
A Novel Function Complexity-Based Code

Migration Policy for Reducing Power Consumption

Hayeon Choi, Youngkyoung Koo, and Sangsoo Park

Abstract—Embedded system designs has changed greatly owing

to rapid developments in both hardware and software technology.

Typical designs should consider hardware limitations, such as size,

weight, or battery capacity. In other words, the designs are heavily

dependent on hardware components. Since hardware components

can deteriorate and degenerate, hardware-aware software designs

are needed to achieve power-efficient embedded systems. Previous

studies usually focus on the microprocessor expecting to reduce

power consumed on computation. Besides, entire program

execution resulting a lot of memory accesses also consume power.

Therefore, it should be considered to minimize overall power

consumption for more efficient designs. Modern embedded

systems often use heterogeneous memory to benefit from different

characteristics of each memory device. This study aims to optimize

the power efficiency of heterogeneous memory in embedded

systems. We have proposed a detailed function complexity concept

whose scale implies the range of power consumption in migrated

memory. Afterward, function selection algorithm with function

complexity selects a unique function which improve power

consumption most after the migration. Several experiments and

quantitative analyses with various benchmarks have been

performed to validate the proposed algorithm. Consequently,

migrating selected complex function successfully minimizes power

consumption of an embedded system.

Index Terms— embedded system, heterogeneous memory, code

migration, function complexity.

I. INTRODUCTION

 ITH the rapid developments of computer science

technology, efficient designs of the systems should

consider the hardware-wise properties in mind, such as size,

weight, or battery capacity. In other words, hardware is the main

limitation in embedded systems. However, physical hardware

Manuscript received January 31, 2018; revised March 3, 2018. Date of

publication March 15, 2018.
H. Choi, Y. Koo, and S. Park are with the Department of Computer Science

and Engineering, Ewha Womans University, Seoul, Republic of Korea.

E-mails: {hayeon.choi, kooyoungkyoung}@ewhain.net,
sangsoo.park@ewha.ac.kr.

This article is an extension of the following paper: Hayeon Choi,
Youngkyoung Koo, and Sangsoo Park, "Segment-aware energy-efficient

management of heterogeneous memory system for ultra-low-power IoT

devices," proceeding of the 2nd international Multidisciplinary Conference on
Computer and Energy Science (SpliTech), pp. 1-6, 2017.

This work was supported the National Research Foundation of Korea funded

by the Korean Government (NRF2017S1A5B6066963). Sangsoo Park is the
corresponding author.

Digital Object Identifier (DOI): 10.24138/jcomss.v14i1.454

components can wear out or deteriorate as time goes. To

achieve efficient systems, hardware-aware software design is

urgently required.

Embedded systems consist of a microprocessor, a single

memory or multiple memory devices, and other peripheral

hardware as well as software. Most previous studies have

focused on optimizing the microprocessor because it performs

main computations, which consume power. However, accesses

to memory devices also consumes power apart from the

microprocessor. When running program codes and accessing

program data during the entire execution causes a lot of memory

access. Therefore, power consumption of memory should also

be minimized for achieving more efficient system designs [7,

8]. Moreover, most embedded systems equipped with

heterogeneous memory, that is, multiple types of memory

devices. In most cases, non-volatile memory (NVM) and non-

volatile memory (VM) are equipped in the systems. It enables

to benefit from different characteristics of memory devices.

Our previous studies focused on migrating program code

utilizing the properties of both memory devices for operating a

low-power embedded system. Basic concept of code migration

method refers to migrating program code from one memory

device to another regarding the characteristics of each memory

device. Experiments have showed that moving certain function

units of a program generally consumes less power. Thus, the

effect of migration depends on situations, mostly the power

consumptions reduced than usual. Consequently, earlier code

migration methods could affect considerably on the operation

of low-power embedded systems as a positive factor [9-11].

In this paper, we propose the function complexity concept to

describe the computational complication of each function and

the relationship between connected functions. Furthermore,

function selection algorithm based on the function complexity

is proposed. With the algorithm, a novel code migration policy

is performed and experimentally verified using several

benchmarks.

The remainder of this paper is organized as follows: Section

II.A provides a comprehensive description of the code

migration method and Section II.B quantitatively analyzes

motivating examples as well as code migrations. Section III.A

presents the procedure of function complexity calculation, and

function selection algorithm is proposed in Section III.B. Then

section IV.A discusses the experimental environment for

implementing a novel code migration policy.

