THE INTENSITY MODULATED RADIOTHERAPY OF BREAST CANCER
– A COMPARISON OF fIMRT AND iIMRT TECHNIQUES

LIDIJA BEKETIĆ-OREŠKOVIĆ¹, TOMISLAV VICULIN²,
VIŠNJA MATAGA² and ADLAN ĆEHOBAŠIĆ²

¹Department of Clinical Oncology, University of Zagreb School of Medicine
and Department of Radiotherapy and Internal Oncology, University Hospital for Tumors,
University Hospital Center Sestre milosrdnice, Zagreb, Croatia;
²Department of Radiotherapy and Internal Oncology, University Hospital for Tumors,
Clinical Hospital Center Sestre milosrdnice, Zagreb, Croatia

Summary

The intensity modulated radiotherapy (IMRT) of breast cancer is a newer irradiation technique used at the University
Hospital for Tumors (University Hospital Center Sestre Milosrdnice, Zagreb, Croatia). Two IMRT radiotherapy techniques
was used to treat patient with breast cancer. Forward intensity modulated radiotherapy (fIMRT) is a planning technique in
which dose distribution, accomplished by main beams, is improved by additional conformed beams. Inverse intensity mod-
ulated radiotherapy (iIMRT) is a planning technique in which the terms of irradiation are set to the computer, and planning
system is making the optimal intense modulated plan. We showed that it was possible to compare fIMRT and iIMRT results.
Because of the treatment plan simplicity, shorter irradiation time and better dose control, fIMRT remains a method of choice
at the University Hospital for Tumors.

KEY WORDS: IMRT, breast cancer

INTRODUCTION

Radiotherapy of breast cancer is still a clinical
challenge. In order to avoid possible acute and
therapy of breast cancer can be performed by several different techniques and the main goal in clinical practice, except criteria mentioned above, is to be simple, applicable in most clinical centers, and finally feasible in a relatively short period of time (4-12). Intensity modulated radiotherapy (IMRT) of breast cancer is a relatively new method, and one therapy mode of IMRT technique is used at the University Hospital for Tumors, (University Hospital Center SestreMilosrdnice) (13-19).

The aim of the study was to compare the two different IMRT radiotherapy techniques currently most frequently used to treat patients with breast cancer.

MATERIAL AND METHODS

Clinical target volume (CTV) and patient’s organs of risk (OAR) – lung and heart, were marked on CT slices, during the planning of adjuvant radiotherapy in patient after the breast conservative surgery. Planning Target Volume (PTV) is defined as a volume around CTV with a margin of 1 cm (2,3). CMS XIO 4.3.1. radiotherapy planning system and Siemens Oncomultileaf (Optifocus 82) linear accelerator were used (Figures 1 and 2).

Two methods of IMRT have been used to make two different radiotherapy plans: Forward intensity modulated radiotherapy (fIMRT) and Inverse intensity modulated radiotherapy (iIMRT) (13).

Forward intensity modulated radiotherapy (fIMRT) is a method where two basic tangential beams are used with the addition of smaller, manually conformed beams, They are used for homogenization of the dose distribution and fulfilling the given condition terms (Figure 3). Basic conformal beams are divided into two parts (R1, R2 90%, R1a, R2 10%). After primary calculations, by moving leafs R1a and R2, hot spots can be removed. By changing beams R1 and R2 the doses on PTV and on OAR can be regulated.

Inverse intensity modulated radiotherapy (iIMRT) is a method in which the number, direc-
tions and terms of irradiation beams (dose homogeneity and dose limitation to OAR) are set into the computer, and planning system is making the optimal intensity modulated plan (Figure 4).

Irradiated volume of patient was divided in elements 0.2 cm³, some of them belong to the target volumes (PTV, breast), organs of risk (OARs), or both. Terms of achievable dose, and overdose in each volume is set in form of table. Conformal beam is divided in elementary beams (beamlets) cross section 1 cm²; every beam can have 10 levels of intensity. Seeking of minimum difference that is made (xi), and prescribed dose (xiz) in each element of volume, optimum selection of beams is acquired. Function that is minimizing has the ability that in each tissue can give different importance by multiplyinga (values from 1 to 1000, usually 100) and exponent n (2 to 5). Result of optimization process is a beam that consisted of elementary beams of different intensity that can be shown as fluency map. In the next step, there is a calculation of segments which, if irradiated consecutively, are best making fluency map (Figure 5).

The analysis gave 17 segments for R1 and 6 segments for R2, entire number of 470 MU and maximums bigger from allowed ones (55.40 instead of 53.50). This was fixed by manually deleting smaller number of segments and rescaling.

For remaining segments (R1/11, R2/11) it takes altogether 298MU, and maximal absorbed dose (Dmax) was in allowed limits. Inverse IMRT required more complex planning and longer time of irradiation.

