
Top-Down Delivery of IoT-based Applications for

Seniors Behavior Change Capturing Exploiting a

Model-Driven Approach

Adriana Caione, Alessandro Fiore, Luca Mainetti, Luigi Manco, and Roberto Vergallo

Abstract—Developing Internet of Things (IoT) requires

expertise and considerable skills in different fields in order to

cover all the involved heterogeneous technologies, communication

formats and protocols. Developers and experts ask for new

solutions that speed up the prototyping of IoT applications. One of

these solutions is Web of Topics (WoX) middleware, a model-

driven Cloud platform that aims to ease IoT applications

developing, introducing a strong semantic abstraction of the IoT

concepts. In WoX, almost all the IoT entities and concepts are

limited to the concept of Topic, i.e. an entity containing the value

of a feature of interest that we intend to detect. The local

counterpart of WoX is L-WoX (Local-Web of Topics), which

manages local instances of features of interest, allowing mobile

applications to collaborate among them, offering and receiving

data to/from smart objects, and enabling the communication with

WoX Cloud platform. The presented study leverages WoX

approach for showing an experience in rapid design and

prototyping of an ambient assisted living system that detects the

movements of elderly persons in their home, acquiring data

through sensors in an unobtrusive way. Moreover, the paper

shows that the chosen model-driven solution is very suitable in a

top-down approach, starting from users requirements: the created

system simplifies the user-centered design of IoT applications,

adopting a full top-down approach from user required to the

technological solution.

Keywords—IoT; WoX; middleware; smart environment;

behavior analysis.

I. INTRODUCTION

Innovations in computer technology and communications

that have occurred during the last few years, along with the

miniaturization of hardware components such as

microprocessors and memories, have initiated an era in which

every object can potentially be smart. Until a few years ago, no

one would have imagined about looking at his own watch to

check his heartbeats or to send messages to somebody, or to

control by remote what kind of food is missing in the fridge in

Manuscript received January 10, 2018; revised January 30, 2018. Date of

publication March 15, 2018.
Authors are with the Department of Innovation Engineering, University of

Salento, Via Monteroni 165, 73100, Lecce, Italy.

E-mails: {adriana.caione, alessandro.fiore, luca.mainetti, luigi.manco,
roberto.vergallo}@unisalento.it

Digital Object Identifier (DOI): 10.24138/jcomss.v14i1.438

that moment. Every object is connected and can communicate

with the world. This evolution is called Internet of Things (IoT).

In this scenario, every smart object can proactively do

something useful for users, but these connected objects are

many, different and heterogeneous. So we could have a

situation in which there are few developers with the skills

needed for implementing applications. As a consequence, those

applications could be implemented very slowly. In addition,

because of the different technologies and protocols used by the

smart objects, we could also have some problems during the

creation or the maintenance of the applications.

What we need is an abstraction level between the physical

layer, closer to the technologies and protocols, and the

application layer. This level has to be robust and easy to

manage, in order to prototype applications rapidly and without

changing anything in the application architecture when the

smart object’s technology differs. To satisfy these needs, we

have to look for a model-driven architecture, in order to be

agreed among a large number of stakeholders, and topic-based,

because of the event-driven nature of IoT.

We found all these features in a solution called Web of

Topics (WoX) [1][2][3] and in its local counterpart called Local

Web of Topics (L-WoX). WoX is a Cloud-based platform, by

which smart objects can communicate with applications and

vice versa, simply subscribing to a topic in read or write mode

using the WoX APIs. A topic is a combination of a feature of

interest and a specific location. So, the topic gets the meaning

of the value of a certain feature in a certain location (e.g. the

temperature of the living room). Smartphone applications must

have a perception of what is the topic of interest, in order to

subscribe to it. Also a set of WoX adaptors is present for each

IoT technology, both physical (e.g. RFID, BLE, WSN, KNX,

etc.) and virtual (social networks, virtual environments, etc.),

which uses the values incoming from smart objects to update

specific topics.

In this paper, we describe an experience in rapid design and

prototyping of a mobile-based IoT solution through the use of

the WoX platform. The case study deals with an Ambient

Assisted Living (AAL) system prototype created in the context

of the City4Age European project [4][5], aiming at monitoring

elderly people behaviors. Such a solution can be seen as the

starting point for an unobtrusive data collection technique that

can be processed through artificial intelligence algorithms, and

60 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 1, MARCH 2018

1845-6421/03/438 © 2018 CCIS

FESB
Typewritten Text
Original scientific paper

FESB
Typewritten Text

that may be helpful to detect potentially critical situations

(frailty, MCI). If compared to other AAL solutions, our system

simplifies the user-centered design of IoT applications,

adopting a full top-down approach from user required to the

technological solution.