W

68 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 1, MARCH 2018

1845-6421/03/454 © 2018 CCIS

mailto:kooyoungkyoung%7d@ewhain.net
FESB
Typewritten Text
Original scientific paper

Section IV.B organizes the experiments for various benchmarks

and the final analysis to verify the proposed algorithm. Finally,

Section V concludes this study.

II. CODE MIGRATION METHODS

A. Motivation

In general, embedded systems load and execute program

codes on NVM. On the contrary, they read and write program

data on VM owing to the location of data. Therefore, several

accesses to NVM and VM are required for executing program

codes and using program data, respectively. Code migration

method loads and executes code from the memory it is

originally in to another as shown in the Fig. 1. When using

heterogeneous memory, the method migrates program code

from NVM to VM. In particular, one of the most distinguishable

property of VM is relatively low-power operation compared to

NVM. Because of the structural difference, therefore, the power

consumption can be reduced through code migration method.

Thus, the power efficiency is dependent on the structural

characteristics of the located memory device. In heterogeneous

memory systems, it is especially important to consider each

characteristic when executing a program in a low-power

system.

B. Quantitative Analysis of Motivating Examples

An application being used can affect the power efficiency of

a program. Therefore, three different programs with different

time complexities were migrated to reveal the influence of the

code migration method. Each motivating example has different

time complexity: a constant, a square, and a coefficient. In a

constant-complexity program, the problem is to determine

whether a number is an odd or even. Next, in a square-

complexity program, the problem is to perform a bubble sort.

Lastly, a coefficient-complexity program solves the 0-1

knapsack problem.

 For each example, the power consumption was measured

before and after migration. Also, the power efficiency,

described as the reduction ratio in the table, was calculated by

the measured power consumption values. If code migration had

a positive influence on optimizing power consumption, the

consumed power after migration should be reduced than that

before.

 As shown in Table I, the result showed that each program has

a different efficiency according to time complexity. When

executing a constant-complexity program, more power was

consumed after migration. Which implies that a negative effect

was given by the code migration method. Such result

demonstrated that there existed the overhead of migration

which was larger than the effect of migration in this case. On

the other hand, the migration method had an influence to reduce

power consumption on the other two programs. A coefficient-

complexity program especially had the highest reduction ratio.

Therefore, the power efficiency of a program with higher time

complexity has improved more after migration. It seemed that

the effect of migration could be larger as the time-complexity

went higher [9, 10].

III. FUNCTION SELECTION ALGORITHM BASED ON FUNCTION

COMPLEXITY

The motivating examples discussed in Section II.B are

programs with a single function connected to the main function.

Most of those programs can be stated in a simplified diagram

Fig. 2 (a). However, most programs are comprised of complex

additional functions as shown in Fig. 2 (b).

As mentioned in the previous section, migrating code to VM

can improve the power efficiency. In embedded systems,

however, moving the whole program can be difficult or

impossible because of hardware constraints such as limited

capacity, especially. Therefore, the function complexity

concept is newly introduced which predicts a certain function

expecting to improve the power efficiency most after migration.

Fig. 1. General flow of a code migration method.

TABLE I

POWER CONSUMPTION AND REDUCTION RATIO BY CODE MIGRATION

Time

Complexity

Power Consumption (W) Reduction

Ratio (%) Before Migration After Migration

O(1) 0.0068 0.0071 -3

O(n2) 0.0078 0.0077 1

O(n!) 0.008 0.0078 2.3

Fig. 2. (a) Diagram of a program with a single function and (b) Diagram of a
program with complex functions.

H. CHOI et al.: A NOVEL FUNCTION COMPLEXITY-BASED CODE MIGRATION POLICY 69

A. Function Complexity Calculation

For all functions (Fp) in a program (Pi), each function

complexity is calculated. A function complexity (FCp) implies

the combination of computational complexity and calling

complexity. Therefore, it reflects not only how complicated the

function itself is, but also how the function is connected to

others. It is calculated by using the following equation:

Pi = F1 ∪ F2 ∪ ⋯ ∪ Fp ∪ ⋯ Fn 

FCp = CalculateFC(Fp) 

where Pi = an ith program with n functions,

Fp = a pth function of a program,

FCp = a final function complexity of Fp

Fig. 3 shows the procedure for calculating the function

complexity in a program and the details of each step.

