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Complete Model for Automatic Object Detection
and Localisation on Aerial Images using
Convolutional Neural Networks

Dunja Boiié—gtulié, Stanko Kruzié, Sven Gotovac, and Vladan Papié

Abstract—In this paper, a novel approach for an automatic
object detection and localisation on aerial images is proposed.
Proposed model does not use ground control points (GCPs) and
consists of three major phases. In the first phase, optimal flight
route is planned in order to capture the area of interest and
aerial images are acquired using unmanned aerial vehicle (UAV),
followed by creating a mosaic of collected images to obtained
larger field-of-view panoramic image of the area of interest and
using the obtained image mosaic to create georeferenced map.
The image mosaic is then also used to detect objects of interest
using the approach based on convolutional neural networks.

Index Terms—georeferencing, GIS, UAV, image mosaic, object
detection, convoloutional neural networks

I. INTRODUCTION

Aerial images are widely used in various activities by
providing visual records. This type of remotely sensed im-
ages is helpful in generating digital maps, managing ecology,
monitoring crop growth, region surveying, etc. Also, it can be
a helpful aid in search and rescue operations. Conventional
aerial photographs are an essential source of data for natural
resource scientists.

High-quality aerial imagery can be acquired using con-
ventional platforms such as satellites and aircraft but their
temporal resolution is limited by the restricted availability of
aircraft platforms and orbit characteristics of satellites [1]. This
limits their use for map updating purposes, as it increases costs
and production time. Recently, UAVs have been introduced
in mapping activities and have been linked with the low-cost
production of accurate and high-quality spatial data in a short
time [2]. Several approaches for UAV-based georeferencing
have been proposed recently. In [3], global position system
(GPS) information was used to provide the coordinates of the
aerial photo centre, but variations in pitch and roll were not
catered for, thereby restricting the UAV altitude. In [4], GPS
information was used, but sequential triangulation was also
needed for updating the camera parameters. A robust image
matching procedure had then to be applied in real time for
finding tie points. Xiang and Tian [5] proposed a method for
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georeferencing, but the orientation and position of the camera
with respect to the UAV was not generic. In [6], the proposed
model for automatic georeferencing of images obtained by
UAV, camera position and orientation with respect to the UAV
are not restricted. Hence, no simplification is possible in the
pixel mapping, and the pixel positions necessary for camera
calibration are obtained entirely by image processing, i.e.,
automatically. In [7], the mapping model was proposed, but
GCPs were necessary for the implementation of the model.

Object detection is common task in computer vision, used
for autonomous vehicles, smart video surveillance, facial de-
tection and various people counting applications. Systems like
this are not only used for recognizing and classifying every
object in an image, but also for localizing each one by drawing
the appropriate bounding box around it. Several approaches for
detection and localization of objects using CNNs have been
proposed. Radovic et al [8] have tested CNN - based software
called ”YOLQO” for object recognition in satellite images. They
managed to get 97.5% accuracy, but for they validation phase
they used satellite images. In [9] authors used R-CNN for
car detection in aerial images. Authors’ main focus was on
detection of small objects on aerial images.

The main contributions of this paper are the following:

1) the procedure for creation of the route path of UAV is
proposed;

2) a technique for creating mosaic of images acquired by
UAV and loading the mosaic with the appropriate world
file transformation in GIS software is proposed and
implemented;

The paper is structured as follows. In Section 2, the UAV
unit and flight route planning are presented, and procedures
for image mosaicking, georeferencing and object detection
are implemented and explained. In Section 3, research results
are presented, while in Section 4 conclusions are drawn and
directions for future work are given.

II. PROPOSED MODEL

Our proposed model for automatic object detection and
localisation of aerial images consists of three major phases.
The first phase is data acquisition using UgCS software for
flight planning and DJI Phantom 3 Professional UAV. After
data acquisition, next phase is creating a mosaic of collected
images in order to obtain a larger field-of-view panoramic
image of the area of interest and computing the world file in
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order to properly georeference obtained panoramic image onto
a map. Finally, in the last phase, image mosaic is divided into
smaller pieces which were used as inputs to the convolutional
neural network (CNN) for detection of the objects of interest.