This paper extends our previous work [6]. To be more

precise, the paper adds, in the Related Work Section, references

to contributions to the generation of prototypes for IoT solution;

more details are given to the model driven architecture WoX

and L-WoX along with to the common data format defined in

the City4Age project. Finally the Test and Validation Section is

extended including the experimentation architecture and some

sample data sent to the central repository of City4Age.

The paper is organized as follows: Section 2 briefly reports

on the key related work in the area of e-Health and IoT. Section

3 provides readers with a brief introduction to the WoX and L-

WoX platform, and the model on which they are based on.

Section 4 demonstrates in detail how our solution works in order

to monitor the elderly people behaviors. Finally, Section 5

summarizes our key messages and sketches future research

directions.

II. RELATED WORK

In the last years, several IoT solutions for e-Health services

have been proposed. We quote the most relevant scientific

contributions according to our research work and field.

Many European countries have developed electronic health

records management systems with the aim of improving the

quality and continuity of care. Patient summary, electronic

medical records and electronic prescribing are services that can

help making the performance safer and more appropriate for a

more effective health care, by providing data and information

that are useful to professionals. The Smart Open Services for

European Patients (epSOS) project [7] aimed to test the patient

summary and the electronic drug prescription on European

scale. Subsequently, it has been extended to the definition and

experimentation of services designed to allow direct access to

the citizens to their patient summary.

Recently, an Italian company named Vidiemme Consulting

has started a project that exploits connected living technologies,

developed in collaboration with the American VDM Labs. The

scope of this project is to improve home care for patients with

heart failure diseases thanks to the application of IoT

technology and to real time analysis of data coming from

medical wearable devices. Those devices are able to draw an

accurate and up to date status of the patient's health, by

processing data in real time and, if necessary, transforming

them into alarms for doctors and the family. In addition,

constant monitoring reduces the phenomenon of frequent

hospitalizations, because, if critical situations are identified

early, they can be traced within normal limits without having to

force the patient to run to the emergency rooms, saving money.

Another interesting project is the Service Application

Integration (SAI) [8] middleware that has been made up to

create a model of care to treat chronic conditions. As known,

when some people have chronic diseases, such as chronic

obstructive pulmonary diseases, coronary hearth diseases, and

so on, an organized care system is needed. The SAI project

involves the cooperation of many actors, such as family,

doctors, volunteers and so on, that have different

responsibilities, aiming to create a service framework that

supports information acquisition, integration and sharing in

continuous care networks. To obtain this, the SAI middleware

is composed by a message bus, which is the application level of

the system; an adaptors framework that allows the

communication between heterogeneous information systems;

and an event processor cluster. The SAI middleware receives

incoming messages from devices to enable appropriate control

actions, and to support the implementation of the health plan.

The Hydra Middleware project [9] uses modular service

oriented architecture and integrates distributed software

systems, in order to make possible the communication between

heterogeneous systems. These kinds of services are platform

independent, therefore they are cut off from the logic and

specifics of the supporting system. Among all the devices that

attempt to connect to Hydra middleware, we can distinguish

Hydra-enabled devices, and non Hydra-enabled devices, which

are connected via proxy to enabled devices. A developer does

not care about what kind of devices she/he is facing with: she/he

simply sees the network as a collection of Hydra Devices. These

devices are heterogeneous and use different ways to

communicate. With Hydra middleware, the developer has just

two tasks: integrating non Hydra-enabled devices and

connecting Hydra-enabled devices to a network. Hydra has

already been applied in e-health to permit the integration of

different devices in one solution. In particular the middleware

aims to support medicals care of patients at home.

In addition to the above quoted related work there is also an

increasing attention towards the generation of prototypes for

IoT solution. For instance, the following ones are IoT Cloud

platforms very popular among developers and new adopters.

Google Fit [10] allows users/developers to manage their

fitness data and to develop fitness apps using a specific

framework. The system is able to store data from a variety of

devices and mobile apps.

Xively [11] aims to help developers and companies to turn

physical sensors into software sensors, and connect them to

Xively’s IoT cloud platform quickly and simply. In fact, this

system provides a Web-based applications that is able to rapidly

connect IoT devices to its Cloud in order to collect data from

them.

CarrIoTs [12] is a platform that enables M2M

communications. The main advantage of CarrIoTs is that it

supports network level scalability. Users can put triggers on

various stages of the data processing cycle to push data to an

external system.