1) PCG construction

A general program can be expressed in the form of a

program call graph (PCGi). Since a program consists of

various functions, these functions construct a set of nodes

(N). Moreover, these functions invoke each other and form

complicated relationships with each other. Those invocation

are calls between functions indicating edges (E). They are

derived from the following formula, for each program:

PCGi (N, E) ← Pi (f, c)

where PCGi = a program call graph of a ith program,
 f = #(F), c = #(calls)

2) Program node identification

Each node of a PCGi represents a different function that

exists in a program. These functions have their own unique

complex standards, computational complexity based on the

Big-O notation. It is calculated by the time complexity for a

loop statement; i.e. the following formula (3) for a for-while

loop was applied:

np += R(loopi) 
R(loopi) =⎿repetition of loopi / incremental unit of loopi⏌

where np = a computational complexity of Fp,
loopi = an ith loop statement in a function

3) Program edge identification

Understanding the relationship between various functions

will significantly important in terms of the function

complexity. Every edge indicates how many invocations are

occurred between two nodes. Thus, the calling complexity

is determined by the number of times a function j calls

another function k.

ep,q = 1, where Fp calls Fq for constant times
 n, where Fp calls Fq for n times
 n2, where Fp calls Fq for n2 times

 ⋯

where ep,q = a calling complexity between Fp and Fq

4) Program table design

The program table (PT) reflects program nodes and edges

derived above. This table shows functions and function calls

that comprise a program. Therefore, the PTi should contain

all nodes and edges of the PCGi. Basically, each element

ptp,q of the PTi reflects the relationship between Fp and Fq,

that is same the as the edge between Fp and Fq of PCGi. In

contrast, as diagonal element ptp,q has the same j and k,

which is the same as the Fp (=Fq), one of the vertexes in

PCGi. Thus, the relation is with the function itself. All

elements of PTi are constructed using (5), and the

constructed table is shown in Fig. 4.

ptp,q = np, where p = q 
 ptp,q = ep,q, otherwise p ≠ q 

5) Function complexity calculation

Finally, the complexity of each function can be determined

by the program table PT. As mentioned in the previous

section, the function complexity is the concept which

depicts computational complexity of each function and

calling complexity with others. A function complexity of a

node derived from a calculation of all paths backtracked to

Fig. 3. Flowchart of procedure for calculating function complexity.

Fig. 4. Example of constructed program table.

70 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 1, MARCH 2018

the main function. If a node has only a single path on PCGi,

a function complexity is a product of whole edges on the

path and the node itself. Any other nodes with multiple

paths, on the other hand, should consider each path

respectively. From each path, a few included edges are

multiplied, and then the calculated products of paths are

summed up. A final function complexity is a multiplication

of summed paths and the node itself. These rules calculate a

final function complexity whose detailed algorithm is given

in Fig. 5.

B. Function selection algorithm

Based on the calculated final function complexity, the

function selection algorithm predicts the function that is

expected to be the most power-efficient after code migration.

The selection of a unique function is conducted as followed:

At first, a function whose complexity FCp is the largest is

selected. If the orders of two or more function complexities are

the same, a function with larger np is selected. It resulted from

the fact that the time complexity of a function makes more big

impact on the power consumption proved in our previous

studies.

IV. CASE STUDY ON BENCHMARK

A. Experimental environment

Mibench is a benchmark tool used to verify the performance

of embedded processors [12]. We evaluated the performance of

the proposed algorithm by porting the benchmark program to

the experimental environment. Table II shows the benchmark

information used in the experiment.

The experimental board used was the MSP432P401R

Launchpad of Texas Instruments. This board is a primary

experimental tool for measuring power in embedded systems

with heterogeneous memory. The device is comprised of a

microprocessor, i.e. cost-effective and low-power Cortex- M4F,

256 kB Flash memory, and 64 kB SRAM. For optimal usage

of power, SRAM can be partitioned every 8 kB; these partitions

can be powered down individually. The segments of program

data are mapped to each of these partitions [13, 14]. The most

distinguishable attribute of the device is the embedded

EnergyTrace+ hardware. It allows for real-time debugging and

internal power measurement using a tool named Code

Composer Studio (CCS). It is an Integrated Development

Environment for Texas Instruments' microcontrollers and

embedded processors. It is an advanced system development

and debugging tool based on the Eclipse Framework and it had

built-in EnergyTrace+ hardware for measuring the power

consumption [15].

