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This theoretical study deals only with the stafic part of the total energy
and tends to explore the functional relationship between its changes and
atmospherie static stability. It is shown that a dimensionless energy number
may be defined in terms of isentropic analysis to be the funetion of statie
stability with recognizable physical meaning. Its mathematical propeities
indicate that this particular dependence may be deseribed by a bilinear
fractional function taking a form of an equilateral hyperbola with asymptotes
parallel to the coordinate axes. Its unstable branch corresponds to the higher
rate of change of static energy and lies in the first quadrant, while in the
third one its lower rate is related to the stable branch. Asymptetic solution
of considered theoretical problem implies that the transition from stable to
unstable branch may appear only by an infinite jump and holds an intriguing
resemblance with either the quantum transition between two energy shells
by the absorption or emission of energy or the transition from stable to
unstable regime of the general atmospherie circulation.

Atmosferska staticka stabilnost i promjene
staticke energije

U radu se razmatra samo statiéki dio ukupne energije 1 nastoji istraziti
funkeijski ednos njezinih promjena i atmosferske staticke stabilnosti. Poka-
zuje se da je primjenom izentropskih jednadzbi mogude definirati bezdimen-
zijski energetski broj prepoznatljivog fizikalnog znacenja u zavisnosti o sta-
tickoj stabilnosti, pogodan za objektivni opis i interpretaciju ove funkijske
veze. Njegova matematicka svojstva ukazuju da je razmatrani odnos razlom-
ljena funkeija, te da ima oblik jednakostrane hiperbole, ¢ije su asimptote
paralelne koordinatnim esima. Njezinoj nestabilnoj grani odgovaraju veci
iznosi i brie promjene staticke energije, dok su na stabilnoj ovi iznosi manji,
a promjene sporije. Asimptotsko rjedenje razmatranog teoretskog problema
upuéuje na zakljuéak da je prijelaz iz stabilnog u nestabilno stanje i obratno
mogué samo uz skokovitu promjenu energetskog sadriaja ¢esti zraka doda-
vanjem ili oduzimanjem energije. Pritom je evidentna sli¢nost kako s kvan-
tnim prijelazom elektrona izmedu susjednih energetskih Ljuski uvjetovanim
absorpeijom ili emisijom energije, tako i s prijelazom iz stabilnog u nestabilni
rezim globalne cirkulacije atmosfere.
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1. Introduction

The great importance of the static stability parameters and their very
close relation to the conversion of atmospheric energy have for long been
recognised by many authors. Nevertheless, it was examined and theoretically
explored by most of them mainly in the frame of the macroscale motions or
by considering the general circulation dynamics. This is one of the well-known
and fundamental subjects in the dynamics of the atmospheric systems, where
the question which has to be answered is not only what happens to the energy
involved, but also how and when its changes are taking place. Lorenz (1955,
1960) pointed out some pronounced consequences of this relation. The first
one is related to the global scale indicating the existence of the net long-term
conversion of potential and internal energy into the kinetic energy by isen-
tropic processes. As a result there is a net long-term increase in the overall
static stability that must necessarily be balanced by an appropriate net de-
crease of stability caused by diabatic effects. On the other hand, the processes
on the synoptic scale, such as a cyclone development, may produce a consid-
erable increase of static stability as a consequence of the kinetic-energy-pro-
ducing circulation. This includes rising of warmer air and simultaneous sink-
ing of colder and dense air which tends to be placed underneath. Such a
growth of static stability inhibits further development of a cyclone. According
to Lorenz, the consequences on the local scale are nearly the same. This
means that any convective process tends to be inhibited when increasing
static stability tends to a given threshold value. Concerning the general cir-
culation of the atmosphere Lorenz (1984) stressed that instability may be
considered to be the most important property of chaotic dynamical systems
and the cause of atmospheric irregularity.

The considered feature of static stability was implemented in the theory
of baroclinic flow by Charney (1947) and Eady (1950) to define an appropriate
criterion for the growth of a small preturbation superimposed on a zonal
current. The former is based on the same fact that the high static stability
values represent a mechanism to prevent any greater perturbation growth.

