
MATHEMATICAL COMMUNICATIONS 259
Math. Commun. 23(2018), 259–277

Measure pseudo affine-periodic solutions of semilinear

differential equations∗

Zhinan Xia, Zihui Li and Dingjiang Wang†

Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou,

Zhejiang, 310 023, China

Received September 26, 2016; accepted January 26, 2018

Abstract. In this paper, we introduce the concept of a pseudo affine-periodic function via
measure theory, that is, a measure pseudo (Q,T )-affine-periodic function. The existence
and uniqueness of a measure pseudo (Q,T )-affine-periodic solution for semilinear differential
equations are investigated. The working tools are based on the Banach contraction mapping
principle and the Leray-Schauder alternative theorem. Finally, an example is presented to
illustrate the main findings.
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1. Introduction

The problem of the existence and uniqueness of a periodic solution of differential
equations has been the main subject of investigation. Many authors have made
important contributions to this theory by using various methods and techniques,
such as the fixed-point theorem, the Kaplan-Yorke method and coincidence degree
theory [7, 12, 16, 20, 24]. However, real systems usually exhibit internal variations or
external perturbations which are only approximately periodic. Recently, the concept
of an affine-periodic solution was proposed [22, 25]; this solution is a kind of periodic
or quasi-periodic solution with symmetry. For more details on the applications to
differential equations or difference equations, one can see [5, 6, 15, 17, 21, 23].

On the other hand, Blot, Cieutat and Ezzinbi [3, 4] use the results of measure
theory to establish µ-ergodicity and introduce the new concepts of a µ-pseudo almost
periodic functionand a µ-pseudo almost automorphic function. Subsequently, µ-
ergodicity is generalized into (µ, ν)-ergodicity by Diagana et al. [10]. In this paper,
we give the concept of a measure pseudo affine-periodic function by (µ, ν)-ergodicity,
and investigate the existence and uniqueness of a measure pseudo affine-periodic
solution for semilinear differential equations.

The paper is organized as follows. In Section 2, the measure pseudo (Q, T )-
affine-periodic function is introduced and composition theorems are given. Section 3
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is devoted to the applications to differential equations under Lipschitz perturbation
and non-Lipschitz perturbation, respectively. In Section 4, an example is presented
to illustrate the main findings.

2. Measure pseudo affine-periodicity

Consider the following system:
x′ = f(t, x), (1)

where f(t, x) : R× R
n → R

n satisfies the affine symmetry

f(t+ T, x) = Qf(t, Q−1x), (2)

where Q ∈ GL(Rn), T > 0 is a constant.

Definition 1 (see [6]). If f(t, x) satisfies affine symmetry (2), then (1) is said to
be a (Q, T )-affine-periodic system.

Definition 2 (see [6]). The solution x(t) of (1) is said to be a (Q, T )-affine-periodic
solution if x(t) satisfies x(t+ T ) = Qx(t) for all t ∈ R.

Remark 1. Note that if Q = I (identity matrix), Q = −I, QN = I, Q ∈ SO(n);
then (Q, T )-affine-periodic solution x(t) defined in Definition 2 is just T -periodic,
anti-periodic, harmonic and quasi-periodic respectively. One can see [6] for more
details.

For T > 0, define

CT (R,R
n) = {x ∈ C(R,Rn) : x(t+ T ) = Qx(t) for all t ∈ R},

C0(R,R
n) = {x ∈ C(R,Rn) : lim

|t|→+∞
|x(t)| = 0},

PAP0(R,R
n) =

{

x ∈ C(R,Rn) : lim
r→+∞

1

2r

∫ r

−r

|x(t)|dt = 0

}

.

Definition 3. A function f ∈ C(R,Rn) is called asymptotically (Q, T )-affine-
periodic if there exists g ∈ CT (R,R

n), ϕ ∈ C0(R,R
n) such that f = g + ϕ. The

collection of those functions is denoted by AAPT (R,R
n).

Definition 4 (see [6]). A function f ∈ C(R,Rn) is said to be pseudo (Q, T )-affine-
periodic if there exists g ∈ CT (R,R

n), ϕ ∈ PAP0(R,R
n) such that f = g + ϕ. The

collection of those functions is denoted by PAPT (R,R
n).

Let U be the set of all functions ρ : R → (0,+∞) which are positive and locally
integrable over R. For r > 0 and each ρ ∈ U , set m(r, ρ) :=

∫ r

−r ρ(t)dt and U∞ :=
{ρ ∈ U : lim

r→+∞
m(r, ρ) = +∞}. For ρ1, ρ2 ∈ U∞, define the weighted ergodic space

[9]

WPAA0(R,R
n, ρ1, ρ2) :=

{

f ∈ C(R,Rn) : lim
r→+∞

1

m(r, ρ2)

∫ r

−r

ρ1(t)|f(t)|dt = 0

}

.
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Definition 5. Let ρ1, ρ2 ∈ U∞. A function f ∈ C(R,Rn) is called weighted pseudo
(Q, T )-affine-periodic if it can be decomposed as f = g + ϕ, where g ∈ CT (R,R

n)
and ϕ ∈ WPAA0(R,R

n, ρ1, ρ2). Denote by WPAPT (R,R
n, ρ1, ρ2) the set of such

functions.

Next, we introduce the concept of a measure pseudo (Q, T )-affine-periodic func-
tion by the results of measure theory. B denotes the Lebesgue σ-field of R, M stands
for the set of all positive measures µ on B satisfying µ(R) = +∞ and µ([a, b]) < +∞
for all a, b ∈ R (a ≤ b).

