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ABSTRACT
In this paper we propose an estimation procedure which uses joint 
data on the underlying asset and option prices to extract market 
prices of return and volatility risks in the context of the G.A.R.C.H. 
diffusion model. The procedure is flexible and simple to implement. 
Firstly, a quasi-closed form pricing formula for European options in 
the G.A.R.C.H. diffusion model is derived. This result greatly eases the 
computational burden for computing option prices, and well suited 
for our model estimation. Then, based upon the joint data, we develop 
an efficient importance sampling-based maximum likelihood (E.I.S.-
M.L.) estimation method for the objective and risk-neutral parameters 
of the G.A.R.C.H. diffusion model and a particle filter algorithm for 
latent state variable. Hence, this allows us to infer the market prices 
of risks that link the objective measure and the risk-neutral measure. 
Finally, we illustrate our approach using actual data on the Hang Seng 
Index (H.S.I.) and index warrant prices. The results show that both 
the return and volatility risks are priced by the market. Moreover, 
an option pricing study demonstrates that the market price of the 
volatility risk plays an important role in fitting option prices.

1.  Introduction

According to modern asset pricing theory, the value of any contingent claim can be com-
puted as the conditional expectation under the risk-neutral measure of the discounted future 
cash flows. Thus, the valuation of any contingent claim, like a European option, involves a 
change of the measure, from the objective or real-world measure to the risk-neutral measure. 
However, the characterisation of the risk-neutral measure is intimately related to the market 
prices of risks or risk premiums for return and volatility risks, which in turn are determined 
by the model one adopts to describe the dynamics of the underlying asset returns.

In continuous-time modelling in finance, stochastic volatility (S.V.) models, such as the 
models of Hull and White (1987), Scott (1987), Stein and Stein (1991), Heston (1993), and 
many others, have attracted a great deal of attention, as they have captured successfully 
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many of the stylised facts of financial asset returns, such as time-varying volatility, vola-
tility clustering, and leverage effect. Among these models, the square-root S.V. model of 
Heston (1993) which belongs to the general class of affine models seems to be the most 
popular model. The main reason for this is because the affine S.V. model of Heston (1993) 
provides computational tractability that leads to closed-form solutions for option pricing. 
Unfortunately, there is a growing literature that provides empirical evidence against affine 
S.V. models. In particular, a number of studies show that Heston’s (1993) square-root model 
is mis-specified and cannot capture stylised facts of volatility dynamics (see e.g., Aït-Sahalia 
& Kimmel, 2007; Andersen, Benzoni, & Lund, 2002; Chacko & Viceira, 2003; Chernov, 
Gallant, Ghysels, & Tauchen, 2003; Jones, 2003, among many others).

Recently, non-affine S.V. models, such as generalised autoregressive conditional het-
eroskedasticity (G.A.R.C.H.) or general constant elasticity of variance (C.E.V.)-type diffu-
sion models, have been found to capture the dynamics of the underlying asset prices much 
better than the affine S.V. model of Heston (1993) (Aït-Sahalia & Kimmel, 2007; Jones, 2003). 
In particular, the G.A.R.C.H. diffusion model of non-affine specification of Nelson (1990) 
has attracted a great deal of attention in recent years in the finance literature. The model is 
closely related to the discrete-time G.A.R.C.H. model. In fact, Nelson (1990) proved that 
the discrete-time G.A.R.C.H. model converges in distribution to the G.A.R.C.H. diffusion 
model as the sampling interval tends to zero. In recent years, a number of papers have pro-
vided strong evidence for the G.A.R.C.H. diffusion model not only for underlying asset but 
also for option data (e.g., Chourdakis & Dotsis, 2011; Christoffersen, Jacobs, & Mimouni, 
2006, 2010; Kaeck & Alexander, 2012, 2013; Wu, Ma, & Wang, 2012). Many studies argue 
that the mis-specification of the affine S.V. model of Heston (1993) may be due to the omis-
sion of jumps in price and/or volatility (e.g., Bates, 1996; Broadie, Chernov, & Johannes, 
2007; Eraker, 2004; Eraker, Johannes, & Polson, 2003; Pan, 2002). However, recent studies, 
such as Kaeck and Alexander (2012, 2013), show that the simple G.A.R.C.H. diffusion model 
without jumps outperforms even jump extensions of affine specifications, and can provide 
realistic volatility dynamics and good option pricing performance.

