
Interval Tree-Based Task Scheduling Method for
Mobile Crowd Sensing Systems

Ahmed A. A. Gad-ElRab, and Almohammady S. Alsharkawy

Abstract—Nowadays there is an increasing demand to provide
a real-time environmental information. So, the growing number
of mobile devices carried by users establish a new and fast-
growing sensing paradigm to satisfy this need, which is called
Mobile Crowd Sensing (MCS). The MCS uses different sensing
abilities to acquire local knowledge through enhanced mobile
devices. In MCS, it is very important to collect high-quality
sensory data that satisfies the needs of all assigned tasks and
the task organizers with a minimum cost for the participants.
One of the most important factors which affect the MCS cost is
how to schedule different sensing tasks which must be assigned
to a smartphone with the objective of minimizing sensing energy
consumption while ensuring high-quality sensory data. In this
paper, the problem of scheduling the tasks which have mutual
sensor is formulated and a scheduling method to minimize
the energy consumption by reducing the sensor utilization is
proposed. The proposed method will incentive the users to
participate in multiple tasks at the same time, which minimizes
the total cost of the performed tasks and increases his rewards.
The experimental results by using synthetic and real data show
that the proposed scheduling method can minimize the energy
consumption and preserve the task requirements compared to
existing algorithms.

Index Terms—Mobile Crowd Sensing, Task Scheduling, Time
series, Intervals Tree.

I. INTRODUCTION

Mobile Crowd Sensing (MCS) in dynamic environments is
an emerging computing paradigm that utilizes everyday mobile
devices to form crowd sensing networks. It allows the growing
number of mobile users to share local knowledge acquired by
their sensor-enhanced devices that can be used for monitoring
pollution level, noise level, or traffic condition, etc. [1]. This
makes mobile devices an excellent platform for sensing the
environment. The new generations of mobile devices have
multiple embedded sensors (e.g., GPS, an Accelerometer, a
Compass, a Gyroscope, a Camera, an Ambient Light, etc.).
Also, the mobile devices can easily communicate with external
sensors via any of the built-in interfaces, including Bluetooth,
Infrared, or Wi-Fi. [2]

The collected information by mobile devices with the sup-
port of the cloud-based (applications, services or resources) for
data processing, analysis, and visualization makes MCS a good
platform that can often replace static sensing infrastructures,

Manuscript received November 20, 2017; revised March 10, 2018. Date of
publication March 15, 2018.

Authors are with the Department of Mathematics, Faculty of
Science, Al-Azhar University - Cairo, Egypt (e-mails: {asaadgad,
alm.alsharkawy}@azhar.edu.eg).

Digital Object Identifier (DOI): 10.24138/jcomss.v14i1.429

and enable a broad range of applications such as social event
detection, disaster information collection [3], public safety [4],
environmental monitoring [5], [6], and [7], and traffic planning
[8], etc. By considering the density of the mobile devices
around the world, the MCS applications can have multiple
participants in which they can be involved in the same sensing
activity. For example, monitoring the environment in a disaster
area or sensing the traffic information in an intersection.

Due to the nature of MCS applications, there are several
issues to gather the sensory data. One of these issues is how
to motivate the participants to contribute in the sensing tasks
and collect a high-quality sensory data and upload it to the task
requester. It is very hard to motivate the user to contribute in
the MCS tasks without any rewards such as monetary, social,
entertainment or game-centric rewards. So, to attract the user
to perform a MCS task, the MCS system must consider the
rewards and the task execution cost for the user. This paper
focuses on how to minimize the execution cost of a MCS task
by encouraging a user to participate in this task.

In a real case, the participant can perform more than one
task at the same time, and these tasks may have common
sensors. Therefore, to minimize the task execution cost, it is
needed to decrease the sensor utilization which will preserve
the smartphone energy. Thus, the participant needs an efficient
task scheduling method to satisfy this goal.

In MCS applications which request to measure data by
sensor reading, the sensed data for some sensors readings
may change quickly over time (such as GPS), while the
other may change slowly over time (such as temperature,
humidity and light). Therefore, this feature can be employed
to schedule multiple tasks which request the same sensor
readings. Scheduling multiple tasks will save the energy by
reducing the sensors utilization.

In this paper, the main objective is to design a MCS task
scheduling method. This method will be performed on the
cloud server before the task assignment, which will minimize
time and energy. The cloud server will try to group a number
of tasks which have common sensors, and will create a uniform
task execution time line for all tasks in the same group. This
method will allow the participant to perform a group of tasks
with a minimal energy consumption, which will incentive the
participants to contribute in many tasks. After building the
uniform time line, the participants can upload the collected
data for all tasks at the same time, which will reduce the
data uploading time and the consumed energy from data
connection.

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 1, MARCH 2018 51

1845-6421/03/429 © 2018 CCIS

FESB
Typewritten Text
Original scientific paper

The major contributions of this paper can be summarized
as follows.

1) Formulating the problem of scheduling multiple MCS
tasks, by considering the energy efficient, delay time, and
load balance for the participant and the server.

2) Proposing a task scheduling method to minimize the
energy consumption and increase the user rewards and
decrease the task’s payments by using intervals tree and
time series [9].