Definition 6 (see [10]). Let µ, ν ∈ M, the measures µ and ν are equivalent at
infinity, written µ ∼ ν, if there exist constants c0, c1 > 0 and a bounded interval
I ⊂ R (eventually ∅) such that

c0ν(A) ≤ µ(A) ≤ c1ν(A)

for all A ∈ B satisfying A ∩ I = ∅.

Definition 7 (see [10]). Let µ, ν ∈ M. A function f ∈ C(R,Rn) is said to be
(µ, ν)-ergodic if

lim
r→+∞

1

ν([−r, r])

∫

[−r,r]

|f(t)|dµ(t) = 0.

Denote by E(R,Rn, µ, ν) the set of such functions.

Definition 8. Let µ, ν ∈ M. A function f ∈ C(R,Rn) is said to be measure pseudo
(Q, T )-affine-periodic if it can be decomposed as f = g+ϕ, where g ∈ CT (R,R

n) and
ϕ ∈ E(R,Rn, µ, ν). Denote by MPAPT (R,R

n, µ, ν) the collection of such functions.

Remark 2. (i) If µ, ν are the Lebesgue measures, then the measure pseudo (Q, T )-
affine-periodic function MPAPT (R,R

n, µ, ν) is a pseudo (Q, T )-affine-periodic
function PAPT (R,R

n).

(ii) Let ρ1(t) > 0, ρ2(t) > 0 a.e. on R for the Lebesgue measure, µ, ν denote the
positive measure defined by

µ(A) =

∫

A

ρ1(t)dt, ν(A) =

∫

A

ρ2(t)dt for A ∈ B,

where dt denotes the Lebesgue measure on R; then the measure pseudo (Q, T )-
affine-periodic function MPAPT (R,R

n, µ, ν) is a weighted pseudo (Q, T )-affine-
periodic function WPAPT (R,R

n, ρ1, ρ2).

(iii) It is not difficult to see that

CT (R,R
n) ⊂ AAPT (R,R

n) ⊂ PAPT (R,R
n) ⊂ WPAPT (R,R

n, ρ1, ρ2)

⊂ MPAPT (R,R
n, µ, ν) ⊂ BC(R,Rn),

where BC(R,Rn) denotes the Banach space of bounded continuous functions
from R to R

n.
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Definition 9. Let µ, ν ∈ M. A function f ∈ C(R × R
n,Rn) is said to be measure

pseudo (Q, T )-affine-periodic if it can be decomposed as f(t, x) = g(t, x) + ϕ(t, x),
where g(t+ T, x) = Qg(t, Q−1x) and ϕ satisfies

lim
r→+∞

1

ν([−r, r])

∫

[−r,r]

|ϕ(t, x)|dµ(t) = 0 uniformly for x in any bounded subset of R
n.

Denote by MPAPT (R× R
n,Rn, µ, ν) the collection of such functions.

For µ ∈ M, τ ∈ R, we denote by µτ the positive measure on (R,B) defined by

µτ (A) = µ({a+ τ : a ∈ A}) for A ∈ B. (3)

In this paper, we formulate the following hypotheses:

(M1) Let µ, ν ∈ M such that

lim sup
r→+∞

µ([−r, r])

ν([−r, r])
< +∞.

(M2) Let µ, ν ∈ M such that for all τ ∈ R, there exist β > 0 and a bounded interval
I such that µτ (A) ≤ βµ(A), ντ (A) ≤ βν(A) if A ∈ B satisfies A ∩ I = ∅.

Similarly to the proof in [6], one has

Lemma 1. Let µ, ν ∈ M satisfy (M2); then E(R,Rn, µ, ν) and MPAPT (R,R
n, µ, ν)

are translation invariants.

Lemma 2. Let µ, ν ∈ M satisfy (M1) and (M2); then MPAPT (R,R
n, µ, ν) is a

Banach space when endowed with the supremum norm ‖x‖ = sup
t∈R

|x(t)|.

Similarly to the proof of [4], we give the composition theorem of a measure pseudo
(Q, T )-affine-periodic function.

Definition 10. We denote by UC(R × R
n,Rn) the set of all continuous functions

f : R × R
n → R

n which are uniformly continuous in the second variable, i.e., for
every ε > 0, there exists δ > 0 such that

|f(t, x)− f(t, y)| ≤ ε, for all t ∈ R and x, y ∈ R
n with |x− y| < δ.

Theorem 1. Let µ, ν ∈ M, f ∈ MPAPT (R×R
n,Rn, µ, ν) ∩ UC(R×R

n,Rn), and
the following condition holds:

(J ) For all bounded subset D of Rn, f is bounded on R×D.

Then f(·, x(·)) ∈ MPAPT (R,R
n, µ, ν) if x ∈ MPAPT (R,R

n, µ, ν).

In what follows following, we establish another composition theorem of the mea-
sure pseudo (Q, T )-affine-periodic function which weakens the assumptions on f .

Let p ∈ [1,∞). The space BSp(R,Rn) of all Stepanov bounded functions,
with the exponent p, consists of all measurable functions f : R → R

n such that
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f b ∈ L∞(R, Lp([0, 1];Rn)), where f b is the Bochner transform of f defined by
f b(t, s) := f(t + s), t ∈ R, s ∈ [0, 1]. BSp(R,Rn) is a Banach space with the norm
[19]

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

(
∫ t+1

t

|f(τ)|pdτ
)1/p

.

It is obvious that Lp(R,Rn) ⊂ BSp(R,Rn) ⊂ Lp
loc(R,R

n) and BSp(R,Rn) ⊂
BSq(R,Rn) for p ≥ q ≥ 1.