Paraimpu [13] is a social-aware IoT middleware that allows

consumers to add, use, share, and interconnect their RESTful

IoT services whether physical or virtual. Things are mapped to

either the abstract concept of sensors or actuators in Paraimpu.

The key advantage of Paraimpu over other IoT middleware is

A. FIORE et al.: TOP-DOWN DELIVERY OF IOT-BASED APPLICATIONS 61

the ability for consumers to reuse and share IoT services with

others in their social network.

Moreover we report some example of IoT service based

middleware.

Global Sensor Network (GSN) [14] is an IoT solution, the

feature of which is the virtual sensor abstraction, by which

users/developers can specify XML-based deployment

descriptors for deploying a sensor. The architecture of this

middleware can host multiple virtual sensors and the container

provides functionalities for lifecycle management of the sensors,

which includes persistency, security, notification, resource

pooling, and event processing.

In [15] authors report on Mobile Sensor Data Processing

Engine (MOSDEN), a plug-in-based IoT middleware for mobile

devices, that allows to collect and process sensor data without

programming efforts, and integrate plugins allowing MOSDEN

to communicate with sensor hardware. Its architecture also

supports sensing as a service model. Moreover, MOSDEN is

developed in such a way that it is interoperable with other cloud-

based middleware solutions such as GSN.

A noteworthy work is described in [16] in which the authors

propose a development toolkit based on a model-driven

approach, called IoTLink. It allows developers to realize mashup

applications through a graphical domain-specific language that

can be easily configured to create an IoT application. IoTLink

hides the complexity of communicating with devices and

services on the Internet and abstracts them as virtual objects

accessible through different communication technologies.

As a last example of service oriented middleware, we

mention SOCRADES [17] that abstracts physical things as

services using devices profile. SOCRADES simplifies the

management of underlying devices or things for enterprise

application especially in the industrial automation. It's an

extension of two previous projects [18][19].

The emergence of model-driven approach and mashup

development give benefits in terms of rapid prototyping.

However, there are few works done both in the industrial and

academic fields, due to the heterogeneity of IoT nodes and

sources. Moreover, the above works are more focused on the

technological aspects rather than the design of user-centric

applications. The advantage of the solution we propose here is

directly connected to the model-driven approach due to a user-

centered design. The user, the elderly person in our case study,

has guided since the beginning the design process in order to

easily develop unobtrusive scenarios. The middleware WoX on

which the proposed solution is built, helps the rapid prototyping

of IoT solution with a model driven approach that simplifies and

reduces the gap between technology and the IoT stakeholders:

developers, device manufacturers, business entities, end users.

This through a language based on the concept of topic that gives

the idea of what is the object of interest (feature) and where it is

located (location).

III. WOX AND L-WOX MODEL-DRIVEN ARCHITECTURE

The personal data capturing system needs a sensing

middleware, which provides access to the underlying

technologies, hiding their intrinsic heterogeneity and

complexity. Furthermore, in order to make the architecture

highly scalable, the structure of the middleware should be

modular, so that new technologies can be easily integrated in

the system.

To make possible this kind of approach, the middleware

should be equipped with appropriate software modules, called

adapters, which are able to communicate with the sensing

technologies according to the respective standards and

protocols.

A software framework able to fulfill all the above

requirements is the WoX (Web of Topics) IoT platform.

WoX is a model-driven approach for the IoT, with the aim

to minimize the gap between people (end users, developers) and

technology. WoX abstracts the complexity of the IoT hardware

and communication protocols. In WoX, the main concept is the

Topic, that is the value of a certain Feature of interest (taken

from a discrete taxonomy, e.g. presence, temperature, or even

high-level concepts such as the crowd presence or an excessive

stay in a place) in a certain URI-identified Location. More

rigorously, a feature is any characteristic or entity of the

environment that can be perceivable, definable, measurable

and/or controllable.

WoX brings two main advantages. The first one is that not

only concrete things but also virtual entities can be easily wired

up to develop innovative scenarios. WoX concepts are close to

the user: anyone can design and deploy custom scenarios. The

second advantage is that WoX accelerates the development of

applications, by managing the communication toward the

heterogeneous IoT things and hiding the respective protocol

details. WoX refers to both IoT hardware nodes and IoT

applications generically as IoT entities. In WoX, the “sensor”

and “actuator” concepts are abstracted the main uniform

concept that is the Topic.