The rest of this paper is organized as follows. Section 2
gives a background on mobile crowd sensing applications,
and introduces the previous related works to task schedul-
ing in MCS. Section 3 presents the overall preliminaries,
assumptions, and objectives and formulates the task scheduling
problem in MCS. Section 4 gives a brief description of the
time series method that is used to eliminate the trends in the
data, and introduce the intervals tree which is used to compute
the overlapping between time instants of the tasks. Section
5 introduces the MCS task scheduling method, and presents
the strategies for the implementation of the proposed method.
Section 6 shows the practical experiments to evaluate the MCS
task scheduling method. Section 6 concludes the paper.

II. RELATED WORK

To encourage users for contributing in the MCS tasks,
there is a lot of incentive mechanisms have been proposed.
Motivating human participation and improving the quality
of contribution is crucial to the success of MCS tasks. An
overview of the role of motivation in crowd sensing is
given in [10], [11], and [12], where different motivational
factors have been discussed, such as self-efficacy, sense of
community, use of contextual clues, and so on. There are
several crowdsourcing platforms that provide workers with
non-monetary incentives such as entertainments, social and
educational opportunities [13] and [14].

In [15] a novel MCS incentive mechanism called LBSN
(location-based social network) to enhance sensing quality
was proposed. This mechanism supports quality-enhanced data
collection and is differed from the traditional monetary-based
incentive mechanisms. The LBSN method powered model is
leveraged for dynamic budgeting and proper worker selection,
and a combination of multi-facet quality measurements and
a multi-payment-enhanced reverse auction scheme is used to
improve sensing quality. The authors in [16], reviewed the
existing research, and proposed a ”5W1H” model to serve
the study on incentive mechanism. Moreover, they conduct
analysis on how to design an incentive mechanism with a
case ”Noise Map”. Also, the authors in [17] have proposed
an incentive mechanism that selects the worker candidates
statically, and then dynamically selects winners after bidding.
The proposed incentive mechanism includes two algorithms
which are an improved two-stage auction algorithm (ITA) and
a truthful online reputation updating algorithm (TORU). A
novel truthful online auction mechanism has proposed in [18]
that can efficiently learn to make irreversible online decisions
on winner selections for new MCS systems without requiring
previous knowledge of users.

Recently, incentive mechanisms for the mobile crowd sens-
ing have been widely studied in the literature [19], [20] and
[21]. [22] and [23] take the quality of collected data into
account when designing the incentive mechanisms for the
mobile crowd sensing. Kawajiri et. al. [24] designed incentive
mechanisms to steer mobile users to collect data at certain
locations, and then improve the overall quality of sensing
services. According to Reddy et. al. [25], monetary incentives
often increase interest in participating and reinforce good data
collection habits. Monetary incentive mechanisms for MCS
can be categorized into two modes: online and offline. In the
online mode, the participants arrive one by one in a random
order and the platform has to decide whether a task should be
assigned to a participant upon her arrival based solely on the
information of previous participants. However, this solution
can not guarantee the same winning chance for every body
because the first batch of participants is only used to train
the threshold and have no chance to win. This may result
in task completion delays as well as participant dropping out.
Due to the limitations, more incentive mechanisms work in the
offline mode, which assumes that the platform has the whole
information about the users and their devices (e.g., behaviors,
sensing costs) [20], [26], and [19].

In [27], the authors considered the problem of scheduling
sensing tasks assigned to a smartphone with the objective
of minimizing sensing energy consumption while ensuring
quality of sensing for the case in which each sensing task only
requests data from a single sensor. Firstly, it requests from each
task organizer to assign a value which represents the quality of
collected data, then uses a bell-shaped function within a value
range between 0 and 1 to obtain time instants that is close to
the requested quality. The main drawbacks of this work are:
(1) the task requester may be unqualified to define the quality
needed for the collected data, thus request to assign the quality
value from the task requester is unacceptable. (2) it follows a
sequential search to obtain the tasks time instants, which will
cost the platform time and energy.

In this paper, to overcome the drawbacks of existing
scheduling models, a new task scheduling method is proposed.
This method uses time series and interval tree [9] to find
the common time instant for different tasks that use common
sensors. The proposed task scheduling method is similar to the
task scheduling model in [9] which tries to find the common
time instants for multiple tasks. But our method uses different
strategy to find these common time instants and it differs from
the method [27] in the following points:

1) Classifies and schedules the tasks on the cloud side before
task assignment, which will minimize the energy con-
sumption, increase the total rewards for the participants,
and decrease the task payments for the task organizer.

2) Uses a mathematical method (Time Series and Trend
Elimination by Differencing) Sec.IV-B to obtain the sen-
sor changing time , which is more accurate and reliable
than the method in [27].

3) Uses the interval tree to compute the overlapped interval
for the tasks which will decrease the cost of obtaining a
new time instant for the tasks, while the method in [27]
searches sequentially to get a new time instant which has

52 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 1, MARCH 2018

a very high cost.

III. TASK SCHEDULING PROBLEM (TSP)
In this section, the tasks scheduling problem in the crowd

sensing will be formulated. Here, a typical client-server crowd
sensing architecture is considered where a large number of mo-
bile devices are tasked into community-based data gathering in
a specific Area of Interest (AoI). The task requester defines the
task requirements and submits this information to a platform
residing in a cloud server to distribute the task information
to all users in the AoI. This information includes the specific
location to collect data, sensing time, sensing interval, and the
participation payments. The cloud server will undertake the
task till the task completion, the cloud-based platform jobs
consists of (distribute the task, select the participant, receive
the collected data). The sensory data which are collected by
participants are reported (e.g., through cellular networks or
WiFi) to the central application cloud server. A task normally
specifies multiple types of sensory data to be collected based
on the application requirements. The cloud server can handle
multiple sensing tasks from different task organizers at the
same time, and a user device may be involved in multiple
concurrent sensing tasks.