The objective of this work is a theoretical study of the functional relation-
ship between atmospheric static stability and static energy changes in terms
of isentropic analysis. A great deal of attention was paid to an objectively
derived description of this particular connection that could bring more light
into its mathematical properties and physical consequences. The temperature
lapse rate is chosen as a pronounced local characteristic of the atmosphere to
describe static stability at a given point, while only the static part of the total
atmospheric energy consisting of the internal and gravitational potential en-
ergy 1s taken into account. As shown by Margules (1903) for the case of
thermally isolated system under quasistatic conditions, these two types of
energy are proportional to each other. Their combination was termed the total
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potential energy (TPE) and may be treated as a single form of energy to
simplify the energetics problem. Following the notation given by Bluestein
(1992, p. 272-273) and the similar approaches in deriving the TPE equation
by Brunt (1952, p. 283) and by Godske et al. (1957, p. 456) an important
expression may be obtained in the form:

TPE =1+ PE = I(CL,T +®)dm + const. = |c, T dm + const. , (1)

where dm = p dz represents the element of mass of a voelume per unit horizon-
tal area, ¢, and c, denote specific heat at constant volume and constant
pressure, is the density and T the absolute temperature. Having the physical
dimension of specific energy, the parameters ¢, T, c¢,T and & correspond to the
internal energy, enthalpy and gravitational potential energy per unit mass,
respectively.

The equation (1) states that the specific enthalpy ¢,T" itself may be em-
ploved to represent the total potential energy usually defined by the sum
e, T + @ . Accordingly, this paper deals with the static energy and its changes
by investigating the behaviour of the specific enthalpy against a number of
thermodynamic and stability parameters in the isentropic coordinate system.
Due to its obvious similarity with defining relation of the Montgomery poten-
tial function M in which so-defined static energy is implicitly contained and
combined with geopotential height as

M=(:pT—I-(DEE®+'ED (2)

the function M has been used in deriving the appropriate expressions describ-
ing the relationship of static energy changes and static stability. Its hydro-
static change with respect to the potential temperature © is defined by the
isentropic hydrostatic equation of the form

oM c, T pl Ry
e B E=. -
(@@ ]h “E e T {pﬂ} 2 £ Cp’ (3)

where £ denotes the Exner function that is often called modified pressure, p
is the pressure, Ity the gas constant for dry air, while subscript 4 refers to
hydrostatic conditions. By combining the equation (3) with the first two laws
of thermodynamics it can be easily shown that the changes of both the static
energy and the Montgomery potential function are clearly related to the
specific entropy s and the heat @ either added to or removed from the system.
This follows from identities
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Tds=c,7d(ln®) =c¢, dTw%E=d(cpT+(D]:¢WESQ, (4)

where the lowercase letter 8 denotes inexact differential of the heat function.

This study indicates that a dimensionless energy number may be defined
to be the function of static stability and correlated to the other thermodynamic
parameters. The latter enables the physical interpretation of its mathematical
properties showing that this functional dependence takes the form of an
equilateral hyperbola with asymptotes separating its stable and unstable
branches. Asymptotic behaviour of considered relationship implies that the
transition from stable to unstable branch may happen only by an infinite
jump forced either by adding the energy to the system or by its releasing.
Some theoretical remarks of this have been reported by Glasnovié (1993) and
applied to the specific problems by Glasnovié et al. (1994).

2. Dimensionless number describing static energy changes

Taking the Montgomery potential function M to examine the behaviour of
the specific static energy ¢,T, a dimensionless quantity may be derived in
terms of the conventional isentropic analysis to describe its changes against
the change of any thermodynamic parameter. Differentiation of its defining
expression (2) with respect to the geopoteritial height ® and potential tem-
perature @ leads to an appropriate relationship of the form

(" 5lne)
7 INE |
|1+ 1m0
oM oM/ ee Lo _
= = = ]_ =+ . (D]
o 0D/ oe oD/ oG

As suggested by Glasnovié (1993) the nominator of the second term on the
right side In equation (5) can be used as a dimensionless parameter to de-
scribe the static energy changes with respect to the change of the potential
temperature @ and either the pressure p or the Exner function . It was
termed dimensionless energy number £ and its defining relations were ex-
pressed as

E{s;,@) =1+ flnﬁ :l oeS =14+x
dln® ¢ 860

3| Ty

: np _ £.@). (6)
In

@

)

On the other hand, the alternative, but identically the same relations may be
derived by logarithmic differentiation of temperature with respect to the
pressure and potential temperature in the forms
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o InT dlnp _ 6lng  10¢T
om! 1482 o1 =

_ 26,1130

E{Tp,0) = : : - =
@O = e 2 1n® oln®@ = 80  (0M/30),

(7)

indicating that E compares the local changes of the specific enthalpy ¢,T with
potential temperature © to the hydrostatic change of the Montgomery poten-
tial M defined according to Eq. (3) by the Exner function .