Radiotherapy plan evaluation

Homogeneity index HI (1,2,13)

Homogeneity index was calculated as ratio of volume of PTV which gets 95%-105% of dose and total volume of PTV:
HI(95% – 100%) = \frac{V_{PTV(95%-100%)}}{V_{PTV}}

Treatment plan is better when HI is approaching 1.

Conformity index CI (1,2,13)

This is the ratio of PTV to the treated volume, and indicates how well the PTV is covered by the treatment while minimizing dose to normal tissue.

\[CI = \left(\frac{V_{PTV(95%)}}{V_{PTV}} \right) \left(\frac{V_{PTV}}{V_{Patient(95%)}} \right), \]

where \(V_{PTV(95%)} \) is PTV volume which gets more than 95% of dose, \(V_{PTV} \) is total volume of PTV and \(V_{Patient(95%)} \) is volume of patient that gets more than 95% of dose.

Plan is better when CI is approaching 1.

Dose limitations (prescribed by International Commission of Radiation Units, ICRU Reports 50, 62 and 71) (3,1,2):

- Dose to PTV volume should be 50Gy. Maximum dose to PTV should not exceed 107% of prescribed dose. Minimum dose to PTV should not be below 95% of prescribed dose. PTV mean dose should not exceed interval of ±1% of prescribed dose.
- Total irradiated heart volume should not receive more than 10% of 20Gy dose and 5% of 40Gy dose.
- Total irradiated lung volume should not exceed 35% of 20Gy dose.

RESULTS

We compared values of dose volume histograms, maximum PTV doses, ipsilateral lung volume which gets dose more than 20Gy, 40Gy respectively, heart volume which gets dose more than 20Gy, 40Gy respectively, median dose for lung and the other breast, dose homogeneity index, radiation dose conformity index, and the time estimated for radiation procedure.

Forward IMRT and inverse IMRT plans comparison is shown in the Table 1. There was no significant difference for PTV’s and organs at risk doses between plans. It was possible to achieve better CI with iIMRT plan, while better HI was obtained by fIMRT plan. Longer treatment time was needed for iIMRT plan. Comparison of the dose volume histograms is shown on the Figure 6.

<table>
<thead>
<tr>
<th>Radiotherapy plans results</th>
<th>f IMRT</th>
<th>i IMRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTV (966 cm³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dmean</td>
<td>50.04 Gy</td>
<td>50.01 Gy</td>
</tr>
<tr>
<td>Dmax</td>
<td>53.12 Gy</td>
<td>53.50 Gy</td>
</tr>
<tr>
<td>Breast (861 cm³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dmean</td>
<td>49.01 Gy</td>
<td>48.50 Gy</td>
</tr>
<tr>
<td>Lung (1608 cm³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dmean</td>
<td>12.99 Gy</td>
<td>14.54 Gy</td>
</tr>
<tr>
<td>Volume > 20 Gy</td>
<td>26.08%</td>
<td>31.47%</td>
</tr>
<tr>
<td>Volume > 40 Gy</td>
<td>18.45%</td>
<td>16.05%</td>
</tr>
<tr>
<td>Heart (411 cm³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dmean</td>
<td>5.43 Gy</td>
<td>7.22 Gy</td>
</tr>
<tr>
<td>Volume > 20 Gy</td>
<td>8.67%</td>
<td>9.41%</td>
</tr>
<tr>
<td>Volume > 40 Gy</td>
<td>3.94%</td>
<td>4.38%</td>
</tr>
<tr>
<td>HI</td>
<td>0.936</td>
<td>0.906</td>
</tr>
<tr>
<td>CI</td>
<td>0.674</td>
<td>0.763</td>
</tr>
<tr>
<td>Number of MU for 2 Gy dose</td>
<td>211 MU</td>
<td>298 MU</td>
</tr>
</tbody>
</table>

Table 1.

FORWARD IMRT AND INVERSE IMRT PLAN COMPARISON

Figure 6. Dose Volume Histograms (DVH) for forward IMRT (left) and inverse IMRT (right)
CONCLUSION

It was possible to compare forward IMRT and inverse IMRT results in the treatment of breast cancer patient. Forward IMRT was easier to plan, good homogeneity was achieved (HI) and it was easier to control maximal absorbed dose (D_{max}). Inverse IMRT was more complicated for planning, bigger number of beams were needed, irradiation time was longer, but it was possible to achieve better conformity index (CI). Because of the treatment plan simplicity, shorter irradiation time and better D_{max} control, forward IMRT remains a method of choice for the treatment of breast cancer patients at the University Hospital for Tumors.

REFERENCES

Author’s address: Lidija Beketić Orešković, Department of Clinical Oncology, University of Zagreb School of Medicine and Department of Radiotherapy and Internal Oncology, University Hospital for Tumors, University Hospital Center Sestre milosrdnice, Ilica 197, 10000 Zagreb, Croatia; e-mail: lidijabeketicoreskovic@gmail.com