The WoX Topics are grouped in three domains: the WoX

Cloud, the Local WoX (L-WoX, e.g. deployed on mobile

devices), and eMbedded WoX (M-WoX, e.g. deployed on

embedded devices). Every entity talks about WoX Topics and

can perform the update of the value of a Topic along with the

share of its knowledge. According to the scenarios, every entity

can decide if forwarding Topic updates to the parent entities or

not. As a consequence, WoX entities at the edge of the

architecture talk about few specific Topics, while entities at the

core have the master knowledge. This interaction is performed

through APIs that are different according to the entity types:

mobile apps use iOS/Android APIs, embedded devices use

C/C++ APIs, software in general uses Java/Python/.NET APIs.

So, the WoX model requires a robust ICT architecture able

to face with the high number of IoT entities and Topics, the

heterogeneity of the IoT technologies and the intense exchange

of messages.

The best-fit architectural design pattern is the publish-

subscribe (pub/sub) pattern. Pub/sub is an enterprise integration

pattern where senders of messages, called publishers, do not

program the messages to be sent directly to specific receivers,

called subscribers. Instead, published messages are

characterized into classes, without knowledge of subscribers’

identity. Similarly, subscribers express interest in one or more

classes, and only receive messages that are of interest, without

knowledge of publishers’ identity.

The Topic class has two member variables: the topic actual

value and preferred value. The actual value contains the most

recent value for the feature in the location. The preferred value

62 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 1, MARCH 2018

is used to send and receive requests about the desired topic

value.

The pub/sub architecture sits on top of a component that acts

like a middleware toward physical technologies in order to

guarantee abstraction and transparency. The component is

called Hardware Abstraction Layer (HAL) and the whole

architecture, shown in fig. 1, is composed of:

 The Environment Level: it comprises the physical

layer as well as any virtual environment that can

generate events. Social Networks chats can be source

of events too.  

 The middleware core (HAL): it is responsible of

querying/piloting the Environment Level and packing

event reports for the upper layers. It includes adaptors

for communicating with IoT technologies (both

physical and virtual) and REST Web services able to

receive or send data from or to technologies.  

 The WoX Capturing Application: it is the

architectural level implementing the WoX model. It

instantiates the topics, updates them, takes care of the

topic map, and make such data available to the end-

user apps by a set of REST interfaces.  

 The end-user apps, running on any kind of device, use

the WoX APIs to subscribe to topics.  

The Local WoX (L-WoX) is a subset of the whole WoX

architecture running on the personal user device (smartphones

and tablets). It replicates the topic-based, model-driven

approach of WoX on a local level, and manages the lifecycle of

Topic instances available for any WoX-enabled application

running on mobile devices. It also guarantees the

communication between sensing technologies and client

applications.
L-WoX, as soon as it understands that a topic has been

updated, notifies the value of the topic to the WoX server, using

the WoX APIs. Data are stored on remote servers, and can be

accessed by other devices, in which the L-WoX app is installed.

In L-WoX we have the following components:

 The L-WoX service, instanced singleton in the mobile

operating system, retaining the topic instances;

 The mobile apps, subscribing to the local topics after

binding to the L-WoX service;

 The native sensors APIs, offered by the operating

system to access the available sensors;

 A set of WoX adaptors, which use the values incoming

from the sensors to update some specific topic;

 A REST client, able to handle the communication with

the WoX Cloud.

IV. THE PROPOSED SOLUTION

In this section we describe the solution we propose in terms

of logical architecture, inter-app communication and common

date format used for data sharing. We present also the validation

made in the scenario of interest.

A. Logical Architecture

The system proposed in this work monitors elder people

behaviors, collecting data from a sensor and allowing

caregivers and family members to capture in real time useful

information, such as whether the elder person is correctly

moving or not.

The equipment involved in our case study is composed by:

 A smart wristband, with a sensor tag, that is equipped

of a little CPU, by which it is possible to run

algorithms that recognize the movement;

 A mobile application (Activity Detection App)

connected to the wristband via Bluetooth Low Energy

(BLE) technology, that can interpret received data;

 The L-WoX mobile middleware, which receives data

from the mobile application installed on the device and

forwards them to the WoX server. Both the

communications between the Activity Detection App

and the L-WoX middleware, and among L-WoX and

 the WoX Cloud are performed invoking APIs.

The designed logical architecture is shown in fig. 2.

The first element of the system is the sensor tag wristband.

A little CPU mounted on the wristband interprets raw data

incoming from sensors. It runs algorithms that understand some

useful features, like the still or moving of an elder person. These

features, in the specific location that is the person’s position,

represent the topic of interest. So the wristband plays the role

of source of feature values. The BLE Technology guarantees

Fig. 2. System logical architecture

Fig. 1. WoX technical architecture, based on the HAL

A. FIORE et al.: TOP-DOWN DELIVERY OF IOT-BASED APPLICATIONS 63

the connection between the sensor tag and the mobile

application.

