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Abstract—Embedded system designs has changed greatly owing 

to rapid developments in both hardware and software technology. 

Typical designs should consider hardware limitations, such as size, 

weight, or battery capacity. In other words, the designs are heavily 

dependent on hardware components. Since hardware components 

can deteriorate and degenerate, hardware-aware software designs 

are needed to achieve power-efficient embedded systems. Previous 

studies usually focus on the microprocessor expecting to reduce 

power consumed on computation. Besides, entire program 

execution resulting a lot of memory accesses also consume power. 

Therefore, it should be considered to minimize overall power 

consumption for more efficient designs. Modern embedded 

systems often use heterogeneous memory to benefit from different 

characteristics of each memory device. This study aims to optimize 

the power efficiency of heterogeneous memory in embedded 

systems. We have proposed a detailed function complexity concept 

whose scale implies the range of power consumption in migrated 

memory. Afterward, function selection algorithm with function 

complexity selects a unique function which improve power 

consumption most after the migration. Several experiments and 

quantitative analyses with various benchmarks have been 

performed to validate the proposed algorithm. Consequently, 

migrating selected complex function successfully minimizes power 

consumption of an embedded system. 

 

Index Terms— embedded system, heterogeneous memory, code 

migration, function complexity. 

 

I. INTRODUCTION 

 ITH the rapid developments of computer science 

technology, efficient designs of the systems should 

consider the hardware-wise properties in mind, such as size, 

weight, or battery capacity. In other words, hardware is the main 

limitation in embedded systems. However, physical hardware 
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components can wear out or deteriorate as time goes. To 

achieve efficient systems, hardware-aware software design is 

urgently required. 

Embedded systems consist of a microprocessor, a single 

memory or multiple memory devices, and other peripheral 

hardware as well as software. Most previous studies have 

focused on optimizing the microprocessor because it performs 

main computations, which consume power. However, accesses 

to memory devices also consumes power apart from the 

microprocessor. When running program codes and accessing 

program data during the entire execution causes a lot of memory 

access. Therefore, power consumption of memory should also 

be minimized for achieving more efficient system designs [7, 

8]. Moreover, most embedded systems equipped with 

heterogeneous memory, that is, multiple types of memory 

devices. In most cases, non-volatile memory (NVM) and non-

volatile memory (VM) are equipped in the systems. It enables 

to benefit from different characteristics of memory devices. 

Our previous studies focused on migrating program code 

utilizing the properties of both memory devices for operating a 

low-power embedded system. Basic concept of code migration 

method refers to migrating program code from one memory 

device to another regarding the characteristics of each memory 

device. Experiments have showed that moving certain function 

units of a program generally consumes less power. Thus, the 

effect of migration depends on situations, mostly the power 

consumptions reduced than usual. Consequently, earlier code 

migration methods could affect considerably on the operation 

of low-power embedded systems as a positive factor [9-11].  

In this paper, we propose the function complexity concept to 

describe the computational complication of each function and 

the relationship between connected functions. Furthermore, 

function selection algorithm based on the function complexity 

is proposed. With the algorithm, a novel code migration policy 

is performed and experimentally verified using several 

benchmarks. 

The remainder of this paper is organized as follows: Section 

II.A provides a comprehensive description of the code 

migration method and Section II.B quantitatively analyzes 

motivating examples as well as code migrations. Section III.A 

presents the procedure of function complexity calculation, and 

function selection algorithm is proposed in Section III.B. Then 

section IV.A discusses the experimental environment for  

implementing  a novel code migration policy. 

W 
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Section IV.B organizes the experiments for various benchmarks 

and the final analysis to verify the proposed algorithm. Finally, 

Section V concludes this study.  
 

II. CODE MIGRATION METHODS 

A. Motivation 

In general, embedded systems load and execute program 

codes on NVM. On the contrary, they read and write program 

data on VM owing to the location of data. Therefore, several 

accesses to NVM and VM are required for executing program 

codes and using program data, respectively. Code migration 

method loads and executes code from the memory it is 

originally in to another as shown in the Fig. 1. When using 

heterogeneous memory, the method migrates program code 

from NVM to VM. In particular, one of the most distinguishable 

property of VM is relatively low-power operation compared to 

NVM. Because of the structural difference, therefore, the power 

consumption can be reduced through code migration method. 