In this paper, we describe and implement an estimation procedure for estimating the 
G.A.R.C.H. diffusion model using joint data on the underlying asset and option prices.1 The 
fundamental advantage of this approach is that it is able to estimate jointly the objective and 
risk-neutral parameters of the model, as well as the market prices of return and volatility 
risks that govern the change of measure in a way that maintains the internal consistency 
of the objective and risk-neutral measures.2 There is a large and growing literature on the 
use of joint data on the underlying asset and option prices for the joint estimation of the 
model in recent years (e.g., Bollerslev, Gibson, & Zhou, 2011; Cheng, Gallant, Ji, & Lee, 
2008; Chernov & Ghysels, 2000; Eraker, 2004; Ferriani & Pastorello, 2012; Garcia, Lewis, 
Pastorello, & Renault, 2011; Johannes, Polson, & Stroud, 2009; Jones, 2003; Pan, 2002; 
Polson & Stroud, 2003).

However, most of these papers employ affine S.V. models. The direct calibration of non- 
affine S.V. models to joint data on the underlying asset and option prices is very difficult 
to handle because closed-form expressions for option prices are unavailable, and all of the 
calculations would have to resort to simulation methods or numerical methods on integral 
differential equations. These procedures are computationally intensive and, when large 
trading books have to be quickly and frequently evaluated, are not practically feasible. As 
a consequence, to date, there is much less work on the non-affine specifications, including 
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the G.A.R.C.H. diffusion model in the option pricing literature, let alone calibration of 
the models to joint data. In order to circumvent this problem, we derive in this paper a 
quasi-closed form solution for option prices in the G.A.R.C.H. diffusion model. A study 
closely related to this is Barone-Adesi, Rasmussen, and Ravanelli (2005), who derive an 
analytical approximate solution for European option prices in the G.A.R.C.H. diffusion 
model. However, their approximate solution is available only when the price and volatility 
processes are uncorrelated, while we have extended our solution to the case where the cor-
relation between price and volatility is different from zero. In fact, the inclusion of a non-
zero correlation between price and volatility is important. It captures the so-called ‘leverage 
effect’, a well-known empirical fact that exists in many financial time series (Black, 1976; 
Christie, 1982). Monte Carlo simulations demonstrate that our solution is quite accurate. 
This greatly reduces the computational time for the pricing of options in the G.A.R.C.H. 
diffusion model, and is well suited for our model estimation.

The lack of a closed-form expression of the likelihood function makes the estimation of 
S.V. models a challenging topic in the empirical finance literature. The main difficulty lies in 
that the volatility is latent and needs to be integrated out from the joint density function of 
observations and latent state variable to evaluate the likelihood function. In the last decade, 
many estimation methods have been proposed for estimating S.V. models, including quasi 
maximum likelihood (Harvey, Ruiz, & Shephard, 1994), empirical characteristic function 
(Singleton, 2001), generalised method of moments (G.M.M.) (Chacko & Viceira, 2003), 
Markov chain Monte Carlo (M.C.M.C.) (Eraker, 2001) and simulated maximum likelihood 
(Durham, 2006, 2007; Jungbacker & Koopman, 2007; Liesenfeld & Richard, 2003, 2006), etc. 
Adding option data for estimating S.V. models creates further a significant computational 
challenge. Several procedures which use joint data on the underlying asset and option prices 
for estimating the parameters of S.V. models under both objective and risk-neutral meas-
ures have been proposed, such as the efficient method of moments (E.M.M.) (Chernov & 
Ghysels, 2000), G.M.M. (Bollerslev et al., 2011; Garcia et al., 2011; Pan, 2002) and M.C.M.C. 
(Cheng et al., 2008; Eraker, 2004; Jones, 2003). The estimation procedure we adopt in this 
paper is based on the maximum likelihood (M.L.) method where the likelihood function is 
evaluated using the efficient importance sampling (E.I.S.) technique of Richard and Zhang 
(2007). The E.I.S.-based M.L. (E.I.S.-M.L.) method is easy to implement and enables us to 
estimate the parameters of the G.A.R.C.H. diffusion model precisely. Since knowledge of 
the estimated model parameters is not sufficient to compute an option price or market price 
of risk, we also have to know the latent spot volatility. We develop in this paper a particle 
filter algorithm for extracting latent volatility using joint data.