The Activity Detection App, in addition to establish and

maintain the BLE connection, is able to store some recent data

and features as well as to update the values of the still and

moving topics to which it is subscribed. This is done in order to

better understand the person behaviors, and to send data to the

WoX Cloud platform only if actually there is a change in the

user status and, as a consequence, in the topic values.

L-WoX receives data incoming from the Activity Detection

App and sends them to the remote WoX platform.

It is possible to note that the Activity Detection App plays

the role of a bridge between the sensor tag bracelet and the L-

WoX middleware, and the role of a filter that sends and updates

the subscribed topics using L-WoX APIs, only at certain

conditions.

In fig. 3, it is represented the functional scenario. The

elderly person is supposed to wear the sensor tag wristband, and

to have the Activity Detection App and the L-WoX installed on

her/his own smartphone.

Once s/he has these three components working, s/he simply

needs to switch on the bracelet and to run the app. The app will

make a BLE scan.

Once the Activity Detection App and the smart wristband

are coupled, the mobile app starts running a service in

background, subscribes to the still and moving topic and

automatically receives data incoming from sensor. The app runs

algorithms that improve the recognition of movement, basing

on data received.

When close topic values differ – that means when the elderly

person changes her/his status from moving to still or vice versa

– the app updates the value of the topic first, and then forwards

data to the WoX Cloud. Thanks to the Cloud platform, this

information can by analyzed, for example by a geriatrician, a

family member or a caregiver, who is using another dedicate

app developed for detecting change behaviors.

B. Inter-App Communication

In this section we discuss what enables the communication

between the app that monitors the behaviors of elderly people

and the dashboards for geriatricians and caregivers.

Two main steps characterize this communication:

 the Inter Process Communication (IPC), that identifies

the dialog between two different applications installed

on the same device;

 the communication between the L-WoX application

and the WoX server.

Here some important steps in order to better understand the

logical behaviors:

 At the starting of the Activity Detection App, using L-

WoX APIs, the SensorTagAction Topic is created and

subscribed;

 The Activity Detection App retrieves sensor data and

needs to update the SensorTagAction Topic, so it calls

the method setTopicActualValue() of APIs, thanks to

which it is possible to update the current value of the

Topic;

 The L-WoX app, as soon as it understands that a topic

has been updated, sends the value of the Topic to the

WoX server, using the WoX APIs;

 Finally, data are stored on remote server, and can be

accessed by other devices, on which L-WoX app is

installed, or by dashboards.

C. LEA (Low-Level Elementary Action)

All the data gathered from the sensing infrastructure must

be collected and validated by the City4Age Platform. This

information is then used to derive elderly people’s behaviors

and then relate them to some risk indicators (RI).

In order to address issues related to heterogeneous data

sources, low level technologies, semantic interpretation and so

on, City4Age has defined the notion of Low-level Elementary

Actions (LEAs).

A LEA is the finest grain atomic information used to detect

behavior of elderly people. It relates to start/stop events of user

basic actions and contains additional information about time

and position of the action that is being taken. All this

information is enveloped in the defined Common Data Format

and sent to the upper layer of the City4Age Platform.

Each detecting solution needs to comply with this format. In

Table 1, all the attributes of LEA objects are described.

TABLE I

LEA DESCRIPTIONS

Property Description Type

Action It is the name of the action

executed by a user

URN String

Location The location where the action is

executed

URN String

Payload

- User performing the action

- Sensor tag device name

- Sensor tag device MAC address

String

Timestamp The timestamp of the action String

Rating

A value defining the uncertainty

of the inferred action (1.0: max

certainty, 0.0: unaffordable)

Float [0..1]

Extra

It can wrap information that are

not mandatory but are useful for

the current analysis.

JSON

Secret
It contains a token needed to

grant security.
String

Fig. 3. Use case diagram

64 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 1, MARCH 2018

LEAs can be grouped in the following macro-categories:  

 Body state: for tracking user states about motility, like

standing, moving, walking, etc.;

 Indoor home monitoring: for tracking user movements

inside his/her home environment;

 Presence in indoor places in the city: for tracking user

movements inside monitored places in the city;

 Presence in outdoor places in the city: for tracking user

movements in outdoor places in the city;

 Smartphone usage: for collecting data about the usage

of smartphone for calling;

 Usage of home appliances: for collecting data about

the usage of home appliances, like fridge,   TV,

washing machines, etc.

