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1. Introduction

In the approximation theory, well-known Korovkin type theorems are constructed
on linear positive approximating operators or functionals. The idea of constructing
nonlinear positive operators by means of discrete linear approximating operators
was proposed by B. Bede et al. [3, 4]. In these papers, the authors obtained nonlin-
ear Shepard-type operators by replacing the operations sum and product by other
pairs. They replaced a pair of operations sum-product with max-product in [3] and
sum-product with max-min in [4], respectively. After that the max-product type
Bernstein operators were introduced and an open problem was presented by S.G.
Gal ([18], pp. 324-326, Open Problem 5.5.4). Due to this open problem the order
of approximation of nonlinear approximating operators was investigated in [5]-[10].
In these papers, the order of approximation by nonlinear operators of max-product
kind was studied and some shape-preserving properties were obtained and in [11]
the authors collected all previous results concerning max-product operators. In
recent years, several researchers have made significant contributions to this topic
([16, 20, 21]).

The Bernstein-Chlodowsky polynomials, which are the generalization of the clas-
sical Bernstein polynomials, are defined by

Bn (f ;x) =

n
∑

k=0

Ck
n

(

x

bn

)k (

1− x

bn

)n−k

f

(

bnk

n

)

,
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where bn → ∞ as n → ∞ and x ∈ [0, bn], limn→∞
bn
n = 0. The approximation prop-

erties of these operators were investigated for univariate and bivariate continuous
functions in [1, 17, 19, 23]. Moreover, a q-generalization of Bernstein-Chlodowsky
polynomials [15], Voronoskaja-type theorems related to these polynomials [12, 22]
and Bezier variant of these polynomials [25] were discussed. Recently, some gener-
alizations of bivariate Chlodowsky polynomials have been studied in [13, 14].

The aim of this paper to introduce nonlinear Bernstein-Chlodowsky operators of
max-product kind and estimate the rate of pointwise convergence of these operators.
In the present paper, we extend the results obtained in ([5, 6]) from a finite interval
to the infinitely growing interval [0, bn] , bn → ∞ as n → ∞. Moreover, for some
subclasses of functions we obtain a better degree of approximation by max-product
type Bernstein-Chlodowsky operators than the degree of approximation for linear
one given in ([23, 2]; pp. 347-348). In the last section, we investigate the shape-
preserving properties of these operators regarding the approximating functions.

2. Preliminaries

We recall some notations and definitions that will be used in this study. The details
can be found in [5, 6, 11]. A set of positive real numbers R+ has a semiring structure
with operations “∨” (maximum) and “.” (product) and then (R+,∨, .) is called a
max-product algebra. Let I ⊂ R be a finite or infinite interval, and let CB+ (I)
denote the space of all of continuous and bounded functions f : I → R+.

A discrete max-product-type approximation operator Ln : CB+ (I) → CB+ (I)
is defined by

Ln (f) (x) =

n
∨

i=0

Kn (x, xi) .f (xi) ,

or

Ln (f) (x) =
∞
∨

i=0

Kn (x, xi) .f (xi) ,

where n ∈ N, f ∈ CB+ (I), Kn (., xi) ∈ CB+ (I) and xi ∈ I, for all i. These
operators are nonlinear positive operators having a pseudo-linearity property, i.e.,
for every f, g ∈ CB+ (I) and for any α, β ∈ R+

Ln (α.f ∨ β.g) = α.Ln (f) (x) ∨ β.Ln (g) (x) .

Moreover, max-product operators are positive homogenous, that is, Ln(λf)=λLn(f)
for all λ ≥ 0.

In order to establish the next results, we give the following auxiliary lemma.

Lemma 1 (See [5]). Let I ⊂ R be a bounded or unbounded interval and f ∈ CB+ (I)
and let Ln : CB+ (I) → CB+ (I) , n ∈ N be a sequence of operators satisfying the
following properties:

(i) if f, g ∈ CB+ (I) satisfy f ≤ g, then Ln (f) ≤ Ln (g) for all n ∈ N;

(ii) Ln (f + g) ≤ Ln (f) + Ln (g)for allf, g ∈ CB+ (I).
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Then for all f, g ∈ CB+ (I) , n ∈ N and x ∈ I we have

|Ln (f) (x)− Ln (g) (x)| ≤ Ln (|f − g|) (x) .

Notice that max-product type operators satisfy the conditions (i) , (ii) in Le-
mma 1. In fact, for α = 1, β = 1, they satisfy a pseudo-linearity property which is
stronger than the above condition (ii) .

3. Construction of the operators and auxiliary results

We define the nonlinear Bernstein-Chlodowsky operators of max-product type as
follows:

C(M)
n (f)(x) =

n
∨

k=0

hn,k(x)f(
bnk
n )

n
∨

k=0

hn,k(x)
, (1)

with

hn,k(x) =

(

n

k

)(

x

bn

)k (

1− x

bn

)n−k

,

where 0 ≤ x ≤ bn and (bn) is a sequence of positive real numbers such that

lim
n→∞

bn = ∞ and lim
n→∞

bn√
n
= 0.

The function f : [0, bn] → R+ is a continuous function. It is clear that C
(M)
n (f)(x)

is obtained from classical linear Bernstein-Chlodowsky operators, replacing the sum
operation with the maximum one.