Recently, Ferriani and Pastorello (2012) adopted a very similar approach to ours, but con-
sidered the log volatility and C.E.V. models of non-affine specifications. However, the models 
they considered are rejected by the actual data on the S&P 500 index and index option prices. 
In addition, the likelihood function in Ferriani and Pastorello (2012) is evaluated using a 
Laplace importance sampling (L.I.S.) method combined with a modified Brownian bridge 
strategy. The L.I.S. is a local Gaussian approximation scheme to the likelihood function. 
Also, the method requires complicated computation and is time-consuming. In contrast, the 
method of this paper relies on the E.I.S. technique, which is a global approximation scheme 
to evaluate the likelihood function. As such, the method is efficient and simple to implement.

Our paper is also closely related to the research of Wu, Yang, Ma, and Zhao (2014), 
who consider the problem of option pricing under the G.A.R.C.H. diffusion model. They 
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estimated the model parameters using the E.I.S.-M.L. method, relying exclusively on the 
underlying asset prices. Our strategy differs from their approach as we take advantage of the 
additional information provided by the option prices. With the single underlying asset prices 
data, only objective parameters can be obtained, hence the market prices of risks that link 
the objective and risk-neutral measures cannot be identified. Our paper contributes to the 
literature by using joint data on the underlying asset and option prices within the E.I.S.-M.L. 
estimation framework of the popular G.A.R.C.H. diffusion model. The proposed approach 
is a more sophisticated updating procedure, which is able to estimate jointly the objective 
and risk-neutral parameters of the model, as well as the market prices of risks. Moreover, 
many studies have provided evidence that the use of option prices can lead to more accu-
rate estimates of model parameters and volatility (see, e.g., Cheng et al., 2008; Chernov & 
Ghysels, 2000; Eraker, 2004; Johannes et al., 2009; Polson & Stroud, 2003). Thus, it is also 
advantageous to estimate the model parameters and volatility using additional option price 
information so that more precise parameter and volatility estimates can be obtained.

In order to illustrate our estimation procedure empirically, we apply the method to 
estimate the market prices of return and volatility risks using actual data on the Hang Seng 
Index (H.S.I.) and index warrant prices. We find that both the return and volatility risks 
are priced by the market. Moreover, an option pricing study demonstrates that the market 
price of the volatility risk plays a very important role in fitting option prices.

The rest of the paper is organised as follows. In Section 2, we propose under the objective 
probability measure the G.A.R.C.H. diffusion model, and proceed to derive the correspond-
ing system under the risk-neutral measure as well as the market prices of risks. Also, a qua-
si-closed form pricing formula for European options in the G.A.R.C.H. diffusion model is 
derived. In Section 3, we detail the E.I.S.-M.L. and particle filter methods for the parameter 
and latent state variable estimation of the G.A.R.C.H. diffusion model. Section 4 illustrates 
an application of our approach to actual data on the H.S.I. index and index warrant prices, 
and we conclude in Section 5. Technical details are provided in appendices to the paper.