A. Image acquisition phase

1) UAV Unit: The UAV unit used for image acquisition in
the study was DJI Phantom 3 Professional [10], a quadrotor
UAV which features 3-axis stabilisation using gimbal, vertical
accuracy of up to 0.5 m, and horizontal accuracy of up to
1.5m using GPS (which can be further more accurate at lower
speeds and altitudes, by switching to vision-based positioning,
using both ultrasound and image data). It also features a built-
in camera for which specifications are presented in Table I.

TABLE I
SPECIFICATIONS OF CAMERA USED IN THE RESEARCH

Model DJI Phantom 3 Professional

Sensor Sony EXMOR 1/2.3”

Lens FOV 94° 20mm (35mm format equiv.) /2.8
Effective resolution 12.4 MP

Sensor width and height  6.48525 4.86394

Image size 4000x 3000

Video size 4096x2160 @ 24fps; 4K @ 30fps

Pixel size 14

Focal length 5

2) Flight route planning: To successfully capture the area
of interest, a good flight route plan is a fundamental require-
ment. Since manually flying a drone to follow a flight route is
very difficult, the appropriate software has to be used. In the
research, we used software UgCS (Universal Ground Control
Station) [11] for our flight route planning. The software can
compute the route and fly the UAV autonomously. Also, the
appropriate input parameters need to be set accordingly: the
area of interest must be marked on a map, adjacent image
overlap percentage and camera properties must be set (see
Fig. 2a). These input parameters are used for calculation of
the optimal flight route which will assure full coverage of the
area of interest. More details about flight route planning are
shown in the following list, while the example of the computed
flight route may be seen in Fig. 2b.

Flight route planning process consists of seven steps:

1) choose location on Google Maps (as required by UgCS

software);

2) set UAV type;

3) set the home location for UAV;

4) set flight properties (side and forward overlap between

adjacent images, flight altitude);

5) calculate optimal route path using user-provided area of

interest given flight properties previously set;

6) upload route to the UAV unit;

7) start the planned flight;

During route planning, GCPs were labelled, which means
that metadata about every image that was taken was available.

Also, geolocation data (latitude, longitude, altitude), field of
view (FOV) and resolution were all available. The problem is
that all those data depart from the values in the real world.
The algorithm that was used for obtaining world file is based
on obtaining a mosaic of a taken set of photographs using
metadata and correction offset by the algorithm for image
processing.

B. Image mosaicking

Image mosaicking is a process where image processing
techniques are applied to a set of aerial images in order to
create larger field-of-view panoramic images that are impossi-
ble to capture in a single image. The process is similar to
well-known image stitching, the only difference being one
that in image mosaicking only aerial images are used, which
results in less intensive transformation calculations because the
compositing surface is the approximately planar. The process
consists of several steps which are described in following
paragraphs.

1) Feature detection and description: Feature detection is
a process of finding key points in images, while feature
description is a process of extraction of local image patch
around detected features in order to “describe” them. There
exist numerous methods for feature detection and description:
Harris, Scale-Invariant Feature Transform (SIFT), Speeded Up
Robust Features (SURF), Features from Accelerated Segment
Test (FAST) and Oriented FAST and Rotated BRIEF (ORB),
to name a few that are most widely used in computer vision
applications.

In this paper, SIFT was the method of our choice for feature
detection and description and is explained thoroughly in the
following paragraphs. SIFT is an algorithm for both feature
detection and description developed and published by David
G. Lowe in 1999 [12], and further enhanced in 2004 [6]. SIFT
feature descriptor is invariant to orientation, scale and partially
to affine transform.

SIFT keypoints are identified as local extrema of Difference
of Gaussians (DoG)

D(x,01,09) = I1(x) * (G(x,01) — G(x,02))

where x = [ z y |7, I(x) is original image, and G(x,0) is
Gaussian blur, applied in scale space to Gaussian blurred and
resampled images. Each pixel of DoG image is thresholded
with 8 neighbouring pixels on the same scale, as well as
with 9 appropriate pixels in neighbouring scales. If a pixel is
local extrema found by described procedure, it is a potential
keypoint. This procedure is repeated multiple times for each
octave in the Gaussian pyramid. Once all potential keypoints
are found, they must be refined to obtain more accurate results.
The Taylor series expansion of scale space
T 2
D(x) =D+ aa%x + %XTG—DX

is used to obtain more accurate location of extrema. If an
intensity at extrema is less than a threshold value, they are
rejected. In our research, value of 0.03 was used, as per [6].
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Phase I

) CNN )

Fig. 1. Proposed model for automatic object detection and localisation on aerial images. In the first phase, the flight plan is created and data is acquired
using UAV unit, followed by creating a mosaic of acquired images and georeferencing it on a map using GIS software. Finally, image mosaic is divided into
smaller chunks to perform object detection using CNN.