 Interaction with transportation: for tracking the

interaction of user with public transportation

  systems;

 Ambient parameters: for providing additional

information about ambient parameters of the   place

where a given action is executed.  

City4Age has defined also the Measures: daily indicators

that make sense from a geriatric point of view in order to assess

changes of behavior. Examples of Measures could be: the

number of steps (daily), the average speed (daily), the number

of walks (daily), the pace of movement (daily), the distance

covered (daily) at fast pace, etc.

Based on these daily measures, further indicators can be

computed in order to define a risk profile of each elderly person

on a monthly base. These indicators are related to the Geriatric

Factors (GEFs) and Geriatric Sub-factors (GESs). A

classification of some of them is illustrated in Table 2.

TABLE II

CLASSIFICATION OF GEFS AND GESS

GEF – Geriatric

Factors

GES – Geriatric Sub-factors

Motility

Walking

Climbing stairs

Still/Moving

Moving across rooms

Gait balance

Physical Activity Physical Activity

Basic Activities of

Daily Living

Bathing and showering

Dressing

Self-feeding

Personal hygiene and grooming

Toilet hygiene

Going out

Instrumental

Activities of Daily

Living

Ability to cook food

Housekeeping

Laundry

Phone usage

New media communication (Skype,

Messenger, Facebook, WhatsApp)

Shopping

Transportation

Finance management

Medication

D. Testing and Validation

The aim of this Section is to test and validate the solution

we propose by illustrating a simple use case focused on the

detection of the still/moving state. In general, the user motility

refers to the ability of the user to perform activities, such as

walking, running, moving, but also stay still, sleeping, etc.

Fig. 4 shows the reference solution based on wearable

wristband and a smartphone, acting as a gateway for data

gathering and forwarding, for detecting user motility.

The above mentioned use case is part of a more generic

scenario, in the context of the City4Age project, whose high-

level architecture is depicted in fig. 5. Data are collected from

different ways that are: sensors, external systems, APPs and

direct observation.

Collected data are gathered in the smartphone that plays a

central role in this architecture, because it acts as a gateway for

data transmission and as a terminal for interventions.

The raw captured data are processed to obtain LEAs and

Measures to be sent and stored in a central repository. Here it is

possible to perform complex behavioral analysis and risk

detection algorithms.

For testing purposes we use a virtual machine with Ubuntu

16.04 operative system with 2 CPU and 4 GB RAM. The

Activity Detection App is installed on a LG G3 smartphone.

The test environments involve 16 mobile devices.

When the app is executed, it performs a scanning of the BLE

wristband and, once detected, the app starts collecting data.

The elder updates a specific topic moving through the sensor

tag wristband s/he is wearing on. The sensor tag sends to the

elder’s smartphone a BLE message (referring to the correct

feature of the topic).

The L-WoX service installed on the smartphone is then able

to detect the BLE sensor tag and forward the local topic

information to the Cloud along with to any local mobile app

subscribed to the considered topic.

Fig. 4. Reference solution for user motility detection

Fig. 5. City4Age high-level architecture

A. FIORE et al.: TOP-DOWN DELIVERY OF IOT-BASED APPLICATIONS 65

Fig. 6 summarizes the elder’s status detected from the

mobile app.

From the two screenshots of Fig. 6 it is possible to observe:

 The state of the connection with the sensor tag;

 The elder’s action or status detected (Moving or Still);

 The Start and Stop button to, respectively, start and

stop the data gathering and forwarding to the cloud.

When the Start button is pressed, the app starts collecting

data.

Fig.7 shows the formatted payload of the LEAs transferred

to the central repository for start and stop moving actions.

Computing the difference between the timestamp of the

START_MOVING action and the timestamp of the

STOP_MOVING action it is possible to calculate the duration

of this “session” of body state along with the STILL_TIME

value can be computed and sent as a Measure.

The application of the model-driven WoX and L-WoX

approach to build the above-described prototype has

demonstrated us that the middleware is definitely able to

support a rapid prototyping development. The provided

abstractions guarantees time and effort saving if compared to

the use of conventional approach where developers are required

to deal with heterogeneous communication paradigms and

protocols, as well as physical and virtual technologies. WoX

and L-WoX are able to encapsulate the technical details and

automate some implementation tasks. The L-WoX middleware

guarantees the communication between sensing technologies

and client applications, receiving data from mobile applications

and forwarding them to the Cloud.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an experience in rapid

prototyping of an IoT mobile-based solution for the monitoring

of elderly people behaviors. The case study has involved the use

of a sensor tag wristband that periodically sends data to a

smartphone application through BLE protocol. It relies on the

L-WoX middleware that enables the communication with the

WoX cloud platform.