2.  Model and pricing

We adopt the G.A.R.C.H. diffusion model of non-affine specification of Nelson (1990) to 
characterise the dynamics of the underlying asset prices, and form the basis for the option 
pricing analysis. We describe the model under the objective measure in Section 2.1, and 
derive the corresponding system under the risk-neutral measure as well as the market 
prices of risks in Section 2.2. A description of option pricing under this dynamic setting 
is presented in Section 2.3. The explicit expressions for the characteristic functions of the 
G.A.R.C.H. diffusion model are given in Appendix A.

2.1.  The G.A.R.C.H. diffusion model

In the G.A.R.C.H. diffusion model, the dynamics under the objective measure of the under-
lying asset price, St, and the associated volatility, Vt, are assumed to be given by

 

 

(1)dSt = �Stdt +
√
VtStdW1t

(2)dVt = (� − �Vt)dt + �Vt[�dW1t +

√
1 − �2dW2t]
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where μ is the mean of the underlying asset returns, α/β is the long-run mean of volatility, 
β is the mean reversion rate of volatility, σ is the volatility of volatility, and Wt = [W1t, W2t]

T 
is a standard Brownian motion.

Equations (1) and (2) imply that Corrt(dSt∕St , dVt) = �. The correlation parameter, ρ, 
is typically found to be negative, which captures the well known ‘leverage effect’ originated 
by Black (1976) and Christie (1982).

2.2.  Risk-neutral measure and market prices of risks

In order to derive the dynamics of the underlying asset returns under the risk-neutral meas-
ure, we need to specify the market prices of risks. Following Heston (1993) and Chernov and 
Ghysels (2000), we assign the market prices of risks so that the dynamics of the underlying 
asset returns have the same form under the risk-neutral measures as under the objective 
measure, and the dynamics of (St, Vt) under the risk-neutral measure are of the form

 

 

where r is the risk-free interest rate, W∗
t = [W∗

1t ,W
∗
2t]

T is a standard Brownian motion under 
the risk-neutral measure.

To change the objective measure to the risk-neutral one, we need to use Girsanov’s the-
orem. Specifically, let us consider the Radon–Nikodym derivative of the objective measure 
with respect to the risk-neutral one, which is

 

where �t = (�1t , �2t)
� is the vector of the market prices of risks, return and volatility risks, 

respectively. When we know the parameter values under both the objective and risk-neutral 
measures, we can obtain the market prices of risks, �t. In fact, by Girsanov’s theorem we have

 

 

Therefore,
 

 

(3)dSt = rStdt +
√
VtStdW

∗
1t

(4)dVt = (�∗ − �∗Vt)dt + �Vt[�dW
∗
1t +

√
1 − �2dW∗

2t]

(5)�t = exp

{
−
1

2 ∫
t

0

(�2
1u + �2

2u)du − ∫
t

0

�1udW1u − ∫
t

0

�2udW2u

}

(6)�St = rSt + �1t

√
VtSt

(7)� − �Vt = �∗ − �∗Vt + �Vt(��1t +

√
1 − �2�2t)

(8)�1t =
� − r
√
Vt

(9)�2t =
c1
Vt

−
c2√
Vt

− c3
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where

2.3.  Option pricing

Using the well-established theory of arbitrage pricing, the price of a call option at time t, 
with time to maturity τ and strike K can be computed as

 

where T = t + τ, E∗[⋅|t] is the conditional expectation with respect to the risk-neutral 
measure conditional to the information set t.

According to Heston (1993), there exists a pair of probabilities Πj, j = 1, 2, such that the 
call option price C(t, τ, K, St, Vt) is given by

 

Specifically, �j(t, � , St ,Vt) = Prj(ln ST ≥ lnK|St ,Vt), j = 1, 2, where these probabilities can 
be determined by inverting the characteristic functions fj, j = 1, 2, that is

 

where Re[⋅] denotes the real component of a complex number.
However, the G.A.R.C.H. diffusion model belongs to the class of non-affine models, and 

the characteristic functions fj, j = 1, 2 are unavailable in closed form. In fact, we compute 
some approximations of fj,  j = 1, 2. Indeed, we utilise a perturbation method to derive 
approximate solutions, like Chacko and Viceira (2003) and Wu et al. (2012) have done 
in another setting. The explicit expressions of the approximate characteristic functions 
fj, j = 1, 2 are given in Appendix A.