: L e EE . |
(a) User marks corners of the study area on the map (b) Green arrows representing optimal flying route needed to capture desired
study area

Fig. 2. UgCS software for flight route planning
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Since DoG has strong responses along edges, so they must
be removed. Hessian matrix is used for that purpose that is
computed at the scale and location of the edge keypoint:

o [ Dy Dy ]
Dyy Dy,
The ratio of eigenvalues of H is taken and thresholded against
a constant value of » = 10 [6] which is called edge threshold.
If the ratio is greater than edge threshold the point is discarded.

When low-contrast keypoints, as well as edge keypoints are
discarded, what is left are the keypoints that are later used in
further steps of image mosaicking process.

SIFT keypoint descriptor is computed as follows. A set of
orientation histograms is created on 4x4 pixel region with 8
bins each. Histograms are computed from gradient magnitude
and orientation values of samples in a 16 x 16 region around
the keypoint such that each histogram contains samples from
a 4x4 subregion of the original region. The descriptor then
becomes a vector of all the values of these histograms and
has 128 elements, since there are 16 histograms each with 8
bins. The descriptor is then normalised to unit length in order
to make it (at least partially) invariant to affine transformation.

2) Feature matching: The objective of the feature matching
stage is to find correspondences between overlapping images.
Those correspondences can be found in many different ways.
The simplest one is a pairwise comparison of images’ feature
descriptors. There exist a number of feature matching tech-
niques, the most common ones used being exhaustive search
and nearest neighbour techniques. The distance measures used
are L2 (Euclidean) distance for vector feature descriptors.

For purpose of this research, feature matching can be fur-
ther optimised. Considering flight plan described in previous
sections, input images are given in sequence and are organised
in a grid-like structure, approximate relationship between
each image pair is known. Originally, feature matching step’s
execution time is proportional to squared number of input
images. However, if only a smaller subset of images, those
that are adjacent, are matched pairwise, a huge amount of
computation is avoided with negligible loss. For example,
consider an image not on the edge of the grid-like structure.
That image has eight other overlapping images (one to the each
of left, right, up, down edges, and to the each of upper-left,
upper-right, lower-left and lower-right corners of the image). If
the image is on the edge of grid-like structure, number of other
overlapping images if even smaller. This is done by using a
N x N matrix which represents binary mask (N being number
of input images). That matrix value is set to 1 if images at
appropriate row and column are adjacent and O otherwise.
During the feature matching stage, only image pairs that have
binary mask set to 1 are evaluated and pairwise matched.

Once correspondences are found, there is a need to find
a subset of those correspondences which produce accurate
alignment (inliers) of the images and that is consistent with a
particular camera motion estimate. This is done by using Ran-
dom Sample Consensus (RANSAC) algorithm. RANSAC [13]
is an iterative algorithm used for fitting a model to observed
data which contain outliers. Since the motion model for aerial

images is affine, which has 6 parameters, we need at least three
points correspondences to estimate the affine model. RANSAC
starts by selecting a subset of three point correspondences at
random and calculates the affine model with them. Then, all
other correspondences are examined if they are located within
a tolerance of their location predicted by the calculated model.
If the ratio of the number of inlier correspondences to the
total number of correspondences is greater than a predefined
threshold, a model is re-estimated with all inliers. Then, the
whole process is repeated, a maximum of M times, where M
is big enough to ensure a high probability that random subset
does not contain an outlier. A model with the largest number
of inliers is kept as final.

3) Image blending: Once feature matching is finished,
images are warped together on a compositing surface. As
images are aerial and considering that ground is approximately
flat when altitude is large enough, a planar compositing surface
is chosen.