Despite of the related work, the chosen model-driven

solution is very suitable when a top-down approach is needed,

starting from users requirements. The WoX model and related

platform simplify the work and reduce the gap between

technology and the IoT stakeholders through the adoption of an

intuitive metaphor that is the concept of Topics of interest for

the specific domain. Just like humans, IoT nodes and

applications can interact and exchange data about topics.

Furthermore the WoX model aggregates data and events

providing ready-to-use information and concepts.

As future work, in a short time, the developed system will

be installed in the elders’ habitations and devices for the pilot

of the city of Lecce in Italy. The pilot case sees a number of 24

home buildings and 32 elderly.

Furthermore, in relation with the application that monitors

the elders’ behaviors it would be possible to improve the

security and privacy, the automation of connection to a well-

known sensor tag, the stability of the routine that collects data

along with to allow the support to other action detections, like

the use of a lift, or climbing stairs, etc.

ACKNOWLEDGMENT

This work partially fulfills the research objectives of the
City4Age project (Elderly-friendly City services for active and
healthy ageing) that has received funding from the European
Union’s Horizon 2020 research and innovation program under
the grant agreement No 68973. We also want to thanks Raffaele
Prudenzano for his great collaboration in the design and
implementation of the presented system prototype.

REFERENCES

[1] A. Caione, A. Fiore, L. Mainetti, L. Manco, and R. Vergallo, “WoX:
Model-Driven Development of Web of Things Applications” in
Managing the Web of Things, B. B. Quan Z. Sheng, Yongrui Qin, Lina
Yao, Ed. Elsevier, 2017, pp. 357–387.

[2] L. Mainetti, L.Manco, L Patrono, I. Sergi, and R. Vergallo, “Web of
Topics: An IoT-aware Model-driven Designing Approach” WF-IoT 2015,
IEEE World Forum on Internet of Things. Milan, Italy, Dec. 14-16, 2015,
p. 46-51, ISBN: 978-150900365-5, Piscataway, NJ, USA, IEEE, doi:
10.1109/WF-IoT.2015.7389025.

[3] L. Mainetti, L. Manco, L. Patrono, A. Secco, I. Sergi, and R. Vergallo,
“An Ambient Assisted Living System for Elderly Assistance
Applications”. PIMRC 2016, 27th Annual IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications,
Valencia, Spain, Sep. 4-7, 2016, p. 2480-2485, ISBN 978-1-5090-3253-
2, Piscataway, NJ, USA, IEEE.

Fig. 6. Person’s status detected from the mobile app

Fig. 7. LEAs received from the WoX platform

66 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 1, MARCH 2018

[4] P. Paolini, N. Di Blas, S. Copelli, and F. Mercalli, “City4Age: Smart cities
for health prevention.” In: IEEE International Smart Cities Conference
(ISC2), 2016, 12-15 Sept. 2016, Trento.

[5] L. Mainetti, L. Patrono, and P. Rametta, “Capturing Behavioral Changes
of Elderly people through Unobtruisive Sensing Technologies.” In: 24th
International Conference on Software, Telecommunications and
Computer Networks (SoftCOM), 2016, September 22-4.

[6] A.Caione, A. Fiore, L. Mainetti, R. Vergallo, L. Manco, “Rapid
Prototyping Internet of Things Solutions Through a Model-Driven
Approach: A Case 99 Study in AAL”. SPLITECH 2017, 2nd International
Multidisciplinary Conference on Computer and Energy Science, Split,
Croatia, Jul 12-14, 2017, p. 99-105.

[7] epSOS, 2017. Retrieved from http://www.epsos.eu/ on April, 4 2017.
[8] F. Paganelli, D. Parlanti, and D. Giuli, “A Service-Oriented Framework

for Distributed Heterogeneous Data and System Integration for
Continuous Care Networks” CCNC 2010 7th IEEE (2010).

[9] M. Jahn, F. Pramudianto, and A.-A Al-Akkad, “Hydra middleware for
developing pervasive systems: A case study in the eHealth domain.” In:
International Workshop on Distributed Computing in Ambient
Environments, 2009, Paderborn, Germany, 15-18 Sep.

[10] Google Fit. (2015.) [Online]. Available: https://developers.
google.com/fit/.