3.  Estimation

In this section, we focus on how to estimate the objective and risk-neutral parameters and 
unobservable state variables of the G.A.R.C.H. diffusion model using the joint data on the 
underlying asset and option prices. First, we describe how to estimate jointly the objective 
and risk-neutral parameters using E.I.S.-M.L. method. Then we illustrate how to estimate 
the unobservable state variables using a particle filter algorithm.

3.1.  M.L. estimation

First, we take the stabilising transformation st = ln St, ht = ln Vt. By Itô’s lemma, we have
 

 

c1 =
� − �∗

�
√
1 − �2

, c2 =
�(� − r)
√
1 − �2

, c3 =
� − �∗

�
√
1 − �2

(10)C(t, � ,K , St ,Vt) = e−r�E∗[max(ST − K , 0)|t]

(11)C(t, � ,K , St ,Vt) = StΠ1(t, � , St ,Vt) − Ke−r�Π2(t, � , St ,Vt)

(12)Πj(t, � , St ,Vt) =
1

2
+

1

� ∫
∞

0

Re

[
e−i� lnK fj(t, � , St ,Vt ;�)

i�

]
d�, j = 1, 2

(13)dst = (� −
1

2
eht )dt + eht∕2dW1t

(14)dht = (�e−ht − � −
1

2
�2)dt + �[�dW1t +

√
1 − �2dW2t]
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In the empirical literature, the above continuous-time model must be discretised to facilitate 
the parameter estimation. A simple Euler discretisation leads to the following discrete-time 
stochastic processes:

 

 

where xt = st − st-1 is the continuously compounded return of the underlying asset, Δ is the 
time interval,3 �t = (W1t −W1t−1)∕

√
�, �t = (W2t −W2t−1)∕

√
�. It can be shown that ɛt 

and ηt are independent and identically distributed (i.i.d.) standard normal random variables 
and uncorrelated.

In order to perform the joint estimation of objective and risk-neutral parameters, we 
consider the additional information provided by the option prices. As is common in deriv-
ative pricing applications, the distribution of option prices is determined by both an option 
pricing formula, which is (11) in our case, and an assumption of pricing errors (Cheng 
et al., 2008; Eraker, 2004; Jacquier & Jarrow, 2000; Polson & Stroud, 2003). The pricing 
errors are not only required to permit application of likelihood-based methods but are also 
plausible reflections of market microstructure effects (e.g., price discreteness, infrequent 
trading, bid-ask bounce). We assume an error structure for the pricing error to express the 
observed option price as follows:

 

where νt is a standard normal random variable and is independent of ɛt and ηt, and the 
nonlinear pricing function C(t, τ, K, St, Vt) has been given earlier.

It is clear that Equations (15)–(17) constitute a nonlinear and non-Gaussian state-space 
model with volatility as the unobservable state variable. To estimate this model using the 
M.L. method, we need to integrate out the unobservable state variables from the joint density 
of the observations and unobservable state variables and derive an explicit expression for 
the marginal likelihood of observations.

Let X  =  {x1,  …,  xT} be a vector of the observed underlying asset returns, let 
Y = { ln C1, …, ln CT} be a vector of the observed option prices and let H = {h1, …, hT} be 
a vector of the unobservable state variables which are the log volatilities in our case. The 
likelihood function of the observed samples of option prices and the underlying asset returns 
can in principle be expressed as

 

where Θ = (μ, α, β, σ, ρ, α*, β*, δ)′ is the parameter vector, which consists of the objective 
and risk-neutral parameters (μ, α, β, σ, ρ, α*, β*)′ of the G.A.R.C.H. diffusion model and 
the parameter δ in measurement Equation (17), h0 is the initial log volatility which we will 
estimate along with parameter vector Θ, and p(Y, X, H; Θ, h0) is the joint density of Y, X 
and H, which can be written as