Note that

• For a continuous function f : [0, bn] → R+, the operators C
(M)
n (f)(x) are

positive and continuous on [0, bn] .

• The operators C
(M)
n (f)(x) satisfy the pseudo-linearity property and these op-

erators also are positive homogenous.

• Since C
(M)
n (f)(0)− f (0) = 0 for all n, we may suppose throughout the paper

that 0 < x ≤ bn.

Furthermore, we provide an error estimate for the operators C
(M)
n (f) given by (1)

in terms of the modulus of continuity.
We need the following notations and lemmas for the proofs of the main results.

For each k, j ∈ {0, 1, 2, ..., n} and x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

, we will have the following

Mk,n,j(x) =
hn,k(x)

∣

∣

bnk
n − x

∣

∣

hn,j(x)
, m

k,n,j
(x) =

hn,k(x)

hn,j(x)
. (2)
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If k ≥ j + 1, then

Mk,n,j(x) =
hn,k(x)

(

bnk
n − x

)

hn,j(x)
(3)

and if k ≤ j − 1, then

Mk,n,j(x) =
hn,k(x)

(

x− bnk
n

)

hn,j(x)
. (4)

Also, for each k, j ∈ {0, 1, 2, ..., n} , k ≥ j + 2 and x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

, we will have

the following

−
Mk,n,j(x) =

hn,k(x)
(

bnk
n+1 − x

)

hn,j(x)
(5)

and for each k, j ∈ {0, 1, 2, ..., n} , k ≤ j − 2 and x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

, we will have

the following

M̂k,n,j(x) =
hn,k(x)

(

x− bnk
n+1

)

hn,j(x)
. (6)

Lemma 2. Let x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

. Then

(i) for all k, j ∈ {0, 1, 2, ..., n} , k ≥ j + 2, we have

−
Mk,n,j(x) ≤ Mk,n,j(x) ≤ 3

−
Mk,n,j(x); (7)

(ii) for all k, j ∈ {0, 1, 2, ..., n} , k ≤ j − 2, we have

Mk,n,j(x) ≤ M̂k,n,j (x) ≤ 6Mk,n,j(x). (8)

Proof. (i): By (3) and (5), it is obvious that
−
Mk,n,j(x) ≤ Mk,n,j(x).

Additionally,

Mk,n,j(x)
−
Mk,n,j(x)

=
bnk
n − x

bnk
n+1 − x

≤
bnk
n − bnj

n+1

bnk
n+1 − bn(j+1)

n+1

=
bn (kn+ k − nj)

nbn (k − j − 1)
=

k − j

k − j − 1
+

k

n (k − j − 1)
≤ 3,

which implies (i).
(ii): By (4) and (6), it is obvious that Mk,n,j(x) ≤ M̂k,n,j (x) .
Additionally,

M̂k,n,j (x)

Mk,n,j(x)
=

x− bnk
n+1

x− bnk
n

≤
bn(j+1)
n+1 − bnk

n+1
bnj
n+1 − bnk

n

=
nbn (j + 1− k)

bn (nj − nk − k)
≤ (n+ 1) (j + 1− k)

nj − nk − n
=

n+ 1

n
· j + 1− k

j − k − 1

≤ 2 · j + 1− k

j − k − 1
= 2

(

1 +
2

j − k − 1

)

≤ 6,
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which implies (ii).

Lemma 3. For all k, j ∈ {0, 1, 2, ..., n} and x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

, we have

mk,n,j(x) ≤ 1.

Proof. We have two cases: 1) k ≥ j and 2)k ≤ j.

Let k ≥ j. Since the function g (x) = bn−x
x is nonincreasing on

[

bnj
n+1 ,

bn(j+1)
n+1

]

, it

follows

mk,n,j(x)

mk+1,n,j(x)
=

k + 1

n− k
· bn − x

x
≥ k + 1

n− k
· bn (n− j)

bn (j + 1)
=

k + 1

n− k
· n− j

j + 1
≥ 1,

which implies

mj,n,j(x) ≥ mj+1,n,j(x) ≥ mj+2,n,j(x) ≥ ... ≥ mn,n,j(x).

We now turn to the case k ≤ j.

mk,n,j(x)

mk−1,n,j(x)
=

n− k + 1

k
· x

bn − x
≥ n− k + 1

k
·

bnj
n+1

bn − bnj
n+1

=
n− k + 1

k
· j

n+ 1− j
≥ 1,

which implies

mj,n,j(x) ≥ mj−1,n,j(x) ≥ mj−2,n,j(x) ≥ ... ≥ m0,n,j(x).

Since mj,n,j(x) = 1, the proof of the lemma is complete.

Lemma 4. Let x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

.

(i) If k ∈ {j + 2, j + 3, ..., n− 1} is such that k −
√
k + 1 ≥ j, then

−
Mk,n,j(x) ≥

−
Mk+1,n,j(x).

(ii) If k ∈ {1, 2, ...j − 2} is such that k +
√
k ≤ j, then M̂k,n,j(x) ≥ M̂k−1,n,j(x).

Proof. (i): Let k ∈ {j + 2, j + 3, ..., n− 1} with k −
√
k + 1 ≥ j. Then we get

−
Mk,n,j(x)
−
Mk+1,n,j(x)

=
k + 1

n− k
· bn − x

x
·

bnk
n+1 − x

bn(k+1)

n+1 − x
.