Definition 11. For each p ∈ [1,∞), we denote by UCp(R × R
n,Rn) the set of all

continuous functions f : R× R
n → R

n with the property that for every ε > 0, there
exist a function Lf ∈ BSp(R,R+) and δ > 0 such that

|f(t, x)− f(t, y)| ≤ Lf(t)ε, for all t ∈ R and x, y ∈ R
n with |x− y| < δ.

Theorem 2. Assume that (M1) holds, f = g + ϕ ∈ MPAPT (R × R
n,Rn, µ, ν) ∩

UCp(R× R
n,Rn), where g ∈ CT (R× R

n,Rn), ϕ ∈ E(R× R
n,Rn, µ, ν) and

(I1) There exists a positive number M such that

lim sup
r→+∞

1

ν([−r, r])

∫

[−r,r]

Lf (t)dµ(t) ≤ M.

(I2) g(t, x) is uniformly continuous in any bounded subset of Rn uniformly for t ∈
R.

Then f(·, x(·)) ∈ MPAPT (R,R
n, µ, ν) if x ∈ MPAPT (R,R

n, µ, ν).

The proof is similar to [11, Theorem 3.3], here we omit it.

3. MPAPT solutions of differential equations

Let X(t) be a fundamental matrix solution of homogeneous linear differential equa-
tions:

x′ = A(t)x, t ∈ R, (4)

with initial value X(0) = I, where A(t) : R → R
n×n is continuous and ensures the

uniqueness of solutions of (4) with respective to the initial value.

Definition 12 (see [8]). It is said that there exists an exponential dichotomy of (4)
if there exist a projection P and constants K,L, α, β > 0 such that

|X(t)PX−1(s)| ≤ Ke−α(t−s), t ≥ s,

|X(t)(I − P )X−1(s)| ≤ Le−β(s−t), s ≥ t,

where | · | is the Euclidean norm.

Consider nonhomogeneous linear differential equations:

x′ = A(t)x+ f(t), t ∈ R, (5)

where f : R → R
n is a bounded and continuous function. We have the following

results on the existence of bounded solutions of (5).
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Lemma 3 (see [8]). If (4) has an exponential dichotomy with projection P , then
(5) has the following bounded solution:

x(t) =

∫ t

−∞

X(t)PX−1(s)f(s)ds−
∫ +∞

t

X(t)(I − P )X−1(s)f(s)ds.

Consider semilinear differential equations:

x′ = A(t)x + f(t, x(t)), t ∈ R, (6)

where f : R× R
n → R

n is continuous, A(t) : R → R
n×n is continuous and f(t, x) is

a measure pseudo (Q, T )-affine-periodic function.
To study (6), we require the following assumptions:

(H1) (4) has an exponential dichotomy with projection P and constantsK,L, α, β >
0.

(H2) (4) is a (Q, T )-affine-periodic system, that is, A(t+ T ) = QA(t)Q−1.

(H3) f(t, x) = g(t, x) + ϕ(t, x) ∈ MPAPT (R× R
n,Rn, µ, ν).

3.1. Lipschitz case

In this subsection, if f satisfies the Lipschitz condition, we investigate the existence
and uniqueness ofMPAPT (R,R

n, µ, ν) solution of (6), i.e., the following (H4) holds:

(H4) There exists a constant Lf > 0 such that

|f(t, x)− f(t, y)| ≤ Lf |x− y|, x, y ∈ R
n, t ∈ R.

Lemma 4 (see [6]). If (H2) holds and f ∈ CT (R,R
n), then

∫ t

−∞

X(t)PX−1(s)f(s)ds −
∫ +∞

t

X(t)(I − P )X−1(s)f(s)ds ∈ CT (R,R
n).

Theorem 3. Assume that (M1), (M2), (H1)-(H4) hold; then (6) has a unique

solution x ∈ MPAPT (R,R
n, µ, ν) if

KLf

α
+

LLf

β
< 1.

Proof. For y ∈ MPAPT (R,R
n, µ, ν), we consider the following equation:

x′ = A(t)x + f(t, y(t)), t ∈ R. (7)

By Lemma 3, it has the following bounded solution:

x(t) =

∫ t

−∞

X(t)PX−1(s)f(s, y(s))ds−
∫ +∞

t

X(t)(I − P )X−1(s)f(s, y(s))ds.

Define the map F : MPAPT (R,R
n, µ, ν) → MPAPT (R,R

n, µ, ν) by

(Fy)(t) =

∫ t

−∞

X(t)PX−1(s)f(s, y(s))ds−
∫ +∞

t

X(t)(I − P )X−1(s)f(s, y(s))ds.

(8)
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It is not difficult to see that F is well defined. In fact, for y ∈ MPAPT (R,R
n, µ, ν),

f(·, y(·)) ∈ MPAPT (R,R
n, µ, ν) by Theorem 1; then let f(·, y(·)) = f1(·) + f2(·),

where f1 ∈ CT (R,R
n), f2 ∈ E(R,Rn, µ, ν). Then

(Fy)(t) := Λ1(t) + Λ2(t),

where

Λ1(t) =

∫ t

−∞

X(t)PX−1(s)f1(s)ds −
∫ +∞

t

X(t)(I − P )X−1(s)f1(s)ds,

Λ2(t) =

∫ t

−∞

X(t)PX−1(s)f2(s)ds −
∫ +∞

t

X(t)(I − P )X−1(s)f2(s)ds.