 

(15)xt = (� −
1

2
eht−1)Δ + eht−1∕2

√
Δ�t

(16)ht = ht−1 + (�e−ht−1 − � −
1

2
�2)Δ + �

√
Δ[��t +

�
(1 − �2)�t]

(17)lnCt = lnC(t, � ,K , St ,Vt) + ��t

(18)(Y ,X;Θ, h0) = � p(Y ,X,H ;Θ, h0)dH

(19)p(Y ,X,H ;Θ, h0) = p(Y |X,H ,Θ)p(X,H ;Θ, h0)
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and
 

 

where p(  ln  Ct|xt,  ht,  Θ) is the normal density of ln  Ct with the conditional mean 
ln C(t, τ, K, St, Vt) and the conditional variance δ2, p(xt|ht-1, Θ) is the normal density of xt 
with the conditional mean (� −

1

2
eht−1)� and the conditional variance eht−1� and p(ht|xt, ht-1,  

Θ) is the normal density of ht with the conditional mean μt and the conditional variance 
�2
t  which is given by

 

 

Given the likelihood function in Equation (18), the M.L. estimates of the model parameters 
can be obtained by

Under suitable regularity conditions, the M.L. estimator (𝛩̂, ĥ0) is consistent and asymp-
totically normal.

3.2.  E.I.S. to likelihood approximation

Since a typical financial time series has at least several hundreds of observations, the high-di-
mensional integral in the right hand of Equation (18) rarely has analytical expression. 
Meanwhile, using traditional numerical integration methods to approximate the integral 
is also infeasible. In order to overcome this problem, a plausible solution is to use Monte 
Carlo simulation methods.

From Equations (19)–(21), the likelihood function in Equation (18) can be rewritten as
 

Let h(s)t  be drawn independently from the so-called natural importance sampling (N.I.S.) 
density p(ht|xt , h

(s)

t−1
,Θ), then the corresponding N.I.S.-Monte Carlo estimate is given by

 

(20)p(Y |X,H ,Θ) =

T∏

t=1

p(lnCt|xt , ht ,Θ)

(21)p(X,H ;Θ, h0) =

T∏

t=1

p(xt|ht−1,Θ)p(ht|xt , ht−1,Θ)

(22)�t = ht−1 + (�e−ht−1 − � −
1

2
�2)Δ + ��

xt − (� −
1

2
eht−1)Δ

eht−1∕2

(23)�2
t = �2(1 − �2)Δ

(Θ̂, ĥ0) = argmax
(Θ,h0)

ln(Y ,X;Θ, h0)

(24)(Y ,X;Θ, h0) = �
T∏

t=1

p(lnCt|xt , ht ,Θ)p(xt|ht−1,Θ)p(ht|xt , ht−1,Θ)dH

(25)̃(Y ,X;Θ, h0) = 1

S

S∑

s=1

[
T∏

t=1

p(lnCt|xt , h
(s)
t ,Θ)p(xt|h

(s)

t−1
,Θ)

]
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A primary advantage of the N.I.S. is that it is intuitive and simple to implement. However, 
it turns out that the N.I.S. estimate is highly inefficient since its sampling variance rapidly 
increases with the sample size T. Thus this estimate cannot be relied on practically. To 
overcome this drawback of the N.I.S., we adopt the E.I.S. proposed by Richard and Zhang 
(2007). Based upon this Monte Carlo integration technique, high-dimensional integral can 
be evaluated quickly with high numerical accuracy.

The E.I.S. requires an auxiliary parametric importance sampler from which samples 
can be obtained efficiently. Let {mt(ht|xt , ht−1, at)}

T
t=1 be an auxiliary sampler (i.e., E.I.S. 

sampler) indexed by the auxiliary parameter {at}
T
t=1. The likelihood function in Equation 

(24) is rewritten as
 

The corresponding E.I.S.-Monte Carlo estimate is then given by
 

where h(s)t  is drawn independently from the E.I.S. density mt(ht|xt , h
(s)

t−1
, at).