Since the function µ (x) = bn−x
x ·

bnk

n+1−x
bn(k+1)

n+1 −x
is nonincreasing, it follows that

µ (x) ≥ µ

(

bn (j + 1)

n+ 1

)

=
n− j

j + 1
· k − j − 1

k − j
for all x ∈

[

bnj

n+ 1
,
bn (j + 1)

n+ 1

]

.
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Then, since the condition k−
√
k + 1 ≥ j implies (k + 1) (k − j − 1) ≥ (j + 1) (k − j),

we obtain
−
Mk,n,j(x)
−
Mk+1,n,j(x)

≥ k + 1

n− k
· n− j

j + 1
· k − j − 1

k − j
≥ 1.

(ii): We get

M̂k,n,j (x)

M̂k−1,n,j (x)
=

n− k + 1

k
· x

bn − x
·

x− bnk
n+1

x− bn(k−1)

n+1

Since the function η (x) = x
bn−x · x− bnk

n+1

x−
bn(k−1)

n+1

is nondecreasing, it follows that

η (x) ≥ η

(

bnj

n+ 1

)

=
j

n+ 1− j
· j − k

j − k + 1
for all x ∈

[

bnj

n+ 1
,
bn (j + 1)

n+ 1

]

.

Then, since the condition k +
√
k ≤ j implies j (j − k) ≥ k (j − k + 1), we obtain

M̂k,n,j (x)

M̂k−1,n,j (x)
≥ n− k + 1

k
· j

n+ 1− j
· j − k

j − k + 1
≥ 1,

which proves the desired result.

Lemma 5. Denoting hn,k(x) =
(

n
k

)

(

x
bn

)k (

1− x
bn

)n−k

, we have

n
∨

k=0

hn,k(x) = hn,j(x), for all x ∈
[

bnj

n+ 1
,
bn (j + 1)

n+ 1

]

, j = 0, 1, ..., n.

Proof. Our proof starts with the observation that for fixed n ∈ N and 0 ≤ k <
k + 1 ≤ n, we have

0 ≤ hn,k+1(x) ≤ hn,k(x) if and only if x ∈ [0, bn (k + 1) /n+ 1] .

Let us evaluate

0 ≤
(

n

k + 1

)(

x

bn

)k+1(

1− x

bn

)n−k−1

≤
(

n

k

)(

x

bn

)k (

1− x

bn

)n−k

.

After simplifications, the inequality is equivalent to

0 ≤ x

bn

[(

n

k + 1

)

+

(

n

k

)]

≤
(

n

k

)

.

Since
(

n
k+1

)

+
(

n
k

)

=
(

n+1
k+1

)

, we get

0 ≤ x ≤ bn (k + 1)

n+ 1
.
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By taking k = 0, 1, ..., n in the inequality above, we get

hn,1(x) ≤ hn,0(x), if and only if x ∈ [0, bn/ (n+ 1)] ,

hn,2(x) ≤ hn,1(x), if and only if x ∈ [0, 2bn/ (n+ 1)] ,

hn,3(x) ≤ hn,2(x), if and only if x ∈ [0, 3bn/ (n+ 1)] ,

and

hn,k+1(x) ≤ hn,k(x), if and only if x ∈ [0, bn (k + 1) / (n+ 1)] ,

and finally

hn,n−2(x) ≤ hn,n−3(x), if and only if x ∈ [0, bn (n− 2) / (n+ 1)] ,

hn,n−1(x) ≤ hn,n−2(x), if and only if x ∈ [0, bn (n− 1) / (n+ 1)] ,

hn,n(x) ≤ hn,n−1(x), if and only if x ∈ [0, bnn/ (n+ 1)] .

Consequently, we obtain:

if x ∈ [0, bn/ (n+ 1)] then hn,k(x) ≤ hn,0(x), for all k = 0, 1, ..., n;

if x ∈ [bn/ (n+ 1) , 2bn/ (n+ 1)] then hn,k(x) ≤ hn,1(x), for all k = 0, 1, ..., n;

if x ∈ [2bn/ (n+ 1) , 3bn/ (n+ 1)] then hn,k(x) ≤ hn,2(x), for all k = 0, 1, ..., n;

and, in general

if x ∈ [bnn/ (n+ 1) , bn] then hn,k(x) ≤ hn,n(x), for all k = 0, 1, ..., n,

which implies the desired result.

4. Degree of approximation by C(M)
n

(f)(x)

For estimating a degree of approximation of a function f ∈ CB+ (I) we use the
Shisha-Mond Theorem given for nonlinear max-product type operators in [5, 6].

Theorem 1. If f : [0, bn] → R+ is a continuous function and C
(M)
n (f)(x) are

the max-product Bernstein-Chlodowsky operators defined in (1), then the following
pointwise estimate holds:

∣

∣

∣
C(M)

n (f)(x) − f(x)
∣

∣

∣
≤ 12ω1

(

f ;
bn√
n+ 1

)

, ∀n ∈ N, x ∈ [0, bn],

where

ω1 (f ; δ) = sup {|f(x)− f(y)| ;x, y ∈ [0, bn], |x− y| ≤ δ} .