The qualitative consideration of the equations above refers to the special
and physically recognisable states of reference. The most important one is
shown in Fig. 1 and corresponds to the state of stable thermodynamic equilib-
rium under hydrostatic conditions at which the thermodynamic potentials
(see Fermi, 1936) take the minimum values and the surfaces of constant M
and © coincide with level surfaces ® = const. The pressure at considered point
is hydrostatic one due solely to the weight of the fluid above. The tangential
forces vanish, while the normal ones are equal. This state is horizontally
homogeneous and the fluid elements are either in a state of rest or subjected
to the stable oscillations with respect to its equilibrium position. Conse-
quently, 8M /3® is equal to one so that the second term defining E on the right
side of (5) is equal to zero.

Stable Stahle
quuhhrim . E quﬂihnmn ].lg}.lt
light potentially warmer
p=const p=rconst 9= const
P=const p =const Py= const
heavier potentially colder
T=const T=const heavier

Figure 1. Stable thermodynamic equilibrium as theoretical state of reference under hydrostatic
conditions. The left part illustrates the geometric distribution of pressure and density in a compres-
sible fluid at rest, while the state on the right corresponds to the isothermal conditional barotropy.

The mathematical formulation of the coincidence condition stated above
may be obtained by determining the relationship among the lapse rate of the
Montgomery potential function and its horizontal gradients along both of the
level surfaces and the surfaces of constant static energy. Denoting the corre-
sponding gradients by the subscripts @ and M, the gradient of the static
energy c,7' on the constant Montgomery potential surfaces may be expressed as

21| _aqT(00) (s .
y | odb |éxy ey |
M M Lih
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Differentiations of the original expression for Montgomery potential function
(2) with respect to ® as well as to x or y, but holding ® and M constant, leads
to the relations

Ej_M =1+ QETJ (SCPT. — ?M . ij’&lﬁj — o , (9)
AD o | Ox,y ax,y o,y ox,y
\ o O M M

Substituting (9) into the differential equation (8) it may be rearranged and
reduced to the form

(10)

el

M(ovy (oM
E:?x,yj "_ikf,?x,y
M 0

giving the basis for detailed physical interpretation. This indicates two special
equilbrium states of reference. The first one includes the coincidence of sur-
faces of constant Montgomery potential and constant potential temperature
with level surfaces in the space of constant static energy when

~ = Va - - ~
o oM o ce, T ce, T
=l t:" | = f(,a -1 =0, (% =0, .=, (11)
A ox,y K(,-x v ox,y b
1Y A 4] h qz

Combining the isentropic hydrostatic equation (3) with (11) and taking
the differential expression (10) into account, the identity may be derived in

the form
f’dﬂ o[22 (2@
L AEI&E’}'J(D__ M

) fa D (12)
X,V X
- J.} /l b '\ "\( ly

that asserts the above coincidence condition. Since the specific enthalpy does
also have the meaning of thermodynamic potential, the criterion to examine
the type of equilibrium may be applied requiring that in a stable state ther-
modynamic potentials must take the minimum absolute value. According to
(7), (11} and (12), the first derivative of ¢,T" vanishes so that

. o0
E=0, £® = ¢, T =const., E:(%: 1 (13)
o

and the above requirement is entirely satisfied indicating that this state of
constant static energy, i.e. of constant TPE, corresponds to the stable thermo-
dynamic equilibrium under hydrostatic conditions. It can be also formulated
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by the statement that there is only one reference state at rest that possesses
the least static energy, at which the surfaces of constant pressure, potential
temperature, Montogomery potential and density are all horizontal, and the
potential temperature always increases with elevation.