The MCS system model which was considered in this paper
consisting of a platform residing in a cloud server and a set
of N users, denoted as U = {u1, . . . , uN}. The users execute
a set of M sensing tasks, denoted as T = {τ1, . . . , τM} and
send their sensory data to the platform, each τh ∈ T has a
value Vh > 0 to the platform, where Vh =

∑
i∈N Ωhi is the

total benefit of the platform and Ωhi is evaluated through the
sensing time submitted by user i. For example, Ωhi may be
representing the quality of the received images from the user
i. Each user in the AoI may be involved in more than one task
at the same time. Also, each task has a sensing time sequence
ηh = {th1, th2, . . . , ths} which is a sequence of time instants
at which the sensor readings are requested to be collected
and s is the number of time instants for task h. When the
cloud server received a new task from a task requester, the
cloud server will classify the arrived task according to the
requested sensors. The cloud server will create a number of
classes T̂ = {τ̂1, τ̂2, . . . , τ̂K} where K is the number of task
classes, each class has a number of tasks that have mutual
sensor or sensors τ̂k = {τ1, . . . , τp}, p is the number of tasks
in tasks class τ̂k. For each class of tasks, the cloud server will
obtain a uniform time line µ, this time line will define the
sensing time sequence for all the tasks in the class, µτ̂k =
{v1, v2, . . . , vL}, where L is the number of time sequences in
the uniform time line. At each time instant vl in the uniform
time line, a number r of tasks will be performed such that
1 ≤ r ≤ p. The users in the AoI who carry a mobile device
that are characterized by some embedded sensory capabilities
(e.g. accelerometers, gyroscopes, microphones, cameras, etc.)
are potentially available to undertake the execution of a class
of tasks assigned by the cloud server.

A. Problem Formulation
The objective function of TSP is to minimize the consumed

energy from sensing data by the task’s sensors. The mini-

mization will be issued by decreasing the number of sensing
times while persevering the quality of sensing. This objective
function is formulated as follows.

min
l∈L

vl (1)

Subject to:

ηh = {th1, th2, . . . , ths}, ∀h ∈ τ̂k (2)

vl = ths, ∀h ∈ τ̂k and s ≤ L (3)

Constraint 2 means that minimizing the vl without affecting
the original time instants for each task in the tasks class, in
other words, after minimizing the vl, each task in the class will
have a number of time instants equal to the requested sensing
time instants. Constraint 3 means that each time instant in vl
will have a corresponding time instant in the requested set of
time instants of all tasks in class τ̂k.

The minimization comes from finding the overlapped time
instants and obtaining a new time instant that fits to all over-
lapped tasks without influencing the quality of the collected
data. Here, the quality of data means that the number of sensor
readings must equal to the desired number which is requested
by the task organizer and the readings in the new time instant
must equal to the readings in the original time instant.

IV. THE PROPOSED MCS TASKS SCHEDULING METHOD

To solve the scheduling problem in MCS, a new task
scheduling called Interval Tree-Based Task Scheduling method
(ITBTS) is proposed. In this section, the ITBTS method, will
be described in details. The task organizer should provide
the platform by a tuple of task information and requirements
sensors list, sensing time instants.

A. Basic Idea

The proposed task scheduling method ITBTS depends on
unifying the sensing time instants of several tasks which have
common sensors. In case of two tasks, for example, to unify
the sensing time instant of these two tasks, the cloud server
will try to find a new time instant whereas the sensing quality
does not be affected. So, the cloud server firstly will define a
βx, value which represents the stability time for a sensor x.
For example, when measuring the temperature in a city, the
temperature may change after an amount of time, the value
changing time β will be called sensor value stability time.
The cloud server will obtain the value of β by using the
previous measures of the sensor in each AoI and analyze these
measures by using the time series analysis methods. Then,
trend elimination by differencing will be used to obtain the
value of β. Once the value of β is obtained, it can be used
to unify the time instants for several tasks that have mutual
sensors by using the intervals tree.

In the rest of this section, time series model and interval tree
will be described in details, then the proposed ITBTS will be
introduced.

A. A. A. GAD-ELRAB et al.: INTERVAL TREE-BASED TASK SCHEDULING METHOD 53

B. Time Series and Trend Elimination by Differencing

A time series is a collection of data recorded over a period
of time, weekly, monthly, quarterly, or yearly. A time series is
a set of observations yt, each one being recorded at a specific
time t. Time series plots can reveal patterns such as random,
trends, level shifts, periods or cycles, unusual observations,
or a combination of patterns [9]. Patterns commonly found
in time series data, a trend is evolutionary movement, either
upward or downward, in the value of the variable. Trends
may be long-term or more dynamic and of relatively short
duration. Seasonality is the component of time series behavior
that repeats on a regular basis, such as each year. Sometimes
the data will be smoothed to make identification of the patterns
more obvious Fig.1 shows the pattern in the temperature time
series.