Proof. Since C
(M)
n (e0)(x) = 1, by using the Shisha-Mond Theorem, we get

∣

∣

∣C(M)
n (f)(x)− f(x)

∣

∣

∣ ≤
(

1 +
1

δn
C(M)

n (ϕx)(x)

)

ω1 (f ; δn) , (9)
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where ϕx(t) = |t− x| . Therefore, it is enough to estimate only the following term

En (x) := C(M)
n (ϕx)(x) =

n
∨

k=0

hn,k(x)
∣

∣

bnk
n − x

∣

∣

n
∨

k=0

hn,k(x)
.

Let x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

, where j ∈ {0, 1, ..., n} is fixed and arbitrary. By Lemma 5

we have

En (x) =
n
∨

k=0

Mk,n,j(x).

Since for j = 0 we get En (x) ≤ bn/n, for all x ∈ [0, bn/ (n+ 1)], we may
suppose that j ∈ {1, ..., n}. We will find an upper estimate for each Mk,n,j(x),

where j ∈ {0, 1, ..., n} is fixed, x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

and k ∈ {0, 1, ..., n} . The proof

will be divided into 3 cases:

1) k ∈ {j − 1, j, j + 1} , 2) k ≥ j + 2, and 3) k ≤ j − 2.

Case 1): If k = j, then Mj,n,j(x) =
∣

∣

∣

bnj
n − x

∣

∣

∣ . Since x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

, it follows

immediately that Mj,n,j(x) ≤ bn/ (n+ 1) .
If k = j+1, then Mj+1,n,j(x) = mj+1,n,j(x) (bn (j + 1) /n− x) . From Lemma 3,

we have mj+1,n,j(x) ≤ 1, it implies

Mj+1,n,j(x) ≤ bn (j + 1) /n− x ≤ bn (j + 1) /n− bnj/n+ 1

= bn (j + n+ 1) /n (n+ 1)

≤ 3bn/ (n+ 1) .

If k = j − 1, then Mj−1,n,j(x) = mj−1,n,j(x) (x− bn (j − 1) /n) . Since by Lemma 3
we have mj−1,n,j(x) ≤ 1, it implies

Mj−1,n,j(x) ≤ x− bn (j − 1) /n ≤ bn (j + 1) / (n+ 1)− bn (j − 1) /n

= bn (2n− (j − 1)) /n (n+ 1)

≤ 2bn/ (n+ 1) .

Case 2):
Subcase (a): Let k −

√
k + 1 < j, then

−
Mk,n,j(x) = mk,n,j (x)

(

bnk

n+ 1
− x

)

≤ bnk

n+ 1
− x ≤ bnk

n+ 1
− bnj

n+ 1

≤ bnk

n+ 1
− bn

(

k −
√
k + 1

)

n+ 1
=

bn
√
k + 1

n+ 1
≤ bn√

n+ 1
.

Subcase (b): Now let k −
√
k + 1 ≥ j. Since the function g (x) = x −

√
x+ 1 is

nondecreasing on the interval [0, bn], it follows that there exist k ∈ {0, 1, 2, ..., n} of
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maximum value, such that k−
√

k + 1 < j. Then for k1 = k+1 we get k1−
√
k1 + 1 ≥

j and

−
M

k+1,n,j
(x) = m

k+1,n,j
(x)





bn

(

k + 1
)

n+ 1
− x



 ≤
bn

(

k + 1
)

n+ 1
− x

≤
bn

(

k + 1
)

n+ 1
− bnj

n+ 1
≤

bn

(

k + 1
)

n+ 1
−

bn

(

k −
√

k + 1

)

n+ 1

=

bn

(√

k + 1 + 1

)

n+ 1
≤ 2bn√

n+ 1
.

Also, we have k1 ≥ j + 2. Indeed, this is a consequence of the fact that g is non
decreasing and it is easy to see that g (j + 1) < j.

By Lemma 4(i) it follows that
−
M

k+1,n,j
(x) ≥

−
M

k+2,n,j
(x) ≥ ... ≥

−
Mn,n,j (x) .

We obtain
−
Mk,n,j (x) ≤ 2bn√

n+1
for any k ∈

{

k + 1, k + 2, ..., n
}

.

Thus, in subcases (a) and subcases (b) we have
−
Mk,n,j (x) ≤ 2bn√

n+1
. So, from

Lemma 2(i), we have Mk,n,j(x) ≤ 6bn√
n+1

.

Case 3):
Subcase (a): Let k +

√
k ≥ j. Then

M̂k,n,j (x) = mk,n,j (x)

(

x− bnk

n+ 1

)

≤ bn (j + 1)

n+ 1
− bnk

n+ 1

≤
bn

(

k +
√
k + 1

)

n+ 1
− bnk

n+ 1

=
bn

(√
k + 1

)

n+ 1
≤ bn (

√
n+ 1)

n+ 1
≤ 2bn√

n+ 1
.

Subcase (b): Now let k +
√
k < j. Let

∼
k ∈ {0, 1, 2, ..., n} be the minimum value

such that
∼
k +

√

∼
k ≥ j. Then k2 =

∼
k − 1 satisfies k2 +

√
k2 < j and

M̂∼

k−1,n,j
(x) = m∼

k−1,n,j
(x)









x−
bn

(

∼
k − 1

)

n+ 1









≤ bn (j + 1)

n+ 1
−

bn

(

∼
k − 1

)

n+ 1

≤
bn

(

∼

k +

√

∼

k + 1

)

n+ 1
−

bn

(

∼
k − 1

)

n+ 1
=

bn

(

√

∼

k + 2

)

n+ 1
≤ 3bn√

n+ 1
.

