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SUMMARY 
 
The theoretical part describes basic power flow methods Gauss-Seidel and 

Newton-Raphson in their practical forms for solving a load flow problem. In 
practical part, IEEE test 24, 48 and 72 node networks are used to compare basic 
methods in terms of calculation speed: on execution of one iteration, entire 
calculation and on given accuracy influence. Also is analyzed optimal acceleration 
factor for Gauss-Seidel method and convergences of methods. On the end, final 
conclusions are obtained after analyzing comparison results. 
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1. INTRODUCTION 
 
Power flow or often called load flow calculation is one of the most important 

calculations in the power system analysis, and the basic calculation for determining 
the state of the power system. Equations describing power system stationary state 
form the system of nonlinear equations. Therefore, to determine the state of the 
system iterative mathematical methods must be applied. Problems that occur 
during calculations of power flow can be divided into the problem of selecting the 
most efficient iterative mathematical calculation method and the problem of 
efficient software program execution of these numerical operations over a limited 
period. Mostly used methods for solving a power flow problem are Gauss-Seidel and 
Newton-Raphson method. Number of university textbooks describe and analyze 
these methods for power flow solution [1-5] and one of the aim of this article is to 
succinctly and concisely present this methods, so it can serve as additional working 
material for power system students. 

Important features of these methods are number of necessary iterations or 
convergence rate to the correct solution, and the credibility of the final result 
(system of nonlinear equations has multiple solutions). Methods are applied on 
IEEE standard test networks with 24, 48 and 72 nodes [6, 7] and compared with 
respect to the necessary time for one iteration step (which depends directly on the 
number of operations performed in iteration), overall calculation time (which along 
with time for one iteration step also depends on number of iteration steps), accuracy 
condition and convergence rate.  

 
 

2. GAUSS – SEIDEL METOD FOR LOAD FLOW CALCULATION 
 
A method for solving nonlinear equations by Gauss-Seidel iteration procedure 

is also known as a sequential shift method. This method is in fact a complement to 
the method for solving the linear equations developed by Gauss. The Gauss method 
calculates all the unknown variables of the equations in the iteration k, and then 
with these new solutions goes to k+1 iteration. Gauss-Seidel's calculate the 
unknown variables in the iterative step k with all the calculated variables to that 
point in that step k and the others from the iterative step k-1.  

Applying Gauss-Seidel method for the solution of power system equations, 
however, faces certain difficulties. Every node in the network is described by four 
quantities: voltage magnitude, voltage phase angle, active and reactive power. In 
every node two of these quantities are known, and two are unknown – and based on 
these – classification of nodes is obtained: 

- load nodes or PQ nodes (active and reactive power are known variables) 
- generator or PV nodes (active power and voltage magnitude are known 

variables) 
- reference node (voltage magnitude and phase angle are known variables) 
There are two variants of Gauss-Seidel method for solving load flow problem: 

variant using power system impedance matrix and variant using power system 
admittance matrix. In the sequence, more used variant with admittance matrix 
(abbreviated GSY) is described and later applied for solving load flow problem. 
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Voltage in node i in kth iteration step 𝑉𝑉�𝑖𝑖
(𝑘𝑘) is calculated according to equation: 

 

𝑉𝑉�𝑖𝑖
(𝑘𝑘) =

1
𝑌𝑌�𝑖𝑖𝑖𝑖
�
𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠ℎ − 𝑗𝑗𝑄𝑄𝑖𝑖𝑠𝑠𝑠𝑠ℎ

𝑉𝑉�𝑖𝑖
(𝑘𝑘−1)∗

−�𝑌𝑌�𝑖𝑖𝑖𝑖𝑉𝑉�𝑗𝑗
(𝑘𝑘)

𝑖𝑖−1

𝑗𝑗=1

− � 𝑌𝑌�𝑖𝑖𝑖𝑖𝑉𝑉�𝑗𝑗
(𝑘𝑘−1)