0

2

4

6

8

10

12

14

16

18

0
:0

0
:0

0

0
:4

0
:0

0

1
:2

0
:0

0

2
:0

0
:0

0

2
:4

0
:0

0

3
:2

0
:0

0

4
:0

0
:0

0

4
:4

0
:0

0

5
:2

0
:0

0

6
:0

0
:0

0

6
:4

0
:0

0

7
:2

0
:0

0

8
:0

0
:0

0

8
:4

0
:0

0

9
:2

0
:0

0

1
0
:0

0
:0

0

1
0
:4

0
:0

0

1
1
:2

0
:0

0

1
2
:0

0
:0

0

1
2
:4

0
:0

0

1
3
:2

0
:0

0

1
4
:0

0
:0

0

1
4
:4

0
:0

0

1
5
:2

0
:0

0

1
6
:0

0
:0

0

1
6
:4

0
:0

0

1
7
:2

0
:0

0

1
8
:0

0
:0

0

1
8
:4

0
:0

0

1
9
:2

0
:0

0

2
0
:0

0
:0

0

2
0
:4

0
:0

0

2
1
:2

0
:0

0

2
2
:0

0
:0

0

2
2
:4

0
:0

0

2
3
:2

0
:0

0

0
:0

0
:0

0

T
e

m
p

e
ra

tu
re

Time

Fig. 1: Temperature changing over the time

One of the most used approaches to remove trend is
by differencing the data [28] and [9]; that is, applying the
difference operator to the original time series to obtain a new
time series. To eliminate the trend term by differencing, the
lag-1 difference operator O is defined as follows.

OXt = Xt −Xt−1 = (1−B)Xt, (4)

where B is the backward shift operator, so

BXt = Xt−1 (5)

Powers of the operators B and O are defined in the obvious
way, i.e., Bj(Xt) = Xt−j and Oj(Xt) = O(Oj−1(Xt)),
j ≥ 1, with O0(Xt) = Xt . Polynomials in B and O
are manipulated in precisely the same way as polynomial
functions of real variables. For example,

O2Xt = O(O(Xt))

= v(1−B)(1−B)Xt = (1− 2B +B2)Xt

= Xt − 2Xt−1 +Xt−2

(6)

In this paper, the data differencing method is used to
calculate the sensor’s value stability time β for each sensor
in the MCS systems. β represents the minimum time which
the sensor readings do not change, Here, smaller β means
that the sensor readings change quickly over time (such as
GPS and sounds), while larger β means that sensor readings
change slowly over time (such as temperature and humidity).

To obtain the value of β for a sensor x in a specific AoI,
the cloud server will apply the time series data differencing
method to compute the smallest difference that have a small
value ε, then it will compute the time of the smallest difference
which is called the sensory data stability time β. By using the
time series data differencing method, the system can obtain
the minimum and maximum data differencing value for the
dataset [29].

C. Representing Time Instants of Tasks by Intervals Tree

An interval tree is an ordered data structure whose nodes
represent the intervals and are therefore characterized by a
start value and an end value. A typical application example is
when there is a number of available intervals and another set
of query intervals, for which verifying the overlap with the
given intervals is required.

The interval tree structure comes into play to provide a more
efficient solution than the naive approach of applying a brutal
force strategy and compare each query range with all the others
and check if, according to the values of the relative bounds,
there is an overlap (total or partial) between them. Fig.2 shows
the intervals and the overlap between them.

L1

L2

L3

L1

L2 L3

L1

L2

L3

R1

R2

R3

R2

R1

R3

R2

R1

R3

Fig. 2: Overlapped intervals for three classes of tasks

For each class of tasks on the cloud server it will be stored in
an interval tree. This is an augmentation of the Binary Search
Tree (BST) data structure. An interval tree has a leaf node
for every elementary interval. On the top of these leaves, a
complete binary tree is built. Each internal node of the tree
stores, as its key, the integer that separates the elementary
intervals in its left and right subtrees. The leaf nodes do not
store any keys, and represent the elementary intervals. So, by
using the intervals tree, the cloud server can store all the tasks
time instants in the intervals tree which will contain all the
overlapped intervals for all the tasks in the current class. The
overlapped times will be used next to define a new time instant
for all overlapped tasks. The interval tree running time cost
for a query time is O(K + logn), the preprocessing time is
O(nlogn), and the space is O(n) where n is the number of
intervals in the collection and K is the running time.

54 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 1, MARCH 2018

Tasks classification

Representing all tasks

time instants in the

intervals tree

Compute the overlapped

time instants

Tasks time instants

unification

Fig. 3: ITBTS phases

D. The proposed method

The proposed task scheduling method, ITBTS, consists of
three phases, Fig.3:

1) Task classification phase, in this phase the cloud server
classifies each task based on the required sensors.

2) Overlapping time computation phase, in this phase the
cloud server finds the overlapped time instants of a task
by using the intervals tree.

3) Unify the tasks time instants computation phase by find-
ing the overlapped time and compute the new time instant
of a task. These three phases are described as follows.