Also, in this case we have j ≥ 2, which implies k2 ≤ j − 2.
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By Lemma 4(ii), we get M̂∼

k−1,n,j
(x) ≥ M̂∼

k−2,n,j
(x) ≥ ... ≥ M̂0,n,j (x) . Hence

we obtain

M̂k.n,j (x) ≤
3bn√
n+ 1

for any k ≤ j − 2 and x ∈
[

bnj

n+ 1
,
bn (j + 1)

n+ 1

]

.

Thus, in subcases (a) and subcases (b) we have M̂k.n,j (x) ≤ 3bn√
n+1

. So from Le-

mma 2(ii), we have Mk.n,j (x) ≤ 3bn√
n+1

.

Collecting all the above estimates, we get

Mk.n,j (x) ≤
6bn√
n+ 1

, ∀x ∈
[

bnj

n+ 1
,
bn (j + 1)

n+ 1

]

, k = 0, 1, 2, ..., n,

which implies that

En (x) ≤ 6bn√
n+ 1

, ∀x ∈ [0, bn] , n ∈ N,

and taking δn = 6bn√
n+1

in (9), we obtain the estimate

∣

∣

∣C(M)
n (f)(x) − (f)(x)

∣

∣

∣ ≤ 12ω1

(

f ;
bn√
n+ 1

)

, ∀n ∈ N, x ∈ [0, bn].

It is sufficient to make the following observation to obtain a better order of
approximation for subclasses of functions f .

For any k, j ∈ {0, 1, 2, ..., n}, consider the functions fk,n,j :
[

bnj
n+1 ,

bn(j+1)
n+1

]

→ R

defined by

fk,n,j (x) = mk,n,j (x) f

(

bnk

n

)

=

(

n
k

)

(

n
j

)

(

x

bn − x

)k−j

f

(

bnk

n

)

.

Thus, for any j ∈ {0, 1, 2, ..., n} and x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

, we can write

C(M)
n (f)(x) =

n
∨

k=0

fk,n,j (x) .

Lemma 6. Let f : [0, bn] → [0,∞) such that

C(M)
n (f)(x) = max {fj,n,j (x) , fj+1,n,j (x)} , ∀x ∈

[

bnj

n+ 1
,
bn (j + 1)

n+ 1

]

;

then
∣

∣

∣C(M)
n (f)(x) − f (x)

∣

∣

∣ ≤ 2ω1

(

f ;
bn
n

)

,

where ω1 (f ; δ) = sup {|f(x)− f(y)| ;x, y ∈ [0, bn], |x− y| ≤ δ} .
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Proof. We have two cases:
Case (i): Let x ∈

[

bnj
n+1 ,

bn(j+1)
n+1

]

be fixed such that C
(M)
n (f)(x) = fj,n,j (x) .

Since − bn
n+1 ≤ x− bnj

n ≤ bn
n+1 and fj,n,j (x) = f

(

bnj
n

)

, we have

∣

∣

∣C(M)
n (f)(x)− f (x)

∣

∣

∣ =

∣

∣

∣

∣

f

(

bnj

n

)

− f (x)

∣

∣

∣

∣

≤ ω1

(

f ;
bn

n+ 1

)

.

Case (ii): Let x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

be fixed such that C
(M)
n (f)(x) = fj+1,n,j (x).

We have two subcases:
Subcase (a): If C

(M)
n (f)(x) ≤ f (x), then fj,n,j (x) ≤ fj+1,n,j (x) ≤ f (x) and we

get

∣

∣

∣
C(M)

n (f)(x) − f (x)
∣

∣

∣
= |fj+1,n,j (x)− f (x)| = f (x)− fj+1,n,j (x)

≤ f (x)− fj,n,j (x) = f (x) − f

(

bnj

n

)

≤ ω1

(

f ;
bn

n+ 1

)

.

Subcase (b): If C
(M)
n (f)(x) > f (x), then

∣

∣

∣
C(M)

n (f)(x) − f (x)
∣

∣

∣
= fj+1,n,j (x)− f (x) = mj+1,n,j (x) .f

(

bn (j + 1)

n

)

− f (x)

≤ f

(

bn (j + 1)

n

)

− f (x) .

Since

0 ≤ bn (j + 1)

n
− x ≤ bn (j + 1)

n
− bnj

n+ 1
=

bnj

n (n+ 1)
+

bn
n

<
2bn
n

,

then

f

(

bn (j + 1)

n

)

− f (x) ≤ 2ω1

(

f ;
bn
n

)

,

which completes the proof.

Lemma 7. Let f : [0, bn] → [0,∞) such that

C(M)
n (f)(x) = max {fj,n,j (x) , fj−1,n,j (x)} , ∀x ∈

[

bnj

n+ 1
,
bn (j + 1)

n+ 1

]

;

then
∣

∣

∣C(M)
n (f)(x) − f (x)

∣

∣

∣ ≤ 2ω1

(

f ;
bn
n

)

.

Proof. We have two cases:
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Case (i): Let C
(M)
n (f)(x) = fj,n,j (x). We get, as in the proof of Lemma 6,

∣

∣

∣C(M)
n (f)(x)− f (x)

∣

∣

∣ ≤ ω1

(

f ;
bn

n+ 1

)

.