𝑛𝑛

𝑗𝑗=𝑖𝑖+1

� ,   ∀𝑖𝑖 ≠ 𝑟𝑟𝑟𝑟𝑟𝑟 (1) 

 
where 𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠ℎ, and 𝑄𝑄𝑖𝑖𝑠𝑠𝑠𝑠ℎ are scheduled active and reactive power in specific network 
nodes, and 𝑌𝑌�𝑖𝑖𝑖𝑖, 𝑌𝑌�𝑖𝑖𝑗𝑗 are the elements of network admittance matrix Y. These voltages 
are calculated in every network node, except referent node. At the beginning of 
calculation procedure all voltages are set to initial values equal to 1 p.u. – also 
called flat start. At the end of every iteration step, accuracy of obtained solution is 
checked, i.e. difference of voltages in two consecutive iteration steps must be 
smaller than in advanced given accuracy condition ε: 
 

|𝑉𝑉�𝑖𝑖
(𝑘𝑘) − 𝑉𝑉�𝑖𝑖

(𝑘𝑘−1)| < 𝜀𝜀, ∀𝑖𝑖 ≠ 𝑟𝑟𝑟𝑟𝑟𝑟 (2) 
 
Here, needs to be emphasized that this is simplified description without PV nodes 
in the grid. 

A Gauss-Seidel method for load flow calculation is mostly long-term 
procedure and many iterations steps are necessary for achieving set accuracy which 
is typically in the range from 10-3 to 10-5. It converges with geometrical speed. An 
algorithm can be accelerated by using acceleration factor α between two iteration 
steps for calculating node voltages according to expression:  

 
𝑉𝑉�𝑖𝑖,𝑎𝑎𝑠𝑠𝑠𝑠

(𝑘𝑘) = 𝑉𝑉�𝑖𝑖
(𝑘𝑘−1) + 𝛼𝛼 ∙ �𝑉𝑉�𝑖𝑖

(𝑘𝑘) − 𝑉𝑉�𝑖𝑖
(𝑘𝑘−1)� (3) 

 
Instead of using voltage 𝑉𝑉�𝑖𝑖

(𝑘𝑘) in the kth iteration step, accelerated voltage 𝑉𝑉�𝑖𝑖,𝑎𝑎𝑠𝑠𝑠𝑠
(𝑘𝑘)  is 

used. Attention is necessary for the selection of acceleration factor. Choosing to high 
value can lead to divergence of solution. An optimal acceleration factor depends 
upon network configuration and grid’s operating point. Typical values are in the 
range from 1.3 to 1.8 [3]. 
 

 
3. NEWTON-RAPHSON METHOD FOR LOAD FLOW CALCULATION 

 
The second method which is used for solving the system of nonlinear 

equations is Newton-Raphson method which is based on differential calculus. 
Starting point for load flow calculation using Newton-Raphson method are 
expressions for active and reactive power in grid nodes:  

𝑃𝑃𝑖𝑖
(𝑘𝑘) = �𝑉𝑉𝑖𝑖

(𝑘𝑘)���𝑉𝑉𝑗𝑗
(𝑘𝑘)��𝑌𝑌𝑖𝑖𝑗𝑗� cos�𝛿𝛿𝑖𝑖

(𝑘𝑘) − 𝛿𝛿𝑗𝑗
(𝑘𝑘) − 𝜃𝜃𝑖𝑖𝑗𝑗�

𝑛𝑛
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 ,∀𝑖𝑖 𝑟𝑟 𝑃𝑃𝑉𝑉,𝑃𝑃𝑄𝑄 (4.1) 
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(𝑘𝑘) − 𝛿𝛿𝑗𝑗
(𝑘𝑘) − 𝜃𝜃𝑖𝑖𝑗𝑗�

𝑛𝑛
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,∀𝑖𝑖 𝑟𝑟 𝑃𝑃𝑄𝑄 (4.2) 
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where δ is a phase angle of node voltage and θ is a phase angle of the corresponding 
element of network admittance matrix which is expressed in polar coordinates. In 
every iteration step, using node voltages, active power is calculated for all load and 
generator nodes, which is altogether PV+PQ or n-1 equations, where n is a number 
of network nodes. Reactive power is calculated only in load nodes, which is 
altogether PQ or n-1-g equations, where g is a number of PV nodes. 

Thus calculated active and reactive powers are compared with scheduled or 
known values: 

|𝑃𝑃𝑖𝑖
(𝑘𝑘) − 𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠ℎ| < 𝜀𝜀, ∀𝑖𝑖 𝑟𝑟 𝑃𝑃𝑉𝑉,𝑃𝑃𝑄𝑄 (5.1) 

|𝑄𝑄𝑖𝑖
(𝑘𝑘) − 𝑄𝑄𝑖𝑖𝑠𝑠𝑠𝑠ℎ| < 𝜀𝜀, ∀𝑖𝑖 𝑟𝑟 𝑃𝑃𝑄𝑄 (5.2) 

 
An iterative procedure is finished when given accuracy condition is satisfied. If 
accuracy condition is not satisfied, it is necessary to approach to calculation of 
voltages in the next iteration. This is done by using Jacobian matrix or often called 
just Jacobian. 