Another theoretical state of reference is related to the neutral equilibrium
at the dry-adiabatic temperature lapse rate and may exist in an environment
of the constant Montgomery potential and constant potential temperature.
Such a stratification is unstable and could be established only in a fluid
absolutely at rest, when the constant static energy surfaces are horizontal and
coinciding with level surfaces of constant geopotential height. Under such
circumstances the following relationships are valid

oc,T 1 '@CPTW (D) 0 ( oM
op oy | oy J ’ o,y
3

A

Substituting the isentropic hydrostatic equation (3) into (14), it may be ex-
pressed in the forms

(oM 30 2/ C)
!f :E(o—] EU, (—-—'—8( = (15)
ox.y %,
[11]

that refer to the state at which the potential temperature does not change
either in the vertical direction or along the level surface of constant geopoten-
tial. Taking the dimensionless number to be the function of hoth the static
energy and the Montgomery potential that is expressed as

o0 3T
P ]
=2 16)
oM~ M’ (

E@,T,M)=1-

it follows that, under conditions described by (14) and (15), £ is related to an
adiabatic environment and takes an infinite value, i. e., an absolute maximum
of static energy.

In a more general case illustrated in Fig. 2, when the tangential forces do
not vanish and the state is not horizontally homogeneous, the pressure is not
necessarily hydrostatic and there is a displacement of surfaces from their
equilibrium position. Dimensionless number E is not zero and aM /&® differs
from the unit. It can be formulated by the relationships of the form

1,  ——=z0 || =2-|7T— | =0, (17)

oM oc, T ol oM )
oD oD
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Figure 2. Displacements from hydrostatic equilibrium by the tilt of density surfaces in the case
of compressible fluid initially at rest (according to Turner, 1979). The left part refers to the
oscillations about the equilibrium poesition and indicates the influence of the restoring force at
stable density distribution. On the right part the density distribution is unstable and an overtur-
ning foree leads necessarily to the conveetive motion.

where

=g |77 +®: | io? (18)
XY J k@x,y}.‘

oy |

o 4

{ M \‘ S ON {8 N

fr o

showing that the surfaces of constant properties are tilted with respect to the
level surfaces and that their mutual coincidence is also violated. The second
term on the right side of equation (18) is proporticnal to the horizontal
pressure gradient and represents its nonhydrostatic contribution to the slope
of the constant Montgomery potential surfaces against the horizontal as well
as with respect to the isentropic surfaces. When this term vanishes the hydro-
static conditions are established and described by the relations

(oM) _ (20) (f_‘m_ o a0
P =g I Sy =0, \exy =4u, (1%
\ i - @ : h

statingthattheisobaricsurfacesarehorizontalwhilethesurfacesofconstant
M and @ are not. Nevertheless, they mutually coincide at an angle against
level surfaces.

Concerning the theoretical state defined at the value £ =1 it will be shown
below that it corresponds to the asymptotic solution of considered theoretical
problem and therefore it can never be established in reality. According to the
relations (6) and (7), it would be required that the potential temperature does
not depend on the pressure, implying a state of infinite static stability or
instability.

The above discussion refers to some important features of considered
dimensionless quantity that may have not only theoretical, but also great
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practical meaning. It can be correlated to the slope of the surfaces of constant
physical properties against the horizontal and used as a measure of deviation
from the stable thermodynamic equilibrium existing under hydrostatic condi-
tions.

3. Dimensionless number E as a function of static stability

Another important meaning that may be assigned to considered dimen-
sionless parameter is characterized by its correlation with atmospheric stabil-
ity. Choosing the temperature lapse rate y for local stability description, it can
be easily proved that functional dependence E(y) and its inverse variation
¥(E) take the forms

E=Byy-—"r, yB)=Tez— (20)
¥ =Ty -

where in their deriving either the eqation (6) or its alternative (7) have been
utilized in combination with the temperature, dry-adiabatic and potential
temperature lapse rates usually expressed as

oT g 0 0
¥ =- I'g= —=m0g-1. 21)
I( §z> d cp: (?‘2,' T{ d 1’) (

The equations (20) indicate that the considered mutually inverse func-
tions are both fractional and symetric with respect to the bisection of the first
and third quadrants. As shown in Fig. 3, their behaviour is completely de-
scribed by equilateral hyperbola with asymptotes E =1 and y = I'; parallel to
coordinate axes. The main feature of both graphs are their physically quite
recognizable branches of opposite stability and different rate of change of
static energy implying nonlinearity of these relationships. Their asymptotes
necessarily have the special meaning indicating characteristic tresholds or the
critical values for transition from one branch to another.