Following Richard and Zhang (2007), we write E.I.S. density mt as
 

 

where kt(ht|xt, ht-1, at) is the density kernel. For the state-space model in Equations (15)–
(17), we set

 

where at = (a1,t, a2,t), and the E.I.S. distribution and the explicit expression for ln χt are given 
in Appendix B.

From (28) and (30), we have
 

(26)(Y ,X;Θ, h0) = �
T∏

t=1

p(lnCt|xt , ht ,Θ)p(xt|ht−1,Θ)p(ht|xt , ht−1,Θ)
mt(ht|xt , ht−1, at)

×

T∏

t=1

mt(ht|xt , ht−1, at)dH

(27)̂(Y ,X;Θ, h0) = 1

S

S∑

s=1

[
T∏

t=1

p(lnCt|xt , h
(s)
t ,Θ)p(xt|h

(s)

t−1
,Θ)p(h(s)t |xt , h

(s)

t−1
,Θ)

mt(h
(s)
t |xt , h

(s)

t−1
, at)

]

(28)mt(ht|xt , ht−1, at) =
kt(ht|xt , ht−1, at)
�t(xt , ht−1, at)

(29)�t(xt , ht−1, at) = ∫ kt(ht|xt , ht−1, at)dht

(30)kt(ht|xt , ht−1, at) = p(ht|xt , ht−1,Θ) exp{a1,tht + a2,th
2
t }

(31)

T∏

t=1

p(lnCt|xt , ht ,Θ)p(xt|ht−1,Θ)p(ht|xt , ht−1,Θ)
mt(ht|xt , ht−1, at)

=

T∏

t=1

p(lnCt|xt , ht ,Θ)p(xt|ht−1,Θ)p(ht|xt , ht−1,Θ)
kt(ht|xt , ht−1, at)∕�t(xt , ht−1, at)

=

T∏

t=1

p(lnCt|xt , ht ,Θ)p(xt|ht−1,Θ)�t(xt , ht−1, at)

exp{a1,tht + a2,th
2
t }

= p(x1|h0,Θ)�1(x1, h0, a1) ×

T∏

t=1

p(lnCt|xt , ht ,Θ)p(xt+1|ht ,Θ)�t+1(xt+1, ht , at+1)

exp{a1,tht + a2,th
2
t }
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where p(xT+1|hT, Θ) ≡ χT+1(xT+1, hT, aT+1) ≡ 1. In order to minimise the E.I.S.-Monte Carlo 
variance of Equation (27), we set up the following minimisation problem:
 

where ct is estimated along with the auxiliary parameter at.
It is clear that the minimisation problem described in Equation (32) is equivalent to the 

following auxiliary linear regression:
 

where u(s)
t  is the error term. Since χt+1 depends on at+1, the coefficients are calculated recur-

sively, proceeding from t = T, T − 1, ..., 1.
In summary, it is possible to compute the likelihood function of the state-space model 

in Equations (15)–(17) for given the parameter vector (Θ, h0), based upon the following 
E.I.S. algorithm:

Step 1: Draw initial samples {h(s)
1
,… , h(s)

T
}Ss=1 from the N.I.S. sampler {p(ht|xt , ht−1,�)}Tt=1.

Step 2: Calculate ât by estimating the regression model (33), working backwards from 
t = T to t = 1.

Step 3: Draw new samples {h(s)
1
,… , h(s)

T
}Ss=1 from the E.I.S. sampler {mt(ht|xt , ht−1, ât)}

T
t=1.

Step 4: Repeat Step 2 and Step 3, until a reasonable convergence of the parameters ât is 
obtained.