1) Task Classification Phase: In the proposed task schedul-
ing ITBTS, all tasks will be scheduled before task assignment.
So, in this phase, when a task organizer requests collecting
data from a specific AoI, the cloud server will classify the
received task and add it to a certain task class based on its
required sensors. All tasks in the task class k must have a
common sensor. For example, task i requests to collect data
(pictures with locations) about an event from 1pm to 8pm, the
participants should capture a picture every 10 minutes, and
task j requests to collect data in the same location from 3pm
to 10pm, the required data is sound records every 5 minutes
or (10 times per hour) with its location and light level. So,
the platform will try to fit the two tasks to work together
and reduce the GPS usage. When a new task arrived on the
platform, it will be added to its class. For each task class, the
participant can select to perform partial or full class based on
his available resources

2) Overlapping Time Instants Computation Phase: In this
phase, when the task classification completed, the cloud server
will start to find the overlapped times for all tasks. Each task
has a number of time instants, for each time instant the cloud
server will convert the time instant to span subinterval. The
span subinterval will have a start and an end time, the start time
is the current time instant - β and the end time is the current
time instant + β, as shown in Fig.4. After obtaining all the
spans subintervals of all tasks, the cloud server will build their
intervals tree. The intervals tree will contain the information
about the overlapped times of all tasks in the current task class.

τ1

τ2

τ3

a
3
 a

7
 a

8

b
3
 b

2
 b

4
 b

5
 b

1

c
5
 c

4
 c

3
 c

2
 c

1

a
5
 a

4
 a

10
 a

9
 a

11
 a

12
 a

1
 a

2
 a

6

β

Fig. 4: The time instants for 3 MCS tasks

For each time instant of the tasks, if there is an overlapped
between more than one task, then the cloud server will obtain
the new time instant for the overlapped tasks. The overlapped
will be on the right or left side of the current time instant for
the overlapped tasks, if there is no overlapping between all
tasks in the class, the cloud server will search for an overlap
between a number of tasks such that o u O, where O is the
number of tasks in the current class, and o is the number of
tasks in the overlap. Fig.5 shows the overlapping between four
intervals.

Time instant

L R C

L1

L2

L3

L4

R3

R1

R4

R2

Overlap

Fig. 5: Overlapped intervals

3) Common Time instants Computation Phase: In this
phase, to compute the common time instant, ρj , for the over-
lapped tasks, the cloud server will compute the three distances
Dl, Dr, and Dc which represent the distance between all
time instants of a task and the left, right, and center of the
overlapped area such that.

Dl =
o∑
i=1

dli (7)

Dr =
o∑
i=1

dri (8)

Dc =
o∑
i=1

dci (9)

where Dl is the distance between the tasks time instants
and the left border of the overlapped area, Dr is the distance

A. A. A. GAD-ELRAB et al.: INTERVAL TREE-BASED TASK SCHEDULING METHOD 55

between the tasks time instants and the right border of the
overlapped area, and Dc is the distance between the tasks time
instants and the center of the overlapped area. The common
time instant ρj will be obtained by selecting the smallest
distance from Dl, Dr, and Dc, as follows

ρj =

 L if Dl ≤ Dc & Dl ≤ Dr

C if Dc ≤ Dl & Dc ≤ Dr

R if Dr ≤ Dl & Dr ≤ Dc

(10)

where L,C, and R are the left, center and right of the
overlapped intervals.

The previous steps will be performed for each time instant
in the current task class. When computing all the common
time instants, then the task class is ready to be assigned to
the participants in the AoI. The participant has the choice to
perform all the tasks in the class or select some tasks from
the class. For each time instant that has an overlap, the MCS
application will store the sensor reading for all the tasks in the
current time instant which will minimize the sensor utilization
and minimize the energy consumption. Alg.1, shows the steps
of the proposed task scheduling method, ITBTS.

Algorithm 1: TASK SCHEDULING METHOD ITBTS
Input: Number of tasks N
Output: a uniform time line for each class of tasks

1 UL← φ ;
2 D = 0 ;
3 Θ = 0 ;
4 add the task to class according to the requested data ;
5 K = number of classes ;
6 for v ← 0 to K do
7 create an interval for each time instant ;
8 insert all intervals to the intervals tree ;
9 foreach Time instant do

10 obtain the overlapped tasks ;
11 compute Dl, Dr, and Dc ;
12 if Dl ≤ Dc & Dl ≤ Dr then
13 ρj = L ;
14 else if Dc ≤ Dl & Dc ≤ Dr then
15 ρj = C;

16 else
17 ρj = R ;

18 add ρj to the time line TL

19 return TL ;

V. PERFORMANCE EVALUATION

In this section, the simulation results and the performance
of the proposed ITBTS will be introduced and discussed.
In this simulation, the OMNET++ simulator [30] have been
simulating the proposed method. A discipline algorithm is
used as the baseline for performance comparison with both
the proposed task scheduling method ITBTS and the Minimum
Energy Single-sensor task Scheduling (MESS) method in [27].
With the discipline scheduling algorithm, a task is executed

at the same time instants which are requested by the task
organizer. Here, many metrics are used for performance eval-
uation as the energy consumption, bandwidth, average shift
time, sensor readings and tasks consistency. Table-I, shows the
simulation parameters. In the rest of this section, firstly, the
full description of a real scenario will be presented. Secondly,
the performance metrics are introduced. Finally, the scenario
results will be presented and discussed.

TABLE I: SIMULATION PARAMETERS

Parameter Value

of Tasks 5-50

Sensors Temperature, Humidity
and light

Sensors readings rate 5, 10, 15, 20 minutes
Wifi power consumption 545.07 mJ [31]
Temperature power consumption 50 mJ
Humidity power consumption 50 mJ
light power consumption 15 mJ
4G communication 2KB 1500 mJ [31]

A. Performance Metrics

Here, to evaluate the proposed ITBTS, the following metrics
are used.

1) Energy consumption: which represents the consumed
energy by the participants when performing a task class.