Once pixels from source images have been mapped onto
the composite surface, there may arise the need for blending
in order to create an attractive-looking panorama. If all of the
images are in perfect alignment, there is no need for blending.
However, visible seams (due to exposure differences), blurring
(due to misalignment), or ghosting (due to moving objects)
often occur in real images. Creating clean panoramas involves
both deciding which pixels to use and/or how to weight or
blend them. Feathering (weighting), simple blending method
will be briefly described in following lines. It takes values of
each pixel in a blended (overlapping) region and computes
average:

> we(x) I (x)
O = = )

where Ij,(x) are warped images and wy(x) is weighting
functions. As per [14], good choice for weighting functions
are ones that weights pixels in the centre of the image more
heavily than those near edges.

Image blending stage is optional. Since there are uses when
there is no need for attractive-looking image mosaics (e.g. in
search and rescue operations) it is avoided in order to save
time.

Using all previously described methods, a procedure for
creation of the aerial mosaics is given in 1.

Algorithm 1 Mosaicking of aerial images
Input: Sequence of N images
Extract features from all N aerial images
for all images do
Match feature pairs between adjacent images
Find geometrically consistent transformation using fea-
ture matches and RANSAC
Warp images to compositing surface using estimated trans-
forms
Blend resulting mosaic (optional)
Output: Image mosaic
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TABLE 11
WORLD FILE VALUES

Pixel size in the x-direction in map units/pixel 0.037633283681665
Rotation about y-axis 0

Rotation about x-axis 0

Pixel size in y-direction in map units -0.039545625330468
x-coordinate of the center of the upper left pixel  1828175.26
y-coordinate of the center of the upper left pixel ~ 5389028.73

C. World file transformation

After creation of the mosaic, values needed for world file
transformation can easily be computed. In general, world files
use the same name as the image, with a “w” appended.
For example, the world file for the image file split.tif would
be called split.tifw, and the world file for splitl.rlc would
be splitl.rlcw. However, since GIS only accepts 3-letter file
extensions, the first and third characters of the image file’s
suffix and a final "w” are used for the world file suffix.
Therefore the world files for split.tif and splitl.rlc would be
split.tfw and splitl.rcw, respectively. Table II shows world
file transformation values that were computed for our mosaic
image created with previously describe technique.

D. Georeferencing

The resulting image mosaic with applied world file transfor-
mation has to be processed in QGIS [15], basemap layers for
were chosen, and georeferenced image mosaic was overlaid
on top of them. Since QGIS is an open source GIS software
and has a possibility of adding basemap layers via a plug-in,
two base map layers were chosen for this experiment. First
is Open Street Map and second is Google Satellite (Fig. 4).
However, more basemap layers are also available for usage
via plugins.

Georeferencing is the process of aligning a raster dataset to
known map coordinates and assigning a coordinate system. It
creates additional information within the file itself and/or in
supplementary files that accompany the image file that tells
GIS software how to properly place and draw it. It is a crucial
step for making aerial and satellite imagery useful for mapping
[7].

Different maps may use different projection systems. There
are three known projections: cylindrical, conical and azimuthal
(planar). A cylindrical projection is analogous to wrapping
a cylinder of paper around the Earth, projecting the Earths
features onto it, and then unwrapping the cylinder. A conical
projection is analogous to wrapping a sheet of paper around the
Earth in a cone. An azimuthal or planar projection is analogous
to touching the Earth with a sheet of flat paper. Any projection
will distort the Earth in some way.

Georeferencing tools contain methods to combine and over-
lay these maps with minimum distortion. The conformal
property when shapes of small features are preserved, or in
other words, scales of the projections in x and y directions
are always equal and equal-area property when shapes are
distorted, but areas measured on the map are always in the
same proportion to areas on the Earths surface [16]].

Using georeferencing methods, data obtained from an ob-
servation or surveying may be given a point of reference
from topographic maps already available. In the case of
projecting the earths curved surface on a flat surface, distortion
of one or more features will occur. The conventions for
locating points on the Earths surface for purposes of nautical
and aeronautical navigation (long distances on small scale
charts) is generally best conducted using latitude and longitude
(spherical coordinates). Locating points on large-scale maps
and for ground navigation is generally best accomplished with
Cartesian-style plane coordinates. Large-scale maps can treat
the Earths surface as a plane, taking the advantage of that
simple geometric shape and mathematics rather than a com-
plex sphere. Properly constructed large-scale maps, such as
topographic maps, take the curvature of the Earth into account.
Simple linear increments (i.e. meters) of plane coordinates
are significantly easier for large-scale map users to handle
accurately at high precision in the field than the more complex
angular increments of latitude and longitude (i.e. degrees).