Jacobian is a matrix of the first partial derivatives of given expressions for 
active and reactive power in network nodes (5.1 and 5.2): 
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⎢
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⎡
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 (6) 

 
Jacobian matrix in power flow calculation is usually divided into four submatrices: 

[𝐽𝐽] = �𝐽𝐽1 𝐽𝐽2
𝐽𝐽3 𝐽𝐽4

� = �
�
𝜕𝜕𝑃𝑃
𝜕𝜕𝛿𝛿
� �

𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉
�
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𝜕𝜕𝑄𝑄
𝜕𝜕𝛿𝛿
� �

𝜕𝜕𝑄𝑄
𝜕𝜕𝑉𝑉

�
� (7) 

   
so equation (6) in abbreviated form can be written as: 
 

�∆𝑃𝑃∆𝑄𝑄� = �𝐽𝐽1 𝐽𝐽2
𝐽𝐽3 𝐽𝐽4

� × �∆𝛿𝛿∆𝑉𝑉� (8) 
 
Changes of voltage phase angles and magnitudes in the kth iteration are therefore 
calculated as: 

�
∆𝛿𝛿𝑛𝑛−1

(𝑘𝑘)

∆|𝑉𝑉|𝑛𝑛−1−𝑔𝑔
(𝑘𝑘) � = �

𝐽𝐽1
(𝑘𝑘) 𝐽𝐽2

(𝑘𝑘)

𝐽𝐽3
(𝑘𝑘) 𝐽𝐽4

(𝑘𝑘)�
−1

× �
∆𝑃𝑃𝑛𝑛−1

(𝑘𝑘)

∆𝑄𝑄𝑛𝑛−1−𝑔𝑔
(𝑘𝑘) � (9) 
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Finally, voltage phase angles and magnitudes in the next iteration are simply 
calculated: 

|𝑉𝑉𝑖𝑖
(𝑘𝑘+1)�= |𝑉𝑉𝑖𝑖

(𝑘𝑘)� + ∆|𝑉𝑉|𝑖𝑖
(𝑘𝑘)    ∀𝑖𝑖 𝑟𝑟 𝑃𝑃𝑉𝑉,𝑃𝑃𝑄𝑄 (10.1) 

 𝛿𝛿𝑖𝑖
(𝑘𝑘+1) = 𝛿𝛿𝑖𝑖

(𝑘𝑘) + ∆|𝛿𝛿|𝑖𝑖
(𝑘𝑘)    ∀𝑖𝑖 𝑟𝑟 𝑃𝑃𝑄𝑄 (10.2) 

 
Jacobian matrix and its inverse needs to be calculated in every iteration step what 
is for large networks (with several hundred nodes) time consuming process which 
requires large memory allocation. To combat this drawbacks, simplifications of 
Newton-Raphson method are used. 
 
3.1 Fast Newton-Raphson method 

 
In this variant of Newton-Raphson method, Jacobian matrix is only 

calculated in the first iteration step. These leads to the obvious advantage of time 
savings in every subsequent iteration step. On the other side, this can lead to the 
increased number of iteration steps, increased overall time or even divergence of the 
method, but in most cases will not. Jacobian matrix can also be calculated 
afterwards, after several iteration steps, which will decrease divergence probability. 
 
3.2 Decoupled Newton-Raphson method 

 
An influence of small changes of voltage magnitude on nodal active power is 

negligible, as also small changes of voltage phase angles on nodal reactive power. 
Jacobian matrix can therefore be simplified on the following way: 

 

[𝐽𝐽] = �𝐽𝐽1 𝐽𝐽2
𝐽𝐽3 𝐽𝐽4

� = �
�
𝜕𝜕𝑃𝑃
𝜕𝜕𝛿𝛿
� 0

0 �
𝜕𝜕𝑄𝑄
𝜕𝜕𝑉𝑉

�
� (11) 

 
Submatrices 𝐽𝐽2 and 𝐽𝐽3 are zero matrices. Corrections of voltage phase angles and 
magnitudes can now be calculated in two separate matrix equations: 
 

�∆𝛿𝛿𝑛𝑛−1
(𝑘𝑘) � = [𝐽𝐽1]−1 × �∆𝑃𝑃𝑛𝑛−1

(𝑘𝑘) � (12.1) 

�∆|𝑉𝑉|𝑛𝑛−1−𝑔𝑔𝑔𝑔𝑛𝑛
(𝑘𝑘) � = [𝐽𝐽4]−1 × �∆𝑄𝑄𝑛𝑛−1−𝑔𝑔𝑔𝑔𝑛𝑛

(𝑘𝑘) � (12.2) 
 
Main advantage of this method is lower memory allocation during calculation [2]. 
Dimension of matrix which needs to be inverted is halved, but inversion of two 
matrices must be done instead. 