By Lemma 4, Λ1 ∈ CT (R,R
n). Next, we will show that Λ2 ∈ E(R,Rn, µ, ν). For

r > 0, one has

1

ν([−r, r])

∫

[−r,r]

|Λ2(t)|dµ(t)

≤ 1

ν([−r, r])

∫

[−r,r]

∣

∣

∣

∣

∫ t

−∞

X(t)PX−1(s)f2(s)ds

∣

∣

∣

∣

dµ(t)

+
1

ν([−r, r])

∫

[−r,r]

∣

∣

∣

∣

∫ +∞

t

X(t)(I − P )X−1(s)f2(s)ds

∣

∣

∣

∣

dµ(t)

≤ K

ν([−r, r])

∫

[−r,r]

∫ t

−∞

e−α(t−s) |f2(s)| dsdµ(t)

+
L

ν([−r, r])

∫

[−r,r]

∫ +∞

t

eβ(t−s) |f2(s)| dsdµ(t)

=
K

ν([−r, r])

∫

[−r,r]

∫ +∞

0

e−αs |f2(t− s)| dsdµ(t)

+
L

ν([−r, r])

∫

[−r,r]

∫ 0

−∞

eβs |f2(t− s)| dsdµ(t)

= K

∫ +∞

0

e−αs

(

1

ν([−r, r])

∫

[−r,r]

|f2(t− s)|dµ(t)
)

ds

+ L

∫ 0

−∞

eβs

(

1

ν([−r, r])

∫

[−r,r]

|f2(t− s)|dµ(t)
)

ds

= K

∫ +∞

0

e−αsΦr(s)ds+ L

∫ 0

−∞

eβsΦr(s)ds,

where

Φr(s) =
1

ν([−r, r])

∫

[−r,r]

|f2(t− s)|dµ(t).

Since (M2) holds, from Lemma 1 it follows that f2(· − s) ∈ E(R,Rn, µ, ν) for s ∈ R.
Hence Φr(s) → 0 as r → +∞. Note that Φr is bounded by (M1) and e−αs, eβs are
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integrable on [0,∞), [−∞, 0), respectively. From Lebesgue dominated convergence
theorem, it follows that

lim
r→+∞

(

K

∫ +∞

0

e−αsΦr(s)ds+ L

∫ 0

−∞

eβsΦr(s)ds

)

= 0.

Then

lim
r→+∞

1

ν([−r, r])

∫

[−r,r]

|Λ2(t)|dµ(t) = 0,

so Λ2 ∈ E(R,Rn, µ, ν). Hence F is well defined.
Let x, y ∈ MPAPT (R,R

n, µ, ν). One has

|(Fx)(t) − (Fy)(t)| ≤
∣

∣

∣

∣

∫ t

−∞

X(t)PX−1(s)[f(s, x(s)) − f(s, y(s))]ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ +∞

t

X(t)PX−1(s)[f(s, x(s)) − f(s, y(s))]ds

∣

∣

∣

∣

≤
∫ t

−∞

Ke−α(t−s) |f(s, x(s)) − f(s, y(s))| ds

+

∫ +∞

t

Leβ(t−s) |f(s, x(s))− f(s, y(s))| ds

≤
∫ t

−∞

KLfe
−α(t−s) |x(s)− y(s)| ds

+

∫ +∞

t

LLfe
β(t−s) |x(s)− y(s)| ds

≤
(

KLf

α
+

LLf

β

)

‖x− y‖.

By the Banach contraction mapping principle, F has a unique fixed point y ∈
MPAPT (R,R

n, µ, ν), which is the unique MPAPT solution to (6).

Next, we establish a version of Theorem 3 which enables us to consider locally
Lipschitz perturbations for (6), that is, the following condition (H5) is satisfied:

(H5) There exists a continuous and nondecreasing function Lf : [0,+∞) → [0,+∞)
such that for each number λ > 0, and x, y ∈ R

n, |x| ≤ λ, |y| ≤ λ, we have

|f(t, x)− f(t, y)| ≤ Lf(λ)|x − y|, t ∈ R.

Theorem 4. Assume that (M1), (M2), (H1)–(H3), (H5) are fulfilled if there exists
λ > 0 such that

Θ :=
KLf(λ)

α
+

LLf(λ)

β
+

1

λ

(

K

α
+

L

β

)

sup
t∈R

|f(t, 0)| < 1;

then (6) has a unique solution x ∈ MPAPT (R,R
n, µ, ν) with ‖x‖ ≤ λ.
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Proof. Let

Ω = {x ∈ MPAPT (R,R
n, µ, ν) : ‖x‖ ≤ λ}.

It is clear that Ω is a convex and closed vector subspace of BC(R,Rn). For y ∈
MPAPT (R,R

n, µ, ν), define the map F as (8). It is not difficult to see that F maps
Ω into Ω. In fact, for y ∈ Ω, one has

|Fy(t)| ≤
∫ t

−∞

Ke−α(t−s)|f(s, y(s))|ds+
∫ +∞

t

Leβ(t−s)|f(s, y(s))|ds

≤
∫ t

−∞

Ke−α(t−s)Lf (λ)|y(s)|ds +
∫ t

−∞

Ke−α(t−s)|f(s, 0)|ds

+

∫ +∞

t

Leβ(t−s)Lf (λ)|y(s)|ds +
∫ +∞

t

Leβ(t−s)|f(s, 0)|ds

≤
(

KLf(λ)

α
+

LLf(λ)

β

)

λ+

(

K

α
+

L

β

)

sup
t∈R

|f(t, 0)|

≤ λ.

On the other hand, for x, y ∈ Ω, we have

|(Fx)(t) − (Fy)(t)| ≤KLf(λ)

∫ t

−∞

e−α(t−s)|x(s) − y(s)|ds

+ LLf (λ)

∫ +∞

t

eβ(t−s)|x(s) − y(s)|ds

≤
(

KLf(λ)

α
+

LLf(λ)

β

)

‖x− y‖,

which means that

‖Fx−Fy‖ ≤
(

KLf(λ)

α
+

LLf(λ)

β

)

‖x− y‖.