Investigating the mathematical properties of functional relationship Ey)
two special states of interest may be determined. Passing to the limit, when
v — 0, refers to a state

lim £@y) = lim —— = (22)
v =0 y—0 T_Id '

at which the thermodynamic potentials have the minimum absolute value
indicating the stable thermodynamic equilibrium of an isothermal and com-
pressible fluid element at rest under hydrostatic conditions. This element is
thermally balanced with its environment so that the principle of coincidence
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Figure 3. The graphs of two mutually inverse functions v(f) and E{y) which are symetric with
respect to the bisection of the first and third quadrants. Both are expressed by the bilinear
fractional funection taking the form of equilateral hyperbola with assymptotes separating their
branches of quite opposite stability.

of surfaces is entirely satisfied. Besides, the former is the only state at which
both parameters take the same numerical value. In terms of the chaos theory
(see Tsonis and Elsner, 1989), in the so-called space state the point
E =0,y =0 corresponds to a point attractor to which any oscillating air parti-
cle will converge regardless of its initial position. As argued in the previous
section, it contains the minimal absolute value of static energy and may be
taken as a reference state to measure deviations in static stability and static
energy contents.

Another state of stability corresponds to the unstable or neutral hydro-
static equilibrium of an incompressible fluid element at rest characterized by
dry-adiabatic lapse rate. At this point of its argument v, the function E(y) is
not defined, so that, when y — I'y, it follows:

A

lim E(v) = lim -;---’-- — =+ (23)
.:,. )]‘_.. ] —_ (1

Y= T,

indicating one of the asymptotic solutions of the considered problem for
v =1 at which the rate of change of static energy would become extremely
large. As described by relationships (14)—-(16), this is related to an adiabatic
space as well as to the space of constant Montgomery potential function. The
constant static energy surfaces are then horizontal and their vertical distri-
bution is proportional to the dry-adiabatic lapse rate of temperature.
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The same qualitative conclusions may be drawn by investigating the
limiting behaviour of the functional relationship ",/(E) It can be easily proved
that y(E) possesses an infinite discontinuity when its argument % tends to one.
The passage to the limit indicates

lim v = o0, lim (&) = +0 (24)
EFE=1 =1
E=1 E=1

and refers to another asymptotic solution at E =1 of the extreme static sta-
bility that cannot be met in reality. It states that, as approaches +1 assuming
only negative (positive) values, the considered function tends to - (+) and
its absolute value becomes of infinitely large magnitude. On the other hand,
the function y(E) tends to one and the same value 'y when its argument
either increases or decreases unlimitedly, and analogous behaviour can be
found for its inverse E(y). It may be expressed by passing to the limits

lim y(E) =Ty lim S =Ty, lim E(y) =lim

E =t E —» +x 1 y =t ¥ — 1= d

tljl'm*
I
-

that determine the asymptotes of equilateral hyperbolas.

The striking feature of both considered functions is their mutual non-
linearity that can be clearly recognized by their graphs. The nonlinear behav-
iour is occuring in the same way on both the lower branch that is stable, at
v<I, and E <1, and the upper branch that is unstable, for v > [; and E>1.
The stable vertex on the graphs of both functional relationships corresponds
to the state of thermodynamic equilibrium at which y and E simultaneuosly
become zero. The vertex on the unstable branch that is characterized by
y=2T, and E = 2 has no special meaning.

Regarding the behaviour of v and E with respect to the third quantity,
such as the lapse rate of the Montgomery potential, an additional relationship
may be derived as

M Y 1
=] = = 26
oD ry, 1-E’ —

indicating a linear functional relationship between the considered lapse rates,
but their nonlinearity against the static energy changes. It can be realized as
an objective indication that atmospheric nonlinearities are primarily caused
by nonlinear behaviour of the static energy changes.
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4. Conclusions

The most important result of this theoretical study corresponds to the
asymptotic solutions of the functional relationships E(y) and y(E). For the
latter case, this indicates that, when the argument E passes from the values
smaller than 1 to those greater than 1, the function y(E) makes an infinite
Jump from the stable to the unstable branch of hyperbola. The same behaviour
can be recognized for its inverse variation E(y) when the temperature lapse
rate is taken to be the independent variable. The critical threshold value for
the jump is found to be the asymptotic value of the dimensionless energy
number for £ = 1.