Thus, the power efficiency is dependent on the structural 

characteristics of the located memory device. In heterogeneous 

memory systems, it is especially important to consider each 

characteristic when executing a program in a low-power 

system. 

 

 

B. Quantitative Analysis of Motivating Examples 

An application being used can affect the power efficiency of 

a program. Therefore, three different programs with different 

time complexities were migrated to reveal the influence of the 

code migration method. Each motivating example has different 

time complexity: a constant, a square, and a coefficient. In a 

constant-complexity program, the problem is to determine 

whether a number is an odd or even. Next, in a square-

complexity program, the problem is to perform a bubble sort. 

Lastly, a coefficient-complexity program solves the 0-1 

knapsack problem. 

 

 For each example, the power consumption was measured 

before and after migration. Also, the power efficiency, 

described as the reduction ratio in the table, was calculated by 

the measured power consumption values. If code migration had 

a positive influence on optimizing power consumption, the 

consumed power after migration should be reduced than that 

before. 

 As shown in Table I, the result showed that each program has 

a different efficiency according to time complexity. When 

executing a constant-complexity program, more power was 

consumed after migration. Which implies that a negative effect 

was given by the code migration method. Such result 

demonstrated that there existed the overhead of migration 

which was larger than the effect of migration in this case. On 

the other hand, the migration method had an influence to reduce 

power consumption on the other two programs. A coefficient-

complexity program especially had the highest reduction ratio. 

Therefore, the power efficiency of a program with higher time 

complexity has improved more after migration. It seemed that 

the effect of migration could be larger as the time-complexity 

went higher [9, 10]. 
 

 

III. FUNCTION SELECTION ALGORITHM BASED ON FUNCTION 

COMPLEXITY 

The motivating examples discussed in Section II.B are 

programs with a single function connected to the main function. 

Most of those programs can be stated in a simplified diagram 

Fig. 2 (a). However, most programs are comprised of complex 

additional functions as shown in Fig. 2 (b).  

 

 

 
As mentioned in the previous section, migrating code to VM 

can improve the power efficiency. In embedded systems, 

however, moving the whole program can be difficult or 

impossible because of hardware constraints such as limited 

capacity, especially. Therefore, the function complexity 

concept is newly introduced which predicts a certain function 

expecting to improve the power efficiency most after migration. 

 
Fig. 1.  General flow of a code migration method. 

  

TABLE I 

POWER CONSUMPTION AND REDUCTION RATIO BY CODE MIGRATION 

Time 

Complexity 

Power Consumption (W) Reduction 

Ratio (%) Before Migration After Migration 

O(1) 0.0068 0.0071 -3 

O(n2) 0.0078 0.0077 1 

O(n!) 0.008 0.0078 2.3 

 

 

 
Fig. 2.  (a) Diagram of a program with a single function and (b) Diagram of a 
program with complex functions. 
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A. Function Complexity Calculation 

For all functions (Fp) in a program (Pi), each function 

complexity is calculated. A function complexity (FCp) implies 

the combination of computational complexity and calling 

complexity. Therefore, it reflects not only how complicated the 

function itself is, but also how the function is connected to 

others. It is calculated by using the following equation:  

Pi = F1 ∪ F2 ∪ ⋯ ∪ Fp ∪ ⋯ Fn 

FCp = CalculateFC(Fp)                    

where Pi = an ith program with n functions, 

Fp = a pth function of a program, 

FCp = a final function complexity of Fp

Fig. 3 shows the procedure for calculating the function 

complexity in a program and the details of each step. 
 