 
3.3 Fast decoupled Newton-Raphson method 

 
Fast decoupled Newton-Raphson method is simply a combination of two 

previously described methods. Jacobian matrix is only calculated in the first 
iteration step, and instead of calculating full Jacobian matrix only 𝐽𝐽1 and 𝐽𝐽4 
submatrices are calculated. 
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4. COMPARISON OF METHODS FOR LOAD FLOW CALCULATIONS 
 
Load flow calculations were executed on IEEE test network with 24 nodes 

[10]. Networks with 48 and 72 nodes are made by expansion of IEEE 24 network 
according to [11]. 

 
4.1 An optimal acceleration factor for Gauss-Seidel method 

 
Acceleration factors were varied in Gauss-Seidel method to obtain the 

minimum number of iterations for given voltage accuracy ε=10-5 p.u. Thus attained 
acceleration factors were used in subsequent calculations and comparisons. On 
Figure 1a are presented results for IEEE 24 grid with x-axis resolution of 0.1 for 
which optimal acceleration factor is equal to 1.7 and on Figure 1b x-axis resolution 
is 0.01 and thus obtained acceleration factor equals to 1.71. For acceleration factor 
1.7 number of iteration steps is 38, while for the acceleration factor 1.71 further 
reduces to 35. For needs of other calculations, acceleration factor 1.7 for IEEE 24 
grid is used. An optimal acceleration factor for 48 and 72 node networks 
acceleration factor 1.8 is obtained and further used. 

 

  
(a) (b) 

Figure 1: Optimal acceleration factor for 24 node network with given voltage 
accuracy 10-5 [p.u.] (a): Number of iterations for acceleration factor resolution of 0.1 

(b): Number of iterations for acceleration factor resolution of 0.01 
 

4.2 Time comparison of one iteration step 
 

Time of one iteration step is an average time of one iteration, obtained as 
overall time divided by the number of iterations. In the average calculation does not 
enter zero iteration because in data analysis was shown data it differs significantly 
from time execution of other iterations. Final iteration is not included also because 
involves additional operations. Time comparison of one iteration step is shown on 
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Figure 2 for all three networks and for Gauss-Seidel and different variants of 
Newton-Raphson method. 
 

 
Figure 2: Time comparison of one iteration step for Gauss-Seidel and different 

variants of Newton-Raphson method 
From the figure it can be seen, obviously, that execution time of one iteration 

rises with number of nodes and more importantly that time execution for Gauss-
Seidel method is smaller than for the full Newton-Raphson method. With increasing 
number of nodes this difference becomes greater. Reason for this lies in the 
calculation of inverse of Jacobian matrix what requires more time. Calculation of 
one iteration of decoupled Newton-Raphson method is obviously smaller than for 
full Newton-Raphson method (instead of calculation of inverse of n-dimension 
matrix, calculation of two n/2-dimension matrices is necessary), but still greater 
than for Gauss-Seidel method. Smaller times of one iteration step in relation to 
Gauss-Seidel method have Fast and Fast-decoupled Newton-Raphson method. 
However, it needs to be emphasized, that in these cases, necessary Jacobian is only 
calculated in the zero iteration which does not enter into average calculation. 
Therefore, time execution with number of nodes rises with slower rate for these two 
methods. 
 
4.3 Time comparison of overall calculation time 

 
In Gauss-Seidel method optimal acceleration factor determined in subsection 

4.1 was used. Voltage εU and power accuracies εPQ were chosen differently in order 
to make methods comparable. According to [4] voltage accuracy εU=10-5 p.u. for 
Gauss-Seidel method corresponds to power accuracy εPQ=10-3 p.u. for Newton-
Raphson method. 