In general, the georeferencing process consists of the fol-
lowing steps:

1) Identification of appropriate reference data. A georefer-
enced dataset is needed in the desired coordinate system
(preferably the same as a scanned map or digital image)
which will be used to align with and the raster data
(target data). The raster data and the reference data have
to have some features in common that are visible in
both datasets, such as street intersections, hydrographic
features or building outlines.

2) A selection of control points (based on common features)
to link known locations in both datasets.

3) Transformation of the target data to align with the refer-
ence data.

E. Object detection and localization

Deep CNNs are composed of several layers of processing
each containing linear as well as nonlinear operators which
are jointly learnt in an end-to-end way to solve specific tasks
[17], [18]. Specifically, deep CNNs are commonly made up
of convolutional, normalization, pooling, and fully connected
layers. The convolutional layer is the main building block of
the CNN, and its parameters consist of a set of learnable filters.
Each filter is spatially small (along width and height), but
extends through the full depth of the input image. The feature
maps produced via convolving these filters across the input
image are then fed into a non-linear gating function such as
the rectified linear unit (ReLU) [19]. Next, the output of this
activation function can be further subjected to normalization
(i.e., local response normalization) to help in generalization.
The pooling layer takes small rectangular blocks from the
convolutional layer and subsamples it to produce a single
output from each block. The literature conveys several ways to
perform pooling, such as taking the average, the maximum, or
a learned linear combination of the values in the block. This
layer allows control of over-fitting and reduces the amount of
parameters and computations.

For object detection and localization we used pre-trained
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(a) Open Street Map (b) Google Satellite

Fig. 4. Basemap layers examples

Fig. 5. Architecture of pre-trained RCNN network. Reproduced from [21].

Faster R-CNN model [20]. Faster R-CNN is composed of
two modules, first module is deep fully connected convolution
network that proposes regions, and the second one is Fast R-
CNN detector [21]. Using the recently popular terminology of
neural networks with ’attention’ [22] mechanisms, the Region
Proposal Network (RPN) tells the Fast R-CNN module where
to look. The RPN module takes an image as input and proposes
a set of rectangular objects. Figure 5 shows architecture of
RCNN network, which we used for car detection.

1) Dataset preparation: For training pre-trained RCNN
we created training dataset. Training dataset contains 200
images. Initial dataset is collected on the different location
from our testing flight and contained 60 images in resolution
of 3000x4000. Since for input image we needed 333x500 res-
olution, we divided original image into parts (only those were
cars are present). With this approach we managed to get 200
images. Figure 6. shows example images from training dataset.
Collected images were manually labelled with bounding boxes
of cars present on each of them.

Fig. 6. Example images from training dataset
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TABLE III
DETECTION RESULTS

Image Car present TP FP  Pacc Uacc
Image 1 61 49 3 80.32%  83.6%
Image 2 27 20 2 74.07%  81.48%

2) Detection results: To assess the capability of our
methodology for correct identification, we considered the
accuracy measures of the producers and users, where TP are
the true positives (i.e., the number of cars correctly identified),
FP are the false positives (i.e., the number of cars incorrectly
identified), and N is the real number of cars present in the
image. Figure 7. shows detection and localization results.

Fig. 7. Detection and localization results on test images

III. RESULTS

In the research, 125 aerial images of the study area (Split,
Croatia) were acquired with the UAV described in section
II-A1. Fig. 1 depicts proposed model used in the research. The
first step in the experiment was to create a proper flight plan
with the desired side and forward overlap. For the creation
of flight plan, UgCS software was used. Setting appropriate
overlap between the images is very important, because it may
result in an inadequate number of features when matching
between the images when the overlap is too small. Appropriate
overlaps are at least 40%, while 60% overlap was used in the
experiment. The user needs to specify corner points on the
map of the area of interest, and the software will calculate the
optimal flight route.