Since Θ < 1, it follows that F is a contraction in Ω. By the Banach contraction
mapping principle, F has a unique fixed point y ∈ MPAPT (R,R

n, µ, ν), which is
the unique MPAPT solution to (6).

Theorem 5. Assume that (M1), (M2), (I1), (I2), (H1)-(H3) hold and the following
condition is satisfied:

(H6) There exists a function Lf ∈ BSp(R,R+), p ≥ 1 such that

|f(t, x)− f(t, y)| ≤ Lf (t)|x − y|, x, y ∈ R
n, t ∈ R.

Then (6) has a unique solution x ∈ MPAPT (R,R
n, µ, ν) if

(

K

1− e−α
+

L

1− e−β

)

‖Lf‖S1 < 1.
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Proof. Define the map F as in (8). It is easy to see that F is well defined by
Theorem 2. Let x, y ∈ MPAPT (R,R

n, µ, ν). One has

|(Fx)(t) − (Fy)(t)|

≤
∫ t

−∞

Ke−α(t−s) |f(s, x(s))− f(s, y(s))| ds

+

∫ +∞

t

Leβ(t−s) |f(s, x(s))− f(s, y(s))| ds

≤
(
∫ t

−∞

KLf(s)e
−α(t−s)ds+

∫ +∞

t

LLf(s)e
β(t−s)ds

)

· ‖x− y‖

=

(
∫ +∞

0

KLf(t− s)e−αsds+

∫ 0

−∞

LLf(t− s)eβsds

)

· ‖x− y‖

≤
(

+∞
∑

k=0

e−αk

∫ k+1

k

KLf(t− s)ds+

0
∑

k=−∞

eβk
∫ k

k−1

LLf(t− s)ds

)

· ‖x− y‖

≤
(

K

1− e−α
+

L

1− e−β

)

‖Lf‖S1 · ‖x− y‖.

Thus by the Banach contraction mapping principle, F has a unique fixed point in
MPAPT (R,R

n, µ, ν), which is the unique MPAPT solution of (6).

3.2. Non-Lipschitz case

In this subsection, we study the existence of the MPAPT (R,R
n, µ, ν) solution of (6),

when f does not satisfy the Lipschitz condition. First, we recall a useful compactness
criterion and the nonlinear Leray-Schauder alternative theorem.

Let (X, ‖ · ‖) be a Banach space and h∗ : R → R a continuous nondecreasing
function such that h∗(t) ≥ 1 for all t ∈ R, and h∗(t) → +∞ as |t| → +∞. Define

Ch∗(R, X) := {u ∈ C(R, X) : lim
|t|→+∞

u(t)

h∗(t)
= 0}

endowed with the norm ‖u‖h∗ = sup
t∈R

(‖u(t)‖/h∗(t)).

Lemma 5 (see [14]). A set K ⊆ Ch∗(R, X) is relatively compact in Ch∗(R, X) if it
verifies the following conditions:

(c1) The set K(t) := {u(t) : u ∈ K} is relatively compact in X for each t ∈ R.

(c2) The set K is equicontinuous.

(c3) For each ε > 0, there exists ϑ > 0 such that ‖u(t)‖ ≤ εh∗(t) for all u ∈ K and
all |t| > ϑ.

Theorem 6 (Leray-Schauder alternative theorem, see ([13]). Let Ω be a closed
convex subset of a Banach space X such that 0 ∈ Ω. Let F : Ω → Ω be a completely
continuous map. Then the set {x ∈ Ω : x = λF(x), 0 < λ < 1} is unbounded or
the map F has a fixed point in Ω.
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Now, we are in a position to establish the following result of the existence
of MPAPT (R,R

n, µ, ν) solutions. The result is based upon the nonlinear Leray-
Schauder alternative theorem. For more details, see [1].

Theorem 7. Assume (M1), (M2), (H1)-(H3), (J ) hold, and f ∈ UC(R × R
n,Rn)

satisfies the following conditions:

(K1) There exists a continuous nondecreasing function W : [0,+∞) → [0,+∞) such
that ‖f(t, x(t))‖ ≤ W (‖x‖) for all t ∈ R, x ∈ R

n.

(K2) For each ̟ ≥ 0,

lim
|t|→+∞

1

h∗(t)

(
∫ t

−∞

e−α(t−s)W (̟h∗(s))ds +

∫ +∞

t

e−β(t−s)W (̟h∗(s))ds

)

= 0.

(K3) For each ε > 0, there exists δ > 0 such that for x, y ∈ Ch∗(R,Rn), ‖x−y‖h∗ ≤ δ
implies that for all t ∈ R,
∫ t

−∞

e−α(t−s)‖f(s, x(s))−f(s, y(s))‖ds+
∫ +∞

t

e−β(t−s)‖f(s, x(s))−f(s, y(s))‖ds ≤ ε.

(K4) For all a, b ∈ R, a ≤ b and λ ≥ 0, the set {f(s, x(s)) : a ≤ s ≤ b, x ∈
Ch∗(R,Rn), ‖x‖h∗ ≤ λ} is relatively compact in R

n.

(K5) lim inf
λ→+∞

λ

Φ(λ)
> 1, where for t ∈ R, λ ≥ 0, Φ(λ) defined by

Φ(λ) :=

∥

∥

∥

∥

∫ t

−∞

Ke−α(t−s)W (λh∗(s))ds +

∫ +∞

t

Le−β(t−s)W (λh∗(s))ds

∥

∥

∥

∥

h∗

.

