tensor seems to have remained unnoticed, since, at least to 
the author’s knowledge, there is no mention of it in the literature. 

The relation (8) was reported in [5], and the question arises if it might be valid not only 
for orthotropic but generally for anisotropic materials. Let us prove in the following 
consideration that this is true. 

Start by reviewing the basic transformation rule for vector components in the rotated 
coordinate system, Fig. 2. 
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Fig. 2  Vector components in initial and rotated coordinate systems 

The figure shows that the components in the rotated coordinate system can be expressed 
in terms of the components in the initial coordinate system as 
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In the index notation, introducing direction cosines, this rule takes the following form 
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Taking the derivative of (9) with respect to the angle of the rotation of the coordinate 
system, the rates of change of the components in the rotated coordinate system are 
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Now, let two vectors be related by a symmetric second order tensor. For example, in the 
case of stress tensor these two vectors are the internal force on a section and the normal vector 
of the section area, while in the case of small strain these vectors are relative displacement 
and corresponding diagonal in a rectangular element. If the vectors and the tensor are denoted 
by u, v and T respectively, the relation reads 

22212122121111 ,; vTvTuvTvTuvTu jiji   (12) 

When the coordinate system rotates, the components of both vectors and the tensor T 
depend on the angle  and taking the derivative of (12) we have 
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Substituting the derivatives of both vector components according to (11) and using (12) 
equations (13) become 
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These equations can be rewritten in the following form: 
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Equations (15) hold for the arbitrary vector v, therefore the expressions in parentheses 
must vanish. Considering also the symmetry of the tensor T it means that 
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This is in line with (7) and with the notion of the first invariant T11+T22=const. 
In the case of stress tensor, relations (16) can clearly be obtained by taking the 

derivative of the transformation rule (4). Still, it may be instructive and interesting to derive 
them directly from the conditions of equilibrium for an element in which one edge is slightly 
rotated by the angle d , see the right-hand side of Fig. 3. 
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Fig. 3  Square element under plane stress and rotation of one edge by d
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In the equilibrium conditions (17) t and a denote the thickness and the side length of the 
square element respectively. For the small angle d tandcan be raplaced by dand after 
neglecting the small quantities of higher order equations (17) are reduced to 
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This is obviously in accordance with (16) and identical to the results of taking 
derivatives of the transformation rule for the stress components. 

Now, consider the case of two second order tensors being related by a fourth order 
tensor. Let these tensors be second order tensors of stress and strain and a fourth order tensor 
of the elastic material compliance: 
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The ordering in the vector – matrix form of (19) is done for ease of comparison with 
(3), from which it follows: 
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Note the multiple symmetry in the matrix in (19), see also [3] page 309. The first 
component equation of (19) takes the following form: 
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Take the first derivative of (21) to obtain: 
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Taking the properties of derivatives of the second order tensor components (16) into 
account, equation (22) becomes: 
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Once the left-hand side of (23) is replaced by the appropriate expression according to 
(19) (third or fourth component equation of (19)), the last equation (23) takes the following 
form: 
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Now it can finally be rewritten as 
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Again, this holds for the arbitrary stress tensor and therefore the expressions in all the 
parentheses of (25) must vanish. Considering (20), it means that 
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So this proves that (8) holds generally, and not only in the case of an orthotropic 
material. Further relations between elastic material properties and their derivatives according 
to the second and the third parenthesis in (25) would read 
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It is left here for interested readers to verify that expressions (6) do satisfy equations 
(27). A similar treatment of other component equations of (19) would obviously lead to more 
relations between elastic material properties in the rotation of the coordinate system – this 
stretches beyond the scope of the present analysis and is also left to the readers. Maybe some 
of the relations obtained in that way would coincide with the already developed (26) or (27). 

3. Examples 

In the examples presented here some characteristic theoretical models suitable for the 
description of elasticity of textile materials are considered: woven fabric in a basic weave 
pattern (plain weave) with full structural symmetry, a flat stripe composite, and a combination 
thereof which can be regarded as an approximate model of woven fabric with a diagonally 
structured weave pattern (twill weave or the like). The fact is that the tensile response of 
woven or knitted fabric is nonlinear, since the structural geometry changes with deformation, 
and the combination of nonlinearity and anisotropy may become demanding. Still, it does 
make sense to apply the methodology of polar diagrams of elastic material properties, at least 
in a limited proximity of a given starting point where the elastic response can be linearized. 
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3.1 Fabric woven in plain weave 
This is the simplest weave pattern where warp and weft yarns are completely interlaced, 

without any skipping. Since the tension in the warp direction is higher during the weaving 
process, it is usual that the tensile modulus is higher in the warp direction and lower in the 
weft direction. Full structural symmetry with respect to both the warp and the weft direction 
results also in deformational symmetry, so here we deal with an orthotropic material. In Fig. 4 
polar diagrams of the tensile modulus and the normal-shear coefficient are shown for the case 
E1=1, E2=1.5, 12=0.25, G12=0.1.  

 a)  b) 

Fig. 4  Example 1,  polar diagrams of tensile modulus (a), and of normal-shear coefficient (b) 

Weft and warp directions are denoted by 1 and 2, respectively, and here they coincide 
with the principal material directions. The moduli are normalised with respect to the weft 
tensile modulus. In the case of a negative normal-shear coefficient, absolute value is presented 
in grey. Note how the normal-shear coefficient can be related to the rate of change of the 
tensile modulus in accordance with (8). A sharp drop of the tensile modulus in the diagonal 
direction with respect to warp and weft (“bias direction”) is associated with the low value of 
the shear modulus, particularly pronounced in fabrics with a low yarn density. As far as the 
units are concerned, if, for example, the tensile moduli were in GPa, it would mean that the 
normal-shear coefficients are in rad/GPa. 