[11] Xively. (2014.) [Online]. Available: http://xively.com. 
[12] Carriots [Online]. Available: https://www.carriots.com/. 
[13] K. Aberer, M. Hauswirth, and A. Salehi, “A middleware for fast and

flexible sensor network deployment,” in Proc. 32nd Int. Conf. Very Large
Data Bases, Seoul, South Korea, 2006, pp. 1199–1202.

[14] Global Sensor Networks. (2004.) [Online]. Available:
http://lsir.epfl.ch/research/current/gsn/.

[15] C. Perera, P. P. Jayaraman, A. Zaslavsky, P. Christen, and D.
Georgakopoulos, “MOSDEN: An Internet of Things middleware for
resource constrained mobile devices,” in Proc. 47th Hawaii Int. Conf.
Syst. Sci., 2014, pp. 1053–1062.

[16] F. Pramudianto, C.A. Kamienski, E. Souto, F. Borelli,L.L. Gomes, D.
Sadok, and M. Jarke, “IoT Link: An Internet of Things Prototyping
Toolkit” In Ubiquitous Intelligence and Computing, 2014 IEEE 11th Intl
Conf on and IEEE 11th Intl Conf on and Autonomic and Trusted
Computing, and IEEE 14th Intl Conf on Scalable Computing and
Communications and Its Associated Workshops (UTC-ATC-ScalCom),
2009,pp. 1-9.

[17] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interacting
with the SOA-based Internet of Things: Discovery, query, selection, and
on-demand provisioning of web services,” IEEE Trans. Serv. Comput.,
vol. 3, no. 3, pp. 223–235, Jul. 2010.

[18] H. Bohn, A. Bobek, and F. Golatowski, “SIRENA-Service infrastructure
for real-time embedded networked devices: A service oriented framework
for different domains,” in Proc. Int. Conf. Netw./Int. Conf. Syst. Int. Conf.
Mobile Commun. Learn. Technol. (ICN/ICONS/MCL), Apr. 2006, p. 43

[19] S. de Deugd, R. Carroll, K. Kelly, B. Millett, and J. Ricker, “SODA:
Service oriented device architecture,” IEEE Pervasive Comput., vol. 5, no.
3, pp. 94–96, Jul. 2006.

Adriana Caione is a post-doc research fellow in
Information Engineering, on Internet of Things (IoT)

and data analysis and processing, at the Department

of Innovation Engineering, University of Salento.
She is also co-founder of the VidyaSoft srl, start-up

of the University of Salento.

Luca Mainetti is an Associate Professor of Software

Engineering at the University of Salento. His
research interests include web engineering, software

engineering, and model-driven IoT engineering. He

is a scientific coordinator of the GSA Lab - Graphics
and Software Architectures Lab at the Department of

Innovation Engineering, University of Salento, and a

co-founder of the VidyaSoft srl start-up of the
University of Salento.

Luigi Manco graduated in Computer Engineering in

October 2012, at University of Salento, with a thesis
concerning image-guided micro-invasive surgery systems,

after a 6-mounths internship at the Vicomtech-IK4 Spanish

research centre. He earned the Ph.D. at the same University
in 2017 with the thesis “A Semantic Internet-of-Things

Platform Based on Multi-Agent Architecture”, after a year-

long collaboration with DEIB at Polytechnic of Milano.
His research topics follow out two main streams: Agile

development methodologies and Software Engineering

metrics analysis and semantic-based Multi-Agent Systems
for Smart Environments.

Roberto Vergallo is a post-doc in Information
Engineering at University of Salento (Italy). He

graduated cum laude in Computer Engineering at

University of Salento in October 2010, and earned the
Ph.D. in 2015. Since 2007 he has been working on

several research projects at the same University

involving the design and development of middleware
for IoT architectures. He is a contributor for the

Fosstrak open source RFID platform. He is the

inventor of WoX, a Cloud platform for the Internet of
Things. In 2013 he worked as research visitor at the

SMERC Lab (Smart Grid Energy Research Center), University of California

Los Angeles (UCLA). In 2013 he received a special award from BMW. He is

co-founder of VidyaSoft srl, a spin-off company of Salento University.

Alessandro Fiore graduated in Computer

Engineering in January 2011, at University of

Salento and he earned the Ph.D. at the same
University in 2017 with the thesis “Designing and

prototyping middleware for IoT model-driven

mobile system”. His research interests regard
mobile system architectures, software engineering

and IoT technologies applied in particular contexts

such as E-Health and E-Learning. He is also co-founder of the VidyaSoft srl,
start-up of the University of Salento.

A. FIORE et al.: TOP-DOWN DELIVERY OF IOT-BASED APPLICATIONS 67