2) Sensor readings: which is the number of sensor readings
actually performed for a class of tasks.

3) Consistency tasks: which is the percentage of time in-
stants that have overlapping interval.

4) Bandwidth: which is the data rate that is needed to upload
the collected sensors’ readings.

5) Average shift time: which represents the difference be-
tween the unified time instants and the requested time
instants.

B. Results and Discussion

The proposed method ITBTS lack to obtain the data stability
value β to schedule the MCS tasks. The value of β will be
computed by applying the data differencing equation to the
data set in [29]. By using this method, we have obtained
the minimum changing time equal to 20 minutes and the
maximum changing time equal 115 minutes. So, the cloud
server will use the minimum changing time β = 20 minutes
to schedule the MCS tasks. The value of β will be used to
add left and right the tasks time instant to allow the platform
to choose a new time instant which its value will be equal to
the value of the original time instant, which allows scheduling
more than one time instant and performs them by only one
sensor reading.

The experimental results for the consumed energy by the
three different MCS task scheduling methods are shown in
Fig.6 and Fig.7. As shown in Fig.6, the consumed energy
by the proposed ITBTS is less than both the Baseline and

56 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 1, MARCH 2018

0

2000

4000

6000

8000

10000

12000

14000

5 10 15 20 25 30 35 40 45 50

E
n

e
rg

y
 (

m
J

)

Task Number

Baseline
MESS
ITBTS

Fig. 6: The consumed energy by different # of tasks

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

30 45 60 75 90 105 120 135 150 165

E
n

e
rg

y
 (

m
J

)

Task Duration Time (min)

Baseline
MESS
ITBTS

Fig. 7: The consumed energy by tasks with different duration
time

MESS methods, which is proved that ITBTS can minimize
sensor utilization. The minimization comes from detecting
the overlapped time between the tasks time instants after
adding the obtained sensor reading stability value β, creating
a uniform time instants line for all the tasks in the same class,
and performing sensing at the new time instants. Whenever
the sensor reads a new value, the MCS application assign this
value to all overlapped tasks, which saves the energy of mobile
units with the participants. Fig.7 shows the consumed energy
with different task duration per minutes. As shown in Fig.7,
the consumed energy by the proposed ITBTS is less than both
the Baseline and MESS methods, which proves that ITBTS is
not influence the changes of the task duration and it still can
minimize the sensor usage.

Fig.8 and Fig.9, show the sensor readings and the consis-
tency tasks against the number of tasks. As shown in Fig.8,
the result indicates that the proposed ITBTS can minimize the
sensor utilization by detecting the overlapped time between
different tasks, replace the time instants for all overlapped
tasks by a one time instant, and retrieve the sensor reading
at this time, then it will assign the sensor reading to all
overlapped tasks. As shown in Fig.9, the percent of task
consistency between different tasks for the proposed ITBTS
is higher than the MESS and the baseline methods. This is
because the proposed ITBTS uses the time instants unification
of the overlapped tasks which will preserve the participant
device resources such as energy, bandwidth, and CPU.

0

50

100

150

200

250

5 10 15 20 25 30 35 40 45 50

S
e

n
s

o
r

re
a

d
in

g
s

Task Number

Baseline
MESS
New

Fig. 8: # of sensor readings performed by different # of tasks

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40 45 50

C
o

n
s

is
te

n
t

T
a

s
k

s
 %

Task Number

Baseline

MESS

ITBTS

Fig. 9: The % of consistent tasks when changing the # of tasks

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40 45 50

B
a

n
d

w
id

th
 (

B
y
te

)

Task Number

Baseline

ITBTS

Fig. 10: The consumed bandwidth for uploading the collected
data with different # of tasks

Fig.10 and Fig.11, show the consumed bandwidth and
energy from uploading the collected data to the cloud server.
As shown in these figures, the consumption of both bandwidth
and energy decreases as the number of tasks increases. This is
because the proposed ITBTS uses the time instants unification
of the overlapped tasks. As a result, the proposed ITBTS
can minimize the participant device resources such as energy,
bandwidth, and CPU.

Fig.12 shows the average time instants shift time against
the number of tasks. As shown in Fig.8, the difference in
the proposed ITBTS is less than the difference obtained by
the MESS method. This confirms that the proposed ITBTS

A. A. A. GAD-ELRAB et al.: INTERVAL TREE-BASED TASK SCHEDULING METHOD 57

0

100

200

300

400

500

600

700

800

5 10 15 20 25 30 35 40 45 50

E
n

e
rg

y
 (

m
J

)

Task Number

Baseline

ITBTS

Fig. 11: The consumed energy from uploading the collected
data with different # of tasks

0

1

2

3

4

5

6

5 10 15 20 25 30 35 40 45 50

A
v
g

.
s

h
if

t
ti

m
e

 m
in

Task Number

MESS

ITBTS

Fig. 12: The average time instants shift time in different # of
tasks

can collect more accurate and reliable data than the MESS
method, this is because the obtained time instants are close as
possible to the requested time instants. Also, the accuracy of
the obtained time instants is based on the value of β which is
computed mathematically from the previous sensor reading in
the same AoI.