 
 

1) PCG construction 

A general program can be expressed in the form of a 

program call graph (PCGi). Since a program consists of 

various functions, these functions construct a set of nodes 

(N). Moreover, these functions invoke each other and form 

complicated relationships with each other. Those invocation 

are calls between functions indicating edges (E). They are 

derived from the following formula, for each program: 

 

PCGi (N, E) ← Pi (f, c)

where PCGi = a program call graph of a ith program, 
 f = #(F), c = #(calls)

2) Program node identification  

Each node of a PCGi represents a different function that 

exists in a program. These functions have their own unique 

complex standards, computational complexity based on the 

Big-O notation. It is calculated by the time complexity for a 

loop statement; i.e. the following formula (3) for a for-while 

loop was applied: 

np += R(loopi)                                    
R(loopi) =⎿repetition of loopi / incremental unit of loopi⏌ 

where np = a computational complexity of Fp, 
loopi = an ith loop statement in a function

3) Program edge identification  

Understanding the relationship between various functions 

will significantly important in terms of the function 

complexity. Every edge indicates how many invocations are 

occurred between two nodes. Thus, the calling complexity 

is determined by the number of times a function j calls 

another function k. 

ep,q = 1, where Fp calls Fq for constant times 
 n, where Fp calls Fq for n times 
 n2, where Fp calls Fq for n2 times 

 ⋯

where ep,q = a calling complexity between Fp and Fq

4) Program table design  

The program table (PT) reflects program nodes and edges 

derived above. This table shows functions and function calls 

that comprise a program. Therefore, the PTi should contain 

all nodes and edges of the PCGi. Basically, each element 

ptp,q of the PTi reflects the relationship between Fp and Fq, 

that is same the as the edge between Fp and Fq of PCGi. In 

contrast, as diagonal element ptp,q has the same j and k, 

which is the same as the Fp (=Fq), one of the vertexes in 

PCGi. Thus, the relation is with the function itself. All 

elements of PTi are constructed using (5), and the 

constructed table is shown in Fig. 4. 

ptp,q = np, where p = q                   
 ptp,q  = ep,q, otherwise p ≠ q                        

 
5) Function complexity calculation  

Finally, the complexity of each function can be determined 

by the program table PT. As mentioned in the previous 

section, the function complexity is the concept which 

depicts computational complexity of each function and 

calling complexity with others. A function complexity of a 

node derived from a calculation of all paths backtracked to 

 
Fig. 3.  Flowchart of procedure for calculating function complexity. 

  

 
Fig. 4.  Example of constructed program table. 
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the main function. If a node has only a single path on PCGi, 

a function complexity is a product of whole edges on the 

path and the node itself. Any other nodes with multiple 

paths, on the other hand, should consider each path 

respectively. From each path, a few included edges are 

multiplied, and then the calculated products of paths are 

summed up. A final function complexity is a multiplication 

of summed paths and the node itself. These rules calculate a 

final function complexity whose detailed algorithm is given 

in Fig. 5.  

 

 

B. Function selection algorithm 

Based on the calculated final function complexity, the 

function selection algorithm predicts the function that is 

expected to be the most power-efficient after code migration. 

The selection of a unique function is conducted as followed: 

At first, a function whose complexity FCp is the largest is 

selected. If the orders of two or more function complexities are 

the same, a function with larger np is selected. It resulted from 

the fact that the time complexity of a function makes more big 

impact on the power consumption proved in our previous 

studies. 

IV. CASE STUDY ON BENCHMARK  

A. Experimental environment 

Mibench is a benchmark tool used to verify the performance 

of embedded processors [12]. We evaluated the performance of 

the proposed algorithm by porting the benchmark program to 

the experimental environment. Table II shows the benchmark 

information used in the experiment. 

 
 

The experimental board used was the MSP432P401R 

Launchpad of Texas Instruments. This board is a primary 

experimental tool for measuring power in embedded systems 

with heterogeneous memory. The device is comprised of a 

microprocessor, i.e. cost-effective and low-power Cortex- M4F, 

256 kB Flash memory, and 64 kB SRAM.  For optimal usage 

of power, SRAM can be partitioned every 8 kB; these partitions 

can be powered down individually. The segments of program 

data are mapped to each of these partitions [13, 14]. The most 

distinguishable attribute of the device is the embedded 

EnergyTrace+ hardware. It allows for real-time debugging and 

internal power measurement using a tool named Code 

Composer Studio (CCS). It is an Integrated Development 

Environment for Texas Instruments' microcontrollers and 

embedded processors. It is an advanced system development 

and debugging tool based on the Eclipse Framework and it had 

built-in EnergyTrace+ hardware for measuring the power 

consumption [15]. 