From Figure 3 it can be seen main reason why in power flow calculations 
Newton-Raphson method is mostly used. Although time of one iteration is smaller 
for Gauss-Seidel method, overall time is much greater because of necessary number 
of iteration steps to reach required accuracy. This is especially emphasized in the 
grids with higher number of nodes where number of iterations for Gauss-Seidel 
method increases, while for the Newton-Raphson method remains nearly the same. 
Overall execution time for Fast and Fast-Decoupled Newton-Raphson is the least, 
but interestingly overall execution time for Decoupled Newton-Raphson is greater 
than for full Newton-Raphson method. A cause again lies in the greater number of 
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iterations. Nevertheless, decoupled Newton-Raphson has some other advantages, 
such as necessary memory demand. 

 

 
Figure 3: Time comparison of overall calculation time for Gauss-Seidel and different 

variants of Newton-Raphson method 
 
4.4 Convergence comparison 

 

 
Figure 4: Convergence comparison for Gauss-Seidel and Newton-Raphson method 
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more calculations – of active and reactive power – were performed in each iteration 
step in Gauss-Seidel method. Given accuracy for Newton-Raphson is obtained in 
four iterations, and for Gauss-Seidel in 35 iterations. On Figure 4 quadratic 
convergence of Newton-Raphson and geometric convergence of Gauss-Seidel can be 
observed. It is interesting to notice that Gauss-Seidel at some point starts to 
diverge, but soon after takes the right direction. One of the possible reasons for this 
is using acceleration factors. While approaching correct solution, acceleration 
factors could run away voltage iterations from the correct solution. 
 
4.5 Calculation time dependency on given accuracy 

 
For both methods calculations for given power accuracy in the range from 10-1 

to 10-4 p.u. were conducted on network with 24 nodes. 

 
Figure 5: Calculation time dependency on given accuracy 

From the Figure 5 it can be seen that overall calculation time for Gauss-Seidel 
method increases linearly with increasing given accuracy, while for the Newton-
Raphson method it does not have large influence. With increasing accuracy Gauss-
Seidel method requires greater number of iterations, i.e. converges more slowly 
which increases overall computation time. On the other side, Newton-Raphson 
reaches greater accuracy very fast. 
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(theoretically, in case of a direct short-circuit, node voltage becomes zero). This also 
has great impact on power flow calculation. A short-circuit was simulated on the 
IEEE 24 grid by changing corresponding diagonal element of admittance matrix. 
Conditions on short-circuit location are very low impedance, or respectively, very 
high admittance.  

Short-circuit was simulated in node 20 and results of calculations are shown 
in Figure 6. A Newton-Raphson method has not reached final solution (it diverged – 
mark NR: U20=1 p.u. on the Figure 6), while the Gauss-Seidel has converged to the 
solution. Improvements can be made during initialization of voltage variables by 
setting voltage of faulted node closer to zero. When setting faulted node voltage to 
0.1 p.u., which corresponds to value obtained by Gauss-Seidel method, Newton-
Raphson also converged to the correct solution (solid line on Figure 6). It can be 
concluded that Gauss-Seidel method converges better to solution when initial 
variable values are further from the correct solution. Therefore, often in power flow 
calculations, Gauss-Seidel and Newton-Raphson are used together: Gauss-Seidel in 
the first several iterations – to ensure convergence of iteration process, and Newton-
Raphson to the end of calculation – to achieve greater speed. 

 
Figure 6: Convergence of a Gauss-Seidel and Newton-Raphson method in case of a 

short-circuit occurrence 
 
 

5. CONCLUSION 
 
For networks with small number of nodes, iteration and total calculation 

times are in comparable domain, and to make specific decision about which method 
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of Gauss-Seidel method is its simpler performance, as well as the lower requirement 
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Newton-Raphson method converges squarely in the total time of the calculation, 
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and hence overall computation time is reduced. However, in specific cases, like 
short-circuit simulations, Gauss-Seidel nevertheless benefits when initial conditions 
are far from finite solution. On contrary, a Newton-Raphson method is highly 
dependent on initial input conditions. Simplified Newton-Raphson methods can also 
achieve faster times of total calculation, and by increasing the number of nodes, 
they have a significant advantage over the Gauss-Seidel method. 

In real-world power management, the choice of method will depend on the 
specificity of the problem being analyzed, as well as on the importance and 
responsibility behind the results of the method. Today, the importance of accuracy 
and speed of achieving results plays a major role in the emergence of new, dynamic 
participants in the power grid. Smart grids, electricity market, energy efficiency 
systems are just some of the areas where it is important to operate and make 
decisions with the results obtained. 
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