B. Analysis of the benchmarks

To validate of the function selection algorithm, we performed

experiments to ensure that the selected function most improve

the power efficiency after migration. The program call graph,

PCGi, and program table, PTi for the benchmark programs

consisting of function complexity were constructed. Then, we

measured the power consumption when each function unit of

the code was migrated using the experimental board.

Information about each function in the benchmark program was

obtained using the algorithm shown in Figs. 6-10. The control

group of the experiment was the power consumption when the

code was not migrated; this was referred as basic.

Experiments were carried out to determine the difference in

power consumption before and after code migration of function

units. The results showed that the power efficiency is correlated

to the function complexity. Furthermore, when np value of the

function is the same, the higher FCp, the larger efficiency is

obtained.

Fig. 5. Algorithm of function complexity calculation.

TABLE II

DESCRIPTION OF THE BENCHMARK PROGRAMS

Programs (Pi) Benchmark program Number of Fp (f)

P1 basicmath() 2

P2 qsort() 3

P3 dijkstra() 4

P4 blowfish() 4

P5 SHA() 5

Fig. 6. Program1: basicmath.

H. CHOI et al.: A NOVEL FUNCTION COMPLEXITY-BASED CODE MIGRATION POLICY 71

Fig. 9. Program4: blowfish.

Fig. 7. Program2: qsort.

Fig. 8. Program3: dijkstra.

Fig. 11. Experimental result.

Fig. 10. Program5: SHA.

72 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 1, MARCH 2018

For instance, in case of a program named dijkstra, final

complexities of functions are calculated in Fig. 8 (c). As the

results imply that FC1 and FC3 are the same, N3. By the function

selection algorithm, n1 is selected because the value of n1 is

larger than n3. Therefore, the power consumption migrating n1

to another memory device reduced most among the other

functions.

V. CONCLUSION

Embedded systems are subjected to various constraints, and

therefore, the trade-offs involved should be studied in detail. In

a real operating environment, low power consumption can help

achieve long-term use with high performance. This study

focuses on managing and fully utilizing existing heterogeneous

memory while considering the additional cost for low-power

systems. Our experiment shows that migrating certain function

unit of a program in power-efficient VM is effective.

Furthermore, executing a few program functions in SRAM is

comparatively more power-efficient than executing them in

NVM.

This study proposed a function selection algorithm for more

efficient code migration of a complex program. This algorithm

calculates the highest power efficiency of a function after it has

been migrated. To validate the proposed algorithm, we ported a

benchmark that evaluates the performance of a general process

to the experimental environment. The results showed that the

function with highest function complexity is the most power-

efficient among all functions in a program. The proposed

function selection algorithm could serve as an important

measure for determining function units in code migration.

VI. FUTURE WORK

The program code is a set of arithmetic, data transfer, and

other instructions. Several previous studies have proved the

effectiveness of instructions in code migration, respectively.

For example, in the paper [9, 10], the power consumption can

be reduced according to time complexity of a function by

focusing on arithmetic instructions. Furthermore, the power

consumption for data transfer instructions decreases depending

on the segment type [11]. This study proposes the function

complexity concept based on a deeper analysis of arithmetic

instructions, and accordingly proposes a novel code migration

policy.

Based on these existing studies, we present the model shown

in Fig. 12. Specifically, we propose an embedded device and a

profiler framework through a system-level simulation based on

arithmetic and data transfer instructions for selecting program

code to be migrated. This model applies the trace method to an

application and analyzes the case of all commands in detail.

REFERENCES

[1] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. Mccann, and K. Leung, "A
survey on the ietf protocol suite for the internet of things: Standards,

challenges, and opportunities," Journal of the IEEE Wireless

Communications, vol. 20, no. 6, pp. 91-98, 2013.
[2] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, "Internet

of things for smart cities," Journal of the IEEE Internet of Things, vol. 1,

no. 1, pp. 22-32, 2014.
[3] L. Wang, A. Vega, A. Buyuktosunoglu, P. Bose, and K. Skadron, "Power-

efficient embedded processing with resilience and real-time constraints,"
Proceeding of the IEEE/ACM International Symposium on Low Power

Electronics and Design (ISLPED), pp. 231-235, 2015.