Image orientation with geotags which, for this case, re-
sulted in low accuracy geolocation, especially regarding height
component. The reason for this inaccuracy is the use of
the onboard GPS of the UAV. However, obtained results are
promising and can be used for mapping applications which
require less than 92 cm of accuracy. Choice of the reference
layer usually depends on the application type: monitoring crop
growth, region surveying, search and rescue, etc. In the case
of planning the search and rescue operations, the different
referenced layer is needed. In this study, we mapped acquired
images on two different layers. The first layer was Google
Satellite layer which can be used for monitoring changes
in the area. The second one was Open Street Map and this
layer was used to see the actual state on the field. Therefore,
the reference image is chosen, usually an image containing
many different objects that can be used as GCPs. After all
aforementioned steps, image georeferencing is started using

TPS transformation [7] that remove distortions from the image.
Finally, the image is ready for mapping.

The georeferencing process was completed using our own
implementation of world file calculator, described in section
II-C ,which was then applied to image mosaic obtained using
the procedure described in section II-B. Our proposed model
model provides a map with good quality and visibility of
its features with objects easily detectable. However, some
minor deformations were detected in the study area. Those
include facade visibility, moving objects and still objects.
However, errors were very small and hardly detectable. Also,
it is obvious that there are differences between two base map
layers. Examples of georeferenced image mosaics overlaid on
top of two base map layers (namely, Open Street Map and
Google Satellite) are shown in Fig. 8.

Our system consists of a ground-based computer, where all
processing is done, and an UAV unit, which is used just for
taking photographs. The system was tested with aerial images
taken using DJI Phantom 3 Professional, with 4000x3000 px
in size and JPG compressed. For mission planning, UgCS
software was used, where it was possible to configure various
details about flight and camera of the UAV unit, the most
important being percentage of overlap between the images in
each direction and flight velocity. The user needs to specify
corner points on the map of the area of interest, and the soft-
ware will calculate the optimal flight route. The UAV camera
can be configured to take images with constant exposure and
focus which is very important in this method because it makes
blending step optional while keeping image usable and nice-
looking without visible edges.

This result shows that proposed model for automatic image
georeferencing has shown great performances for search and
rescue purposes. Objects can be easily detected, which is most
important, also the changes in terrain can be detected in short
time.

IV. CONCLUSION

A novel approach for automatic object detection and lo-
calisation on aerial images that were taken using UAVs was
proposed in the paper. The main idea of our approach was
to create an optimal flight route plan to capture desired
area, make a mosaic of collected images, create world file
transformation and load the mosaic image with the appropriate
world file in GIS software, as well as to detect objects of
interest and their locations in the resulting image and on the
map (i.e. their real-world geographic coordinates).

The results indicate that, by using UAVs, with proper
training and with applying adequate techniques, it is possible
to obtain high-quality photogrammetric products comparable
to ground surveying equipment. Comparing to the time and
costs it would have taken to produce such data using tradi-
tional equipment, UAVs are a more promising alternative for
photogrammetric surveying.

However, the obtained quality of UAV photogrammetric
products depends on many elements which needed to be taken
care of at every step. The flight route planning needs to be
prepared properly so that information about the percentage
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(a) Open Street Map

Fig. 8. Image mosaic mapped and overlaid on top of basemap layers

of side and forward overlap between the images of the study
area is set. Input images for proposed system are given in
sequence and they are organised in a grid-like structure, so
each image overlaps with only a small number of others. Also,
an approximate relationship between the images is known
due to the grid-like organisation and amount of overlap set.
Additionally, there is usually no need for blending the final
image mosaic, since images are in most use cases taken with
the constant exposure and focus.

The final map, which is a product of mapping the mosaic
image from UAV has some errors. These deformations were
caused by lack of images or overlap during image acquisition,
hence the chosen ground control points were not dense enough
to perform the geometric reconstruction of objects.

However, these deformations did not have much impact
in this work and some of them were easily removed using
QGIS plugins. The first step of flight route planning and
image acquisition needs to be done accurately so that the final
result will be high quality. This novel approach has shown
great performances in monitoring terrain abnormalities since
the terrain is sustainable to the weather changes and time of
the year. It can provide a help to search and rescue teams in
their operations since object detection in a high-quality mosaic
image is generally not a difficult problem.
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