VI. CONCLUSIONS

This paper addresses the problem of task scheduling prob-
lem for MCS systems. To solve this problem a novel MCS task
scheduling method called interval tree-based task scheduling
method, ITBTS was proposed. ITBTS is based on attracting
the participants in the Area of Interest by scheduling the
tasks that have a common sensor to minimize the total users
resources consumption when they perform a class of tasks.
ITBTS uses the data differencing in the time series analysis
and interval tree to compute each sensor reading changing
time and then uses this value to find a new time instant for
the overlapped tasks. In addition, ITBTS classifies all the tasks
according to their requested sensors and the intervals tree has
been used to represent the time instants for each task class.
In this tree, the overlapped tasks time instants will change
to an appropriate common time instant for all tasks. The
results of conducted simulation indicate that the proposed task
scheduling method preserves the participants devices energy
compared with the MESS and baseline methods.

In future works, the proposed task scheduling method will
be developed to be adaptable with Multi-Sensor Tasks.

REFERENCES

[1] B. Guo, Z. Yu, X. Zhou, and D. Zhang. From participatory sensing
to mobile crowd sensing. In 2014 IEEE International Conference
on Pervasive Computing and Communication Workshops (PERCOM
WORKSHOPS), pages 593–598, Budapest, Hungary, March 2014.

[2] S. Greengard. The Internet of Things. The MIT Press Essential
Knowledge series, Cambridge, Massachusetts, USA, 2015.

[3] J. Radianti, J. Dugdale, J. J. Gonzalez, and O. Granmo. Smartphone
sensing platform for emergency management. In ISCRAM 2014 Confer-
ence Proceedings 11th International Conference on Information Systems
for Crisis Response and Management, pages 379–383, Pennsylvania,
USA, May 2014.

[4] E. Aubry, T. Silverston, A. Lahmadi, and O. Festor. Crowdout: A mobile
crowdsourcing service for road safety in digital cities. In 2014 IEEE
International Conference on Pervasive Computing and Communication
Workshops (PERCOM WORKSHOPS), pages 86–91, Budapest, Hun-
gary, March 2014.

[5] A. Longo, M. Zappatore, and M. A. Bochicchio. Collaborative learning
from mobile crowd sensing: A case study in electromagnetic monitoring.
In 2015 IEEE Global Engineering Education Conference (EDUCON),
pages 742–750, Tallinn, Estonia, March 2015.

[6] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T.
Campbell. A survey of mobile phone sensing. IEEE Communications
Magazine, 48(9):140–150, 2010.

[7] M. Zappatore, A. Longo, and M. A. Bochicchio. Crowd-sensing
our smart cities: a platform for noise monitoring and acoustic urban
planning. Journal of Communications Software and Systems, 13(2):53–
67, 2017.

[8] Shaohan Hu, Lu Su, Hengchang Liu, Hongyan Wang, and Tarek F.
Abdelzaher. Smartroad: Smartphone-based crowd sensing for traffic
regulator detection and identification. ACM Trans. Sen. Netw., 11(4):1–
27, 2015.

[9] D. C. Montgomery, C. L. Jennings, and M. Kulahci. Introduction to
Time Series Analysis and Forecasting. John Wiley & Sons, 2015.

[10] J. Goncalves, S. Hosio, J. Rogstadius, E. Karapanos, and V. Kostakos.
Motivating participation and improving quality of contribution in ubiq-
uitous crowd sourcing. Computer Networks, 90(1):34 – 48, 2015.

[11] L. Pournajaf, D. A. Garcia-Ulloa, L. Xiong, and V. Sunderam. Partic-
ipant privacy in mobile crowd sensing task management: A survey of
methods and challenges. ACM SIGMOD Record, 44(4):23–34, 2016.

[12] R. I. Ogie. Adopting incentive mechanisms for large-scale participation
in mobile crowdsensing: from literature review to a conceptual frame-
work. Human-centric Computing and Information Sciences, 6(1):1–24,
2016.

[13] J. P. Rula and F. E. Bustamante. Crowdsensing under (soft) control.
In 2015 IEEE Conference on Computer Communications (INFOCOM),
pages 2236–2244, Kowloon, Hong Kong, April 2015.

[14] G. Yang, S. He, Z. Shi, and J. Chen. Promoting cooperation by the social
incentive mechanism in mobile crowdsensing. IEEE Communications
Magazine, 55(3):86–92, 2017.

[15] B. Guo, H. Chen, Z. Yu, W. Nan, X. Xie, D. Zhang, and X. Zhou.
Taskme: Toward a dynamic and quality-enhanced incentive mechanism
for mobile crowd sensing. International Journal of Human-Computer
Studies, 102(1):14–26, 2017.

[16] P. Ma and D. Tao. 5w1h model for incentive mechanism in mobile
crowd sensing. In 2016 IEEE International Conference on Consumer
Electronics-Taiwan (ICCE-TW), pages 1–2, May 2016.

[17] Y. Wang, Z. Cai, G. Yin, Y. Gao, X. Tong, and G. Wu. An incentive
mechanism with privacy protection in mobile crowdsourcing systems.
Computer Networks, 102(1):157 – 171, 2016.

[18] X. Chen, M. Liu, Y. Zhou, Z. Li, S. Chen, and X. He. A truthful
incentive mechanism for online recruitment in mobile crowd sensing
system. Sensors, 17(1), 2017.

[19] L. G. Jaimes, I. Vergara-Laurens, and M. A. Labrador. A location-based
incentive mechanism for participatory sensing systems with budget
constraints. In 2012 IEEE International Conference on Pervasive
Computing and Communications, pages 103–108, Lugano, Switzerland,
March 2012.