Case (ii): Let x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

be fixed such that C
(M)
n (f)(x) = fj−1,n,j (x).

We have two subcases:
Subcase (a): If C

(M)
n (f)(x) ≤ f (x), then following the proof of Lemma 6, we

get

C(M)
n (f)(x)− f (x) ≤ ω1

(

f ;
bn

n+ 1

)

.

Subcase (b): If C
(M)
n (f)(x) > f (x), then

∣

∣

∣
C(M)

n (f)(x) − f (x)
∣

∣

∣
= fj−1,n,j (x)− f (x) = mj−1,n,j (x) .f

(

bn (j − 1)

n

)

− f (x)

≤ f

(

bn (j − 1)

n

)

− f (x) .

Since

0 ≤ x− bn (j − 1)

n
≤ bn (j + 1)

n+ 1
− bn (j − 1)

n
=

−bnj

n (n+ 1)
+

bn
n+ 1

<
2bn
n

,

then

f

(

bn (j − 1)

n

)

− f (x) ≤ 2ω1

(

f ;
bn
n

)

.

This completes the proof.

Lemma 8. Let f : [0, bn] → [0,∞) such that

C(M)
n (f)(x) = max {fj−1,n,j (x) , fj,n,j (x) , fj+1,n,j (x)} , ∀x ∈

[

bnj

n+ 1
,
bn (j + 1)

n+ 1

]

;

then
∣

∣

∣C(M)
n (f)(x) − f (x)

∣

∣

∣ ≤ 2ω1

(

f ;
bn
n

)

.

Proof. Let x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

be fixed such that C
(M)
n (f)(x) = fj,n,j (x) or

C
(M)
n (f)(x) = fj+1,n,j (x) . Then C

(M)
n (f)(x) = max {fj,n,j (x) , fj+1,n,j (x)} and

from Lemma 6 we get
∣

∣

∣C(M)
n (f)(x) − f (x)

∣

∣

∣ ≤ 2ω1

(

f ;
bn
n

)

.

If C
(M)
n (f)(x) = fj−1,n,j (x) , then C

(M)
n (f)(x) = max {fj,n,j (x) , fj−1,n,j (x)} and

from Lemma 7 we get
∣

∣

∣C(M)
n (f)(x) − f (x)

∣

∣

∣ ≤ 2ω1

(

f ;
bn
n

)

,

which completes the proof.
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Lemma 9 (See [6]). Let f : [0, bn] → [0,∞) be concave. Then the following two
properties hold:

(i) the function g : (0, bn] → [0,∞), g (x) = f (x) /x is nonincreasing;

(ii) the function h : [0, bn) → [0,∞), h (x) = f (x) / (bn − x) is nondecreasing.

Proof. (i): Let x, y ∈ (0, bn] such that x ≤ y. Then

f (x) = f

(

x

y
.y +

y − x

y
.0

)

≥ x

y
f (y) +

y − x

y
f (0) ≥ x

y
f (y) ,

which implies f (x) /x ≥ f (y) /y.
(ii): Let x, y ∈ [0, bn) such that x ≥ y. Then

f (x) = f

(

bn − x

bn − y
.y +

x− y

bn − y
.bn

)

≥ bn − x

bn − y
f (y) +

x− y

bn − y
f (bn) ≥

bn − x

bn − y
f (y) ,

which implies f (x) / (bn − x) ≥ f (y) / (bn − y) .

Corollary 1. Let f : [0, bn] → [0,∞) be a concave function. Then for all x ∈ [0, bn]

∣

∣

∣
C(M)

n (f)(x) − f (x)
∣

∣

∣
≤ 2ω1

(

f ;
bn
n

)

.

Proof. Let x ∈ [0, bn] and for j ∈ {0, 1, 2, ..., n}, x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

. Let k ∈
{0, 1, 2, ..., n}. If k ≥ j, then

fk+1,n,j (x) =

(

n
k+1

)

(

n
j

)

(

x

bn − x

)k+1−j

f

(

bn (k + 1)

n

)

=

(

n
k

)

(

n
j

)

n− k

k + 1

(

x

bn − x

)k−j
x

bn − x
f

(

bn (k + 1)

n

)

.

Since

f

(

bn (k + 1)

n

)

/
bn (k + 1)

n
≤ f

(

bnk

n

)

/
bnk

n

(that comes from Lemma 9 (i)), that is,

f

(

bn (k + 1)

n

)

≤
(

k + 1

k

)

f

(

bnk

n

)

,

and since
x

bn − x
≤ j + 1

n− j
,

we get

fk+1,n,j (x) ≤
(

n
k

)

(

n
j

)

n− k

k + 1

(

x

bn − x

)k−j
j + 1

n− j

k + 1

k
f

(

bnk

n

)

= fk,n,j (x)
j + 1

k

n− k

n− j
.
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By the above inequality for k ≥ j + 1 we get fk,n,j (x) ≥ fk+1,n,j (x) . Hence

fj+1,n,j (x) ≥ fj+2,n,j (x) ≥ ... ≥ fn,n,j (x) (10)

If k ≤ j, then

fk−1,n,j (x) =

(

n
k−1

)

(

n
j

)

(

x

bn − x

)k−1−j

f

(

bn (k − 1)

n

)

=

(

n
k

)

(

n
j

)

k

n− k + 1

(

x

bn − x

)k−j
bn − x

x
f

(

bn (k − 1)

n

)

.