Then (6) has a solution x ∈ MPAPT (R,R
n, µ, ν).

Proof. Define Γ : Ch∗(R,Rn) → C(R,Rn) by

(Γx)(t) =

∫ t

−∞

X(t)PX−1(s)f(s, x(s))ds−
∫ +∞

t

X(t)(I−P )X−1(s)f(s, x(s))ds, t ∈ R.

Next, we prove that Γ has a fixed point in MPAPT (R,R
n, µ, ν) and divide the proof

into several steps.
(i) For x ∈ Ch∗(R,Rn), by (K1), one has

‖Γx(t)‖
h∗(t)

≤
∫ t

−∞

‖X(t)PX−1(s)‖‖f(s, x(s))‖ds+
∫ +∞

t

‖X(t)(I − P )X−1(s)‖‖f(s, x(s))‖ds

≤
∫ t

−∞

Ke−α(t−s)‖f(s, x(s))‖ds+
∫ +∞

t

Le−β(t−s)‖f(s, x(s))‖ds

≤
∫ t

−∞

Ke−α(t−s)W (‖x(s)‖)ds+
∫ +∞

t

Le−β(t−s)W (‖x(s)‖)ds

≤
∫ t

−∞

Ke−α(t−s)W (‖x‖h∗h∗(s))ds+

∫ +∞

t

Le−β(t−s)W (‖u‖h∗h∗(s))ds.
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It follows from (K2) that Γ : Ch∗(R,Rn) → Ch∗(R,Rn).

(ii) Γ is continuous. In fact, for each ε > 0, by (K3), there exits δ > 0, for
x, y ∈ Ch∗(R,Rn) and ‖x− y‖h∗ ≤ δ, one has

‖Γx− Γy‖ ≤
∫ t

−∞

‖X(t)PX−1(s)‖‖f(s, x(s))− f(s, y(s))‖ds

+

∫ +∞

t

‖X(t)(I − P )X−1(s)‖‖f(s, x(s))− f(s, y(s))‖ds

≤
∫ t

−∞

Ke−α(t−s)‖f(s, x(s))− f(s, y(s))‖ds

+

∫ +∞

t

Le−β(t−s)‖f(s, x(s))− f(s, y(s))‖ds

≤ max(K,L)ε, for all t ∈ R.

Taking into account that h∗(t) ≥ 1, we have

‖Γx− Γy‖
h∗(t)

≤ max(K,L)ε,

which implies that ‖Γx− Γy‖h∗ ≤ max(K,L)ε, so Γ is continuous.

(iii) Γ is completely continuous. Set Bλ(Z) for the closed ball with the center
at 0 and radius λ in the space Z. Let V = Γ(Bλ(Ch∗(R,Rn))) and y = Γ(x) for
x ∈ Bλ(Ch∗(R,Rn)).

Initially, we prove that V is a relatively compact subset of Rn for each t ∈ R.
Let ε > 0. Since h∗(t) → ∞ as |t| → +∞, it follow (K2) that there exists a ≥ 0 such
that

∫ +∞

a

e−αsW (λh∗(t− s))ds+

∫ −a

−∞

e−βsW (λh∗(t− s))ds ≤ ε.

Since

y(t) =

∫ t

−∞

X(t)PX−1(s)f(s, x(s))ds −
∫ +∞

t

X(t)(I − P )X−1(s)f(s, x(s))ds

=

∫ a

0

X(t)PX−1(t− s)f(t− s, x(t− s))ds

+

∫ +∞

a

X(t)PX−1(t− s)f(t− s, x(t− s))ds

−
∫ 0

−a

X(t)(I − P )X−1(t− s)f(t− s, x(t− s))ds

−
∫ −a

−∞

X(t)(I − P )X−1(t− s)f(t− s, x(t− s))ds,
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and
∥

∥

∥

∥

∫ +∞

a

X(t)PX−1(t− s)f(t− s, x(t− s))ds

−
∫ −a

−∞

X(t)(I − P )X−1(t− s)f(t− s, x(t− s))ds

∥

∥

∥

∥

≤
∫ +∞

a

Ke−αsW (̟h∗(t− s))ds+

∫ −a

−∞

Le−βsW (̟h∗(t− s))ds

≤ max(K,L)ε,

hence y(t) ∈ ac0(N1) + ac0(N2) +Bε(R
n), where c0(N1), c0(N2) denote the convex

hull of N1, N2, respectively, and

N1 = {X(t)PX−1(t− s)f(ξ, x(ξ)) : 0 ≤ s ≤ a, t− a ≤ ξ ≤ t, ‖x‖h∗ ≤ λ},
N2 = {X(t)(I − P )X−1(t− s)f(ξ, x(ξ)) : −a ≤ s ≤ 0, t ≤ ξ ≤ t+ a, ‖x‖h∗ ≤ λ}.

Using the fact that fundamental matrix solution X(t) is continuous and (K4), we
infer thatN1, N2 are relatively compact sets, and V (t) ⊂ ac0(N1)+ac0(N2)+Bε(R

n)
is also a relatively compact set.