[20] Z. Feng, Y. Zhu, Q. Zhang, L. M. Ni, and A. V. Vasilakos. Trac:
Truthful auction for location-aware collaborative sensing in mobile
crowdsourcing. In IEEE INFOCOM 2014 - IEEE Conference on
Computer Communications, pages 1231–1239, April 2014.

58 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 1, MARCH 2018

[21] L. Gao, F. Hou, and J. Huang. Providing long-term participation
incentive in participatory sensing. In 2015 IEEE Conference on
Computer Communications (INFOCOM), pages 2803–2811, Kowloon,
Hong Kong, April 2015.

[22] H. Jin, L. Su, D. Chen, K. Nahrstedt, and J. Xu. Quality of information
aware incentive mechanisms for mobile crowd sensing systems. In
Proceedings of the 16th ACM International Symposium on Mobile
Ad Hoc Networking and Computing, MobiHoc ’15, pages 167–176,
Hangzhou, China, 2015. ACM.

[23] D. Peng, F. Wu, and G. Chen. Pay as how well you do: A quality based
incentive mechanism for crowdsensing. In Proceedings of the 16th ACM
International Symposium on Mobile Ad Hoc Networking and Computing,
MobiHoc ’15, pages 177–186, Hangzhou, China, 2015. ACM.

[24] R. Kawajiri, M. Shimosaka, and H. Kashima. Steered crowdsensing:
Incentive design towards quality-oriented place-centric crowdsensing.
In Proceedings of the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, UbiComp ’14, pages 691–701,
Seattle, Washington, 2014. ACM.

[25] S. Reddy, D. Estrin, M. Hansen, and M. Srivastava. Examining micro-
payments for participatory sensing data collections. In the 12th ACM
International Conference on Ubiquitous Computing, ACM, 2010, pages
33–36, Copenhagen, Denmark, 2010.

[26] J. S. Lee and B. Hoh. Dynamic pricing incentive for participatory
sensing. Pervasive Mobile Computing, 6(6):693–708, 2010.

[27] J. Wang, J. Tang, G. Xue, and D. Yang. Towards energy-efficient task
scheduling on smartphones in mobile crowd sensing systems. Computer
Networks, 115(4):100 – 109, 2017.

[28] P. J. Brockwell and R. A. Davis. Introduction to Time Series and
Forecasting. springer, 2016.

[29] M. A. Alswailim, H. S. Hassanein, and M. Zulkernine. CRAW-
DAD dataset queensu/crowd temperature (v. 2015-11-20): derived from
roma/taxi (v. 2014-07-17). Downloaded from http://crawdad.org/
queensu/crowd temperature/20151120, November 2015.

[30] A. Varga and R. Hornig. An overview of the omnet++ simulation
environment. In Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, Simutools ’08, pages 1–10, Marseille, France,
March 2008.

[31] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao. Energy-accuracy
trade-off for continuous mobile device location. In Proceedings of
the 8th International Conference on Mobile Systems, Applications, and
Services, MobiSys ’10, pages 285–298, San Francisco, California, USA,
2010. ACM.

Ahmed A. A. Gad-ElRab is an Associate Pro-
fessor of ubiquitous and mobile computing at the
Department of Mathematics, Faculty of Science, Al-
Azhar University,Cairo, Egypt. He received B.S. De-
gree in Computer Science, from Faculty of Science,
Alexandria University, Egypt in 1999. He received
MS. Degree in Computer Science from Faculty
of Science, Cairo University, Egypt in 2008. He
received his Ph.D. at the Nara Institute of Science
and Technology (NAIST), a national corporation
university located in NARA, Japan in 2012. He

received the NAIST best PhD student award in March 2012, he received
the outperformance Award from Graduate School of Information Science,
NAIST in March 2012, and he received 2011 IPSJ Yamashita Memorial Award
(given to only one or two papers among all papers presented in one year in
each IPSJ SIG, Japan. His research interests include cloud computing, mobile
computing, Internet of Things applications, smart home, data science, sensor
networks, dynamic distributed systems, and mobile crowd sensing.

Almohammady S. Alsharkawy received the Mas-
ters degree in the context awareness computing from
the Department of Mathematics, Faculty of Science,
Al-Azhar University - Cairo, Egypt, in 2015. He
is active in research, mobile computing, context
awareness, IoT, and mobile crowd sensing. In 2015
Almohammady has started to study at the Depart-
ment of Mathematics, Faculty of Science, Al-Azhar
University - Cairo, Egypt PhD degree with topic of
mobile crowd sensing management.

A. A. A. GAD-ELRAB et al.: INTERVAL TREE-BASED TASK SCHEDULING METHOD 59

http://crawdad.org/queensu/crowd_temperature/20151120
http://crawdad.org/queensu/crowd_temperature/20151120

	Introduction
	Related Work
	Task Scheduling Problem (TSP)
	Problem Formulation

	The Proposed MCS Tasks Scheduling Method
	Basic Idea
	Time Series and Trend Elimination by Differencing
	Representing Time Instants of Tasks by Intervals Tree
	The proposed method
	Task Classification Phase
	Overlapping Time Instants Computation Phase
	Common Time instants Computation Phase

	Performance Evaluation
	Performance Metrics
	Results and Discussion

	Conclusions
	References
	Biographies
	Ahmed A. A. Gad-ElRab
	Almohammady S. Alsharkawy