Since

f

(

bnk

n

)

/

(

bn − bnk

n

)

≥ f

(

bn (k − 1)

n

)

/

(

bn − bn (k − 1)

n

)

(that comes from Lemma 9 (ii)), that is,

f

(

bnk

n

)

≥
(

n− k

n− k + 1

)

f

(

bn (k − 1)

n

)

.

Since
bn − x

x
≤ n+ 1− j

j
,

we get

fk−1,n,j (x) ≤
(

n
k

)

(

n
j

)

k

n− k + 1

(

x

bn − x

)k−j
n+ 1− j

j

n− k + 1

n− k
f

(

bnk

n

)

= fk,n,j (x)
k

j

n+ 1− j

n− k
.

By the above inequality, for k ≤ j − 1, we get fk,n,j (x) ≥ fk−1,n,j (x) . Hence

fj−1,n,j (x) ≥ fj−2,n,j (x) ≥ ... ≥ f0,n,j (x) . (11)

We conclude from (10) and (11) that

C(M)
n (f)(x) = max {fj−1,n,j (x) , fj,n,j (x) , fj+1,n,j (x)} ,

and finally from Lemma 8

∣

∣

∣C(M)
n (f)(x) − f (x)

∣

∣

∣ ≤ 2ω1

(

f ;
bn
n

)

,

which proves the corollary.

Remark 1. Compared with the approximation error ω1

(

f ; bn√
n

)

in [23] given by

linear Bernstein-Chlodowsky operators, from Corollary 1 it follows that the approxi-
mation order ω1

(

f ; bn
n

)

, given by nonlinear max-product Bernstein-Chlodowsky op-
erators, is essentially better for concave functions.
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5. Shape-preserving properties

In this section, we deal with some shape-preserving properties for max-product type
Bernstein-Chlodowsky operators.

As in the previous section, for any k, j ∈ {0, 1, 2, ..., n} consider the functions

fk,n,j :
[

bnj
n+1 ,

bn(j+1)
n+1

]

→ R defined by

fk,n,j (x) = mk,n,j (x) f

(

bnk

n

)

=

(

n
k

)

(

n
j

)

(

x

bn − x

)k−j

f

(

bnk

n

)

.

Thus, for any j ∈ {0, 1, 2, ..., n} and x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

, we can write

C(M)
n (f)(x) =

n
∨

k=0

fk,n,j (x) .

Lemma 10. Let f : [0, bn] → R+ be a nondecreasing function; then for any k, j ∈
{0, 1, 2, ..., n} , k ≤ j and x ∈

[

bnj
n+1 ,

bn(j+1)
n+1

]

, we have fk,n,j (x) ≥ fk−1,n,j (x) .

Proof. By the proof of Lemma 3, case 2, mk,n,j (x) ≥ mk−1,n,j (x) for k ≤ j . Since
f is nondecreasing , it follows that

f

(

bnk

n

)

≥ f

(

bn (k − 1)

n

)

.

Hence, we get

mk,n,j (x) f

(

bnk

n

)

≥ mk−1,n,j (x) f

(

bn (k − 1)

n

)

.

This gives that fk,n,j (x) ≥ fk−1,n,j (x) .

Corollary 2. Let f : [0, bn] → R+ be a nonincreasing function; then for any k, j ∈
{0, 1, 2, ..., n} , k ≥ j and x ∈

[

bnj
n+1 ,

bn(j+1)
n+1

]

, we have fk,n,j (x) ≥ fk+1,n,j (x) .

Proof. By the proof of Lemma 3 case 1, mk,n,j (x) ≥ mk+1,n,j (x) for k ≥ j . Since
f is nonincreasing, it follows that

f

(

bnk

n

)

≥ f

(

bn (k + 1)

n

)

.

Hence, we get

mk,n,j (x) f

(

bnk

n

)

≥ mk+1,n,j (x) f

(

bn (k + 1)

n

)

.

This implies the desired inequlity.
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Theorem 2. If f : [0, bn] → R+ is a nondecreasing function, then C
(M)
n (f)(x) is

nondecreasing.

Proof. Since C
(M)
n (f)(x) is continuous on [0, bn], it is sufficient to show that on

each subinterval of the form
[

bnj
n+1 ,

bn(j+1)
n+1

]

, with j ∈ {0, 1, 2, ..., n}, C(M)
n (f)(x) is

nondecreasing.

Let j ∈ {0, 1, 2, ..., n} and x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

. Since f is nondecreasing, from

Lemma 10 we get fj,n,j (x) ≥ fj−1,n,j (x) ≥ fj−2,n,j (x) ≥ ... ≥ f0,n,j (x) .

For all x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

, we can write

C(M)
n (f)(x) =

n
∨

k=j

fk,n,j (x) .

For k ≥ j, since the function fk,n,j (x) is nondecreasing and C
(M)
n (f)(x) can be

written as the maximum of nondecreasing functions, then C
(M)
n (f)(x) is nonde-

creasing.

Corollary 3. If f : [0, bn] → R+ is a nonincreasing function, then C
(M)
n (f)(x) is

nonincreasing.