Physical interpretation of their mathematical properties indicates that
they can be taken as objectively derived evidence to prove that any essential
change of thermodynamic state of the fluid element implying the change of its
stability type may occur solely by the jump of its energy contents. Since the
latter should be highly related to the addition or release of large amounts of
energy, it can be understood as a mechanism capable to overcome the influ-
ence of very high static stability that usually prevents any further develop-
ment of atmospheric systems. Concening atmospheric phenomena on various
scales of motion it follows that the static energy jump may primarily be
encountered as an extremely local process. This in interesting analogy with
the quantum theory of the atom implying an intriguing resemblance with the
gquantum transition between two energy shells by the absorption or emission
of energy. Another analogous example, that was pointed out by Lorenz (1984),
is related to the general circulation of the atmosphere and the irregularity of
the chaotic dynamical systems, where both the instability and aperiodicity
play an important role in the transition from asymmetric to symmetric re-
gime, i. e., from stable to unstable general circulation.

The consideration of bilinear fractional function E in combination with
the local stability defined by the temperature lapse rate vy gives the physical
basis to establish the following criterion

E>1, unstable state at higher rate of change of static energy
E <1, stable state at lower rate of change of static energy
0<E <1, very stable state / temperature inversion for y<0

indicating its usefulness and applicability in diagnostics of special atmos-
pheric phenomena. This is related to its property to be a measure of deviation
from the stable hydrostatic equilibrium of an air particle at rest. It enables to
get more light into the general atmospheric states that are more or less
nonhydrostatic and to identify the striking features of the vertical atmos-
pheric structure such as either the superadiabatic layers or temperature
inversions of frontal type.



GEOFIZIKA, VOL. 12, 1005, 1-13 13

References

Bluestein, H. B. (1992} Synoptic-Dynamic Meteorology in Midlatitudes. New York, Oxtord Univ.
Press., 1, 431 pp.

Brunt, D. (1952): Physical and Dynamic Meteorology. Cambridge University Press, 428 pp.

Charney, J. G. (1947} The dynamics of long wave in a baroclinic westerly current. J. Meteor!, 4,
1356-162.

Eady, E.T. (1950): The cause of the general circulation of the atmosphere. Cent. Proc. Roy. Soc,
156-172.

Fermi, E. {1936): Thermodynamies, Dover Publications, New York, 160 pp.

Glasnovié, D. (1993): Some Theoretical Remarks on Static Energy Jump. Alpex — Regional
Bulletin, No. 21, 39-41.

Glasnovié, D and V. Juréec (1990): Determination of Upstream Bora Layer Depth. Meteor.
Atmos. Phys., 43, 137-144.

Glasnovié, D., I. Cagi¢ and N. Strelec (1994): Methodology and Application of High Resolution
Isentropic Diagnostic Model (HRID). Osterreichishe Beitriige zu Meteorologie und Geophy-
silt, Wien, 109-136.

Godske, C. L., T. Bergeron, J. Bjerknes and R.C. Bundgaard (1957): Dynamic Mateorology and
Weather Forecasting. Amer. Met. Soc., Boston, and Carnegy Inst. of Washington, 800 pp.

Lovenz, E. N. {1955): Available potential energy and maintenance of the general circulation.
Tellus, 7, 157-167.

Lorenz, E. N. (1960} Static stability and atmospheric energy. MIT General Circulation project
report, 450490,

Lorvenz, E. N. (1984); Irregularity: a fundamental property of the atmosphere. Tellus, 36A,
98-110.

Margules, M. 11903): Uber die Energie der Sturme. Jahr. kais. kon. Zent. fir Met., Vienna,
Translation by C. Abbe in Smithson. Mise. Coll,, 51, 1910 pp.

Tsomis, A, A, and J. B. Elsner (1989): Chaos, Strange Attractors and Weather. Bull. Am. Met.
Soe., 70, No. 1, 14-23.

Turner, J.5. (1979} Buoyancy eftects in fluids. Cambridge Univ. Press, 386 pp.

Author's address: Dragen Glasnovié, Meteorological and Hydrological Service, Grié 3, 10000 Zagreb, Croatia