Next, we show that V is equicontinuous. In fact, for each ε > 0, we can choose
a > 0, δ1 > 0 such that

∥

∥

∥

∥

∫ +∞

a

[X(t+ τ)PX−1(t− σ)−X(t)PX−1(t− σ)]f(t− σ, x(t − σ))dσ

+

∫ τ

0

X(t+ τ)PX−1(t+ τ − σ)f(t+ τ − σ, x(t + τ − σ))dσ

−
(
∫ −a

−∞

[X(t+ τ)(I − P )X−1(t− σ)−X(t)(I−P )X−1(t− σ)]f(t− σ, x(t− σ))dσ

−
∫ τ

0

X(t+ τ)(I − P )X−1(t+ τ − σ)f(t+ τ − σ, x(t + τ − σ))dσ

)
∥

∥

∥

∥

≤
∫ +∞

a

[Ke−α(τ+σ) +Ke−ασ]W (λh∗(t− σ))dσ +

∫ τ

0

Ke−ασW (λh∗(t+ τ − σ))dσ

+

∫ −a

−∞

[Le−β(τ+σ) + Le−βσ]W (λh∗(t− σ))dσ +

∫ τ

0

Le−βσW (λh∗(t+ τ − σ))dσ

≤ ε

3
, for τ ≤ δ1.

Moreover, since {f(t− σ, x(t − σ)) : 0 < σ < a, x ∈ Bλ(Ch∗(R,Rn))} is a relatively
compact set and X(t) is continuous, we can choose δ2 > 0 such that

∥

∥[X(t+ τ)PX−1(t− σ)−X(t)PX−1(t− σ)]f(t− σ, x(t − σ))
∥

∥ ≤ ε

3a
, for τ ≤ δ2,

∥

∥[X(t+ τ)(I − P )X−1(t− σ)−X(t)(I − P )X−1(t− σ)]f(t− σ, x(t − σ))
∥

∥ ≤ ε

3a
,

for τ ≤ δ3.
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Note that

y(t+ τ)− y(t)

=

∫ t+τ

−∞

X(t+ τ)PX−1(s)f(s, x(s))ds −
∫ t

−∞

X(t)PX−1(s)f(s, x(s))ds

−
(
∫ +∞

t+τ

X(t+ τ)(I − P )X−1(s)f(s, x(s))ds

−
∫ +∞

t

X(t)(I − P )X−1(s)f(s, x(s))ds

)

=

∫ t

−∞

[X(t+ τ)PX−1(s)−X(t)PX−1(s)]f(s, x(s))ds

+

∫ t+τ

t

X(t+ τ)PX−1(s)f(s, x(s))ds

−
(
∫ +∞

t

[X(t+ τ)(I − P )X−1(s)−X(t)(I − P )X−1(s)]f(s, x(s))ds

−
∫ t+τ

t

X(t+ τ)(I − P )X−1(s)f(s, x(s))ds

)

=

∫ a

0

[X(t+ τ)PX−1(t− σ) −X(t)PX−1(t− σ)]f(t− σ, x(t− σ))dσ

+

∫ +∞

a

[X(t+ τ)PX−1(t− σ)−X(t)PX−1(t− σ)]f(t− σ, x(t − σ))dσ

+

∫ τ

0

X(t+ τ)PX−1(t+ τ − σ)f(t+ τ − σ, x(t + τ − σ))dσ

−
(
∫ 0

−a

[X(t+ τ)(I−P )X−1(t− σ)−X(t)(I−P )X−1(t− σ)]f(t− σ, x(t − σ))dσ

+

∫ −a

−∞

[X(t+ τ)(I−P )X−1(t− σ)−X(t)(I−P )X−1(t− σ)]f(t− σ, x(t − σ))dσ

−
∫ τ

0

X(t+ τ)(I − P )X−1(t+ τ − σ)f(t+ τ − σ, x(t + τ − σ))dσ

)

.

Then we have ‖y(t + τ) − y(t)‖ ≤ ε for τ small enough and independent of
x ∈ Bλ(Ch∗(R,Rn)).

Finally, by (K2), for |t| → +∞, one has

‖y(t)‖
h∗(t)

≤
∫ t

−∞

Ke−α(t−s)W (‖x‖h∗h∗(s))ds +

∫ +∞

t

Le−β(t−s)W (‖x‖h∗h∗(s))ds → 0,

and this convergence is independent of x ∈ Bλ(Ch∗(R,Rn)). Hence, by Lemma 5 V
is a relatively compact set in Ch∗(R,Rn).
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(iv) If xλ is a solution of the equation xλ = λΓ(xλ) for some 0 < λ < 1, then

‖xλ‖ = λ

∥

∥

∥

∥

∫ t

−∞

X(t)PX−1(s)f(s, xλ(s))ds−
∫ +∞

t

X(t)(I−P )X−1(s)f(s, xλ(s))ds

∥

∥

∥

∥

≤
∫ t

−∞

Ke−α(t−s)W (‖xλ‖h∗h∗(s))ds+

∫ +∞

t

Le−β(t−s)W (‖xλ‖h∗h∗(s))ds

≤ Φ(‖xλ‖h∗)h∗(t).

Hence, one has
‖xλ‖h∗

Φ(‖xλ‖h∗)
≤ 1

and by (K5), we conclude that the set {xλ : xλ = λΓ(xλ), λ ∈ (0, 1)} is bounded.
(v) We claim that there exists λ0 > 0 such that F(Bλ0(Ch∗(R,Rn))) ⊂

Bλ0(Ch∗(R,Rn)). If the assertion is false, then for all λ > 0, we can choose xλ ∈
Bλ(Ch∗(R,Rn)) such that ‖Fxλ‖h∗ > λ. Similar to the proof of (iv), we deduce that

λ

Φ(λ)
≤ 1.