Proof. Since C
(M)
n (f)(x) is continuous on [0, bn], it is sufficient to show that on

each subinterval of the form
[

bnj
n+1 ,

bn(j+1)
n+1

]

, with j ∈ {0, 1, 2, ..., n}, C(M)
n (f)(x) is

nonincreasing.

Let j ∈ {0, 1, 2, ..., n} and x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

. Since f is nonincreasing, from

Corollary 2 we get fj,n,j (x) ≥ fj+1,n,j (x) ≥ fj+2,n,j (x) ≥ ... ≥ fn,n,j (x) .

For all x ∈
[

bnj
n+1 ,

bn(j+1)
n+1

]

, we can write

C(M)
n (f)(x) =

j
∨

k=0

fk,n,j (x) .

For k ≤ j, since the function fk,n,j (x) is nonincreasing and C
(M)
n (f)(x) can be

written as the maximum of nonincreasing functions, C
(M)
n (f)(x) is nonincreasing.

Remark 2 (See [6, 24]). A continuous function f is quasiconvex on the bounded
interval [0, a] if there exists a point c ∈ [0, a] such that f is nonincreasing on [0, c]
and nondecreasing on [c, a].

Corollary 4. If f : [0, bn] → R+ is a continuous and quasiconvex function on [0, bn],

then for all n ∈ N, C
(M)
n (f)(x) is quasiconvex on [0, bn].

Proof. It is known that a continuous function f is quasiconvex on [0, bn] if there
exists a point c ∈ [0, bn] such that f is nonincreasing on [0, c] and nondecreasing on
[c, bn].
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If f is a nondecreasing or nonincreasing function on [0, bn], then by Theorem 2

or by Corollary 3, for all n ∈ N, C
(M)
n (f)(x) is nonincreasing or nondecreasing on

[0, bn].
Now suppose that there exists a point c ∈ (0, bn) such that f is nonincreasing on

[0, c] and nondecreasing on [c, bn]. The functions F,G : [0, bn] → R+ are defined by
F (x) = f (x) for all x ∈ [0, c], F (x) = f (c) for all x ∈ [c, bn] and G (x) = f (c) for
all x ∈ [0, c], G (x) = f (x) for all x ∈ [c, bn]. It is obvious that F is nonincreasing
and continuous on [0, bn], G is nondecreasing and continuous on [0, bn] and f (x) =
max {F (x) , G (x)}, for all x ∈ [0, bn].

In addition, since C
(M)
n (f)(x) is pseudo-linear, we can write for all x ∈ [0, bn]

C(M)
n (f)(x) = max

{

C(M)
n (F )(x), C(M)

n (G)(x)
}

.

Hence by Corollary 3 and Theorem 2, C
(M)
n (F )(x) is nonincreasing and continuous

on [0, bn], C
(M)
n (G)(x) is nondecreasing and continuous on [0, bn].

Now, we have two cases:

1) C
(M)
n (F )(x) and C

(M)
n (G)(x) do not intersect each other,

2) C
(M)
n (F )(x) and C

(M)
n (G)(x) intersect each other.

Case 1): For all x ∈ [0, bn],

max
{

C(M)
n (F )(x), C(M)

n (G)(x)
}

= C(M)
n (F )(x)

or
max

{

C(M)
n (F )(x), C(M)

n (G)(x)
}

= C(M)
n (G)(x).

Since the class of quasiconvex functions includes a class of nondecreasing functions

and a class of nonincreasing functions, we get that C
(M)
n (f)(x) is quasiconvex on

[0, bn].

Case 2): If C
(M)
n (F )(x) and C

(M)
n (G)(x) intersect each other, then there exists

a point c ∈ [0, bn] such that C
(M)
n (f)(x) is nonincreasing on [0, c] and nondecreasing

on [c, bn], which implies that C
(M)
n (f)(x) is quasiconvex on [0, bn].

Note that, since the class of quasiconvex functions includes the class of non-
decreasing functions, the class of nonincreasing functions and the class of convex
functions on [0, bn], Corollary 4 shows that the shape-preserving holds in a wide
class of functions.

Next, we illustrate the rate of convergence of the operators C
(M)
n (f)(x) to certain

functions by graphics. We also compare the convergence of the nonlinear operators

C
(M)
n (f)(x) and the Bernstein-Chlodowsky operatorsBn(f)(x) to a certain function.

Example 1. Let (bn) = (n1/3). For n = 30 and n = 50, the convergence of the

operators C
(M)
n (f)(x) to

f(x) =

{

0, if x = 0
x2 sin 1

x , if x ∈ (0, bn]

is illustrated in Figures 1 and 2, respectively.
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nonlinear operators
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Figure 1:
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nonlinear operators
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Figure 2:

Example 2. Let (bn) = (n1/5). For n = 30 and n = 50, the convergence of the

operators C
(M)
n (f)(x) and Bn(f)(x) to f(x) = 1

2 −
∣

∣x− [x]− 1
2

∣

∣ is illustrated in
Figures 3 and 4, respectively.
From Figures 3 and 4 it is clearly seen that for the corresponding functions, the max-
product Bernstein-Chlodowsky operators approximate much better than the linear
Bernstein-Chlodowsky operators.
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polynomials and their Bézier-type variants, Appl. Anal. 90(2011), 403–416.