3.2 Flat stripe composite 
Here we consider a theoretical model of a material consisting of stripes made from two 

different simple (isotropic linear elastic) materials. Imagine, for example, that in the fabric for 
a marine T-shirt white and dark stripes have different elastic properties. 

Theoretical homogenisation of elastic properties of such a material, based on static and 
compatibility conditions of the basic cell, has been reported in [1] and [5] and, basically, it 
reduces to the principal elastic moduli obtained as the arithmetic mean value (along the 
stripes) and the harmonic mean value (perpendicular to stripes) of individual material elastic 
moduli – this is similar to equivalent stiffness of springs in a parallel and serial assembly – 
with certain correction due to differences in the elastic moduli and non-zero Poisson’s ratios. 
As for the shear modulus of such a composite, it may be concluded that it is not totally unique 
and can range from the harmonic to the arithmetic mean value of individual material shear 
moduli, depending on whether boundary restrictions are expressed in terms of loads or 
displacements. 

In the present example the following case is considered: individual elastic moduli of 
ingredient materials are different by factor 5, EA=5EB, Poisson’s ratios are equal, A=B=0.25. 
The homogenisation leads to principal elastic moduli which, when expressed in a relative 
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way, i.e. normalised with respect to E1, have the values E1=1 and E2=0.5714. Shear modulus 
can then be in the range from 0.2222 to 0.4. 

Polar diagrams of the elastic modulus and the normal-shear coefficient for the case of 
G12=0.3 are shown in Fig. 5.  

Let us note that the polar diagrams of the elastic moduli in the cases of extreme possible 
shear moduli have a less natural shape than the elliptic shape presented in Fig. 5, as indicated 
in Fig. 6. 
 a)   b)  

Fig. 5  Example 2,  polar diagrams of tensile modulus (a), and of normal-shear coefficient (b), case E1=1, 
E2=0.5714, 12=0.25, G12=0.3 

 a)   b)  

Fig. 6  Example 2,  polar diagrams of tensile modulus with G12=0.2222 (a), and with G12=0.4 (b) 

3.3 Woven fabric with diagonal weave pattern 
In the cases of weave patterns where yarns are skipped in places rather than fully 

interlaced, structural symmetry may be lost. This is the case, for example, with twill weave, 
Fig. 7a. Warp and weft yarns are depicted in different colours and it can be seen that the areas 
of different structures are distributed diagonally with respect to the yarns, thus the term 
diagonal pattern. A simplified approximate theoretical model of deformational properties of 
such a fabric may be constructed taking into account two principal influences: warp and weft 
yarns, e.g. in a symmetric pattern, as primary influence, and diagonal distribution of areas 
with different structures as secondary influence. Therefore it is proposed here to construct a 
model for such a fabric combining the cases of examples 1 and 2 to obtain a theoretical 
composite with different weight factors and stripes spaced diagonally to warp and weft. A 
polar diagram of the elastic modulus is shown in Fig. 7b for such a model for the cases of 
examples 1 and 2 with weight factors 0.6 and 0.4, respectively. It is observed that there is no 
elastic symmetry, so this is no longer an orthotropic but rather a general anisotropic material 
and axes 1 and 2 are no longer axes of extreme elastic moduli. In other words, there are non-
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zero normal-shear coefficients in the directions of warp and weft, a deformational property of 
some woven fabric which is sometimes confusing and causes problems in fabric processing. 

 a)  

 

 b)  

Fig. 7  Example 3,  fabric in twill weave (a), and polar diagram of elastic modulus for combination of examples 
1 and 2 with factors 0.6 and 0.4, stripes diagonal to yarns (b) 

4. Conclusions 

The relation between the normal-shear coefficient and the elastic modulus (8) observed 
in the transformation formulae for the elastic compliance of an orthotropic material has been 
derived generally for the case of an anisotropic material. It appears that there are a number of 
similar relations among elastic material properties in the rotation of the coordinate system, 
which can be derived from the transformation rules of the second order tensors of stress and 
strain. The polar diagram methodology appears to be suitable for the representation of elastic 
properties of anisotropic materials, notably the relation between elastic moduli and normal-
shear coefficients has a clear geometric representation. Some theoretical examples are 
presented that can be related to woven fabrics and textile composites, including non-
symmetric properties of the fabric with a diagonal weave pattern. 
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