Then

lim inf
ξ→+∞

λ

Φ(λ)
≤ 1,

which contradicts condition (K5) establishing the desired assertion.
(vi) It is not difficult to see that Γ(MPAPT (R,R

n, µ, ν)) ⊆ MPAPT (R,R
n, µ, ν)

by Theorem 1 and Theorem 3 . Consequently, with Step (v), we infer that

F(Bλ0(Ch∗(R,Rn))∩MPAPT (R,R
n, µ, ν))⊆Bλ0(Ch∗(R,Rn))∩MPAPT (R,R

n, µ, ν);

hence we derive the following conclusion:

F
(

Bλ0(Ch∗(R,Rn)) ∩MPAPT (R,Rn, µ, ν)
Ch∗(R,Rn)

)

⊆ F(Bλ0(Ch∗(R,Rn)) ∩MPAPT (R,Rn, µ, ν))
Ch∗ (R,Rn)

⊆ Bλ0(Ch∗(R,Rn)) ∩MPAPT (R,Rn, µ, ν)
Ch∗ (R,Rn)

.

Thus, we consider

F : B
Ch∗(R,Rn) → B

Ch∗(R,Rn) ,

where B = Bλ0(Ch∗(R,Rn)) ∩ MPAPT (R,R
n, µ, ν), and B

Ch∗ (R,Rn)
denotes the

closure of a set B in the space Ch∗(R,Rn). Using (i)-(iii), we have that F is
completely continuous. By (iv) and Theorem 6, we deduce that Γ has a fixed point

x ∈ Bλ0(Ch∗(R,Rn)) ∩MPAPT (R,Rn, µ, ν)
Ch∗(R,Rn)

.
(vii) Finally, we show that x (the fixed point of F given in (vi)) is measure

pseudo (Q, T )-affine-periodic. Indeed, let xn be a sequence in Bλ0(Ch∗(R,Rn)) ∩
MPAPT (R,R

n, µ, ν) such that it converges to x in the norm Ch∗(R,Rn). For ε > 0,
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let δ > 0 be the constant in (K3). There exists n0 ∈ N such that ‖xn − x‖h∗ ≤ δ for
all n ≥ n0. For n ≥ n0,

‖Γxn − Γx‖ ≤
∫ t

−∞

Ke−α(t−s)‖f(s, xn(s))− f(s, x(s))‖ds

+

∫ +∞

t

Le−β(t−s)‖f(s, xn(s)) − f(s, x(s))‖ds

≤ max(K,L)ε,

which implies that Γxn converges to Γx = x uniformly in R. This implies that
x ∈ MPAPT (R,R

n, µ, ν) and completes the proof.

4. Example

Consider the following perturbed second differential equation for small ε1, ε2:

u′′ − (1 + a)u′ + (1 − b)u− ε1e
−t − ε2√

1 + t2
sinu = 0, t ∈ R, (9)

where a, b ∈ R. Using the transformations u = x1 and x′
1 = x2, we can transfer (9):

x′ = Ax+Θ(t)x+ g(t, x), t ∈ R, (10)

where

x =

(

x1

x2

)

, A =

(

0 1
−1 1

)

, Θ(t)x =

(

0 0
b a

)(

x1

x2

)

+

(

0
ε1e

−t

)

.

Since the real part of eigenvalues of A is 1
2 , then x′ = Ax admits an exponential

dichotomy with K = L = 1, α = β = 1
2 , that is, (H1), (H2) hold. On the other

hand, let f1(t, x) = Θ(t)x. Then for each T > 0, we have f1(t+T, x) = Qf1(t, Q
−1x)

with

Q =

(

e−T 0
0 e−T

)

,

so Θ(t)x ∈ CT (R× R
2,R2).

(i) Let

g(t, x) =

(

0
ε2√
1 + t2

sinx1

)

.

Consider the measure µ, where its Radon-Nikodym derivative is

ρ1(t) = esin t, t ∈ R,

and the measure ν, where its Radon-Nikodym derivative is

ρ2(t) =

{

et if t ≤ 0
1 if t > 0.
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Figure 1: The unique MPAPT solution of (9)

Then from [2], µ, ν ∈ M satisfy (M1), (M2). It is not difficult to see that g(t, x) ∈
E(R×R

2,R2, µ, ν), that is, f(t, x) = Θ(t)x+g(t, x) ∈ MPAPT (R×R
2,R2, µ, ν). By

Theorem 3, (10) has a unique solution x ∈ MPAPT (R,R
2, µ, ν) if max(a, b) + ε2 <

1/4. Fig. 1 illustrates the unique MPAPT solution of (9) and Fig. 2 depicts the
phase portrait of (9), where a = 0.008, b = 0.001, ε1 = 0.005, ε2 = 0.2.

(ii) Let

g(t, x) =

(

0
a(t)e−t sinx1

)

,

where

a(t) =







sin

(

1

cosn+ cosπn+ 2

)

, t ∈ (n− ε, n+ ε), n ∈ Z,

0, otherwise,

for some small ε ∈ (0, η), η = min

{

1

2
,
1

4
(1 − e−

1
2 − 2max(a, b))

}

. By [18, Example

2.3], a(t) ∈ BS2(R,R). Then (H6) holds with Lf (t) = max(a, b) + |a(t)|. Consider
the measures µ = ν and their Radon-Nikodym derivative given by ρ(t) = et. Then
g(t, x) ∈ E(R× R

2,R2, µ, ν), whence f ∈ MPAPT (R× R
2,R2, µ, ν).

In addition, since

‖|a(·)|‖S1 = sup
t∈R

∫ t+1

t

|a(s)|ds ≤ 2ε,

(

K

1− e−α
+

L

1− e−β

)

‖Lf‖S1 ≤ 2

1− e
1
2

· (max(a, b) + 2ε) < 1.

By Theorem 5, (10) has a unique solution x ∈ MPAPT (R,R
2, µ, ν) if max(a, b) <

(1− e−
1
2 )/2.



276 Z.Xia, Z. Li and D.Wang

Figure 2: The phase portrait of (9)
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