Step 5: Calculate the likelihood approximation using 
�(Y ,X;Θ, h0) = 1

S

S∑
s=1

�
T∏
t=1

p(lnCt �xt ,h
(s)
t ,Θ)p(xt �h

(s)

t−1
,Θ)p(h(s)t �xt ,h

(s)

t−1
,Θ)

mt (h
(s)
t �xt ,h

(s)

t−1
,ât )

�

Following Richard and Zhang (2007), a same set of Common Random Numbers (C.R.N.s) 
is used to obtain the draws from the E.I.S. sampler in order to ensure the likelihood approxi-
mation L̂ be a smooth function of the parameter vector (Θ, h0). The convergence of the E.I.S. 
algorithm is discussed in Koopman, Shephard, and Creal (2009). Typically, a reasonable 
convergence can be obtained after 3–5 iterations.

3.3.  Particle filter

Given the parameter vector (Θ, h0), we adopt the particle filter method of Gordon, Salmond, 
and Smith (1993) to obtain the filtered estimates of the latent state variable. The particle 
filter is a sequential Monte Carlo technique using simulated samples to generate prediction 
and filtering distributions for general nonlinear and non-Gaussian state-space models. It 
is flexible and easy to implement.

For our practical filtering problem, we are interested in the filtered log volatility, E[ht|t], 
where t denotes the information set generated by the joint observations {(C1, x1), …, (Ct, xt)}. 
Suppose that p(ht−1|t−1) is known and we want to obtain p(ht|t). First, notice that

(32)
(ât(Θ), ĉt(Θ)) = arg min

(at ,ct )

S∑

s=1

{ln
[
p(lnCt|xt , h

(s)
t ,Θ)p(xt+1|h

(s)
t ,Θ)𝜒t+1(xt+1, h

(s)
t , ât+1)

]

−ct − a1,th
(s)
t + a2,t(h

(s)
t )2}2

(33)
ln p(lnCt|xt , h

(s)
t ,Θ) + ln p(xt+1|h

(s)
t ,Θ) + ln𝜒t+1(xt+1, h

(s)
t , ât+1)

= ct + a1,th
(s)
t + a2,t(h

(s)
t )2 + u(s)

t , s = 1,… , S



ECONOMIC RESEARCH-EKONOMSKA ISTRAŽIVANJA﻿    25

 

Also, from p(lnCt , xt , ht , ht−1|t−1) = p(ht , ht−1|t)p(lnCt , xt|t−1), we get
 

where p(lnCt , xt|t−1) = � � p(lnCt|xt , ht ,�)p(xt|ht , ht−1,�)p(ht|ht−1,�)p(ht−1|t−1)dht−1dht

and p(xt|ht,  ht-1,  Θ) is the normal density of xt with the conditional mean 
(� −

1

2
eht−1)� + �eht−1∕2[ht − ht−1 − (�e−ht−1 − � −

1

2
�2)�]∕� and the conditional vari-

ance eht−1(1 − �2)� and p(ht|ht-1, Θ) is the normal density of ht with the conditional mean 
ht−1 + (�e−ht−1 − � −

1

2
�2)� and the conditional variance σ2Δ.

Plugging (35) into (34), we get
 

In summary, the particle filter algorithm for estimating the latent log volatility is as follows:
Step 1: Given a set of random samples {h(1)

t−1
,… , h(N)

t−1
} from the probability density func-

tion (PDF) p(ht−1|t−1).
Step 2: Draw samples {h(1∗)t ,… , h(N∗)

t } from the P.D.F. p(ht|ht-1, Θ).
Step 3: Compute the normalised weight for each sample 

qj =
p(lnCt �xt ,h

(j∗)

t ,Θ)p(xt �h
(j∗)

t ,h
(j)

t−1
,Θ)

N∑
i=1

p(lnCt �xt ,h
(i∗)
t ,Θ)p(xt �h

(i∗)
t ,h(i)

t−1
,Θ)

, j = 1,… ,N

Thus define a discrete distribution over {h(1∗)t ,… , h(N∗)

t }, with probability mass {q1, …, qN}.
Step 4: Resample N times from the discrete distribution defined above to generate sam-

ples {h(1)t ,… , h(N)

t