[4] S. Mai, C. Zhang, Y. Zhao, J. Chao, and Z. Wang, "An application specific

memory partitioning method for low power," Proceeding of the 7th

International Conference on ASIC, pp. 221-224, 2007.

[5] L. Liu et al., "A software memory partition approach for eliminating bank-
level interference in multicore systems," Proceeding of the 21st

International Conference on Parallel Architectures and Compilation

Techniques(PACT), pp. 367-375, 2012.

Fig. 12. Framework design of power management model based on code migration policy.

H. CHOI et al.: A NOVEL FUNCTION COMPLEXITY-BASED CODE MIGRATION POLICY 73

[6] C. Chi, L. Wu, X. Zhang, and L. Pan, "Low power embedded EEPROM

design for MCU in battery-less tire pressure monitoring system,"
proceeding of the 11th International Conference on Solid-State and

Integrated Circuit Technology (ICSICT), pp. 1-3, 2012.

[7] G. Indumathi, and V. P. M. B. Aarthi alias Ananthakirupa, "Energy
optimization techniques on SRAM: A survey," proceeding of the

International Conference on Communication and Network Technologies

(ICCNT), pp. 216-221, 2014.
[8] Z. Wang, D. A. Jimenez, C. Xu, G. Sun, and Y. Xie, "Adaptive placement

and migration policy for an STT-RAM-based hybrid cache," proceeding

of the 20th International Symposium on High Performance Computer
Architecture (HPCA), pp. 13-24, 2014.

[9] H. Choi, Y. Koo, S. Park, "Power consumption comparisons of flash and

RAM on time complexities for low power embedded systems",
proceeding of the Conference on Korea Multimedia Society, vol. 19,

2016.

[10] H. Choi, Y. Koo, and S. Park, "Quantitative analysis of power
consumption for low power embedded system by types of memory in

program execution", Journal of Korea Multimedia Society, vol. 19, no.

2016, pp. 1179-1187.
[11] H. Choi, Y. Koo, and S. Park, "Segment-aware energy-efficient

management of heterogeneous memory system for ultra-low-power IoT

devices," proceeding of the 2nd international Multidisciplinary
Conference on Computer and Energy Science (SpliTech), pp. 1-6, 2017.

[12] M. R. Guthaus et al., "MiBench: A free Commercially Representative

Embedded Benchmark Suite," proceeding of IEEE 4th Annual Workshop
on Workload Characterization, pp. 3-14, 2001.

[13] MSP432P401R LaunchPad™ Development Kit (MSP EXP432P401R),

http://www.ti.com/lit/ ug/slau597a/slau597a.pdf, (accessed Apr., 9 2016).
[14] Overview for MSP432P4x, http://www.ti.com/lsds/ti/microcontrollers_1

6-bit_32-bit/msp/low_power_performance/msp432p4x/overview.page,

(accessed Apr., 1, 2016).
[15] Code Composer Studio(CCS) Integrated Development Environment

(IDE), http://www.ti.com/tool/ccstudio#TechnicalDocuments, (accessed

Apr., 17 2016).

Hayeon Choi received her BS degree from Ewha Womans
University, Seoul, Republic of Korea, in 2013. Currently, she

is in the combined Master’s and Doctorate program in the
Embedded Software Laboratory in the Department of

Computer Science and Engineering at Ewha Womans

University.

Youngkyoung Koo received her BS degree from Ewha

Womans University, Seoul, Republic of Korea, in 2017.

Currently, she is an MS candidate in the Embedded Software
Laboratory in the Department of Computer Science at Ewha

Womans University.

Sangsoo Park received his BS degree from Korea Advanced

Institute of Science and Technology, Daejeon, Republic of
Korea, in 1998, and his MS and PhD degrees from Seoul

National University, Seoul, Republic of Korea, in 2000 and

2006, respectively. Currently, he is an Associate Professor in
the Department of Computer Science and Engineering at

Ewha Womans University, Seoul, Republic of Korea. His

research interests include real-time embedded systems and
system software.

74 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 1, MARCH 2018

http://www.ti.com/lsds/ti/microcontrollers_1