 

B. Analysis of the benchmarks 

To validate of the function selection algorithm, we performed 

experiments to ensure that the selected function most improve 

the power efficiency after migration. The program call graph, 

PCGi, and program table, PTi for the benchmark programs 

consisting of function complexity were constructed. Then, we 

measured the power consumption when each function unit of 

the code was migrated using the experimental board. 

Information about each function in the benchmark program was 

obtained using the algorithm shown in Figs. 6-10. The control 

group of the experiment was the power consumption when the 

code was not migrated; this was referred as basic. 

Experiments were carried out to determine the difference in 

power consumption before and after code migration of function 

units. The results showed that the power efficiency is correlated 

to the function complexity. Furthermore, when np value of the 

function is the same, the higher FCp, the larger efficiency is 

obtained. 

 

 

 
Fig. 5.  Algorithm of function complexity calculation. 
  

TABLE II 

DESCRIPTION OF THE BENCHMARK PROGRAMS 

Programs (Pi) Benchmark program Number of Fp (f) 

P1 basicmath() 2 

P2 qsort() 3 

P3 dijkstra() 4 

P4 blowfish() 4 

P5 SHA() 5 

 

 

 
Fig. 6.  Program1: basicmath. 
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Fig. 9.  Program4: blowfish. 
  

 

 

 
Fig. 7.  Program2: qsort. 

  

 
Fig. 8.  Program3: dijkstra. 

  

 
Fig. 11.  Experimental result. 
  

 
Fig. 10.  Program5: SHA. 
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For instance, in case of a program named dijkstra, final 

complexities of functions are calculated in Fig. 8 (c). As the 

results imply that FC1 and FC3 are the same, N3. By the function 

selection algorithm, n1 is selected because the value of n1 is 

larger than n3. Therefore, the power consumption migrating n1 

to another memory device reduced most among the other 

functions. 

V. CONCLUSION 

Embedded systems are subjected to various constraints, and 

therefore, the trade-offs involved should be studied in detail. In 

a real operating environment, low power consumption can help 

achieve long-term use with high performance. This study 

focuses on managing and fully utilizing existing heterogeneous 

memory while considering the additional cost for low-power 

systems. Our experiment shows that migrating certain function 

unit of a program in power-efficient VM is effective. 

Furthermore, executing a few program functions in SRAM is 

comparatively more power-efficient than executing them in 

NVM. 

This study proposed a function selection algorithm for more 

efficient code migration of a complex program. This algorithm 

calculates the highest power efficiency of a function after it has 

been migrated. To validate the proposed algorithm, we ported a 

benchmark that evaluates the performance of a general process 

to the experimental environment. The results showed that the 

function with highest function complexity is the most power-

efficient among all functions in a program. The proposed 

function selection algorithm could serve as an important 

measure for determining function units in code migration. 

 

VI. FUTURE WORK 

The program code is a set of arithmetic, data transfer, and 

other instructions. Several previous studies have proved the 

effectiveness of instructions in code migration, respectively. 

For example, in the paper [9, 10], the power consumption can 

be reduced according to time complexity of a function by 

focusing on arithmetic instructions. Furthermore, the power 

consumption for data transfer instructions decreases depending 

on the segment type [11]. This study proposes the function 

complexity concept based on a deeper analysis of arithmetic 

instructions, and accordingly proposes a novel code migration 

policy.  

Based on these existing studies, we present the model shown 

in Fig. 12. Specifically, we propose an embedded device and a 

profiler framework through a system-level simulation based on 

arithmetic and data transfer instructions for selecting program 

code to be migrated. This model applies the trace method to an 

application and analyzes the case of all commands in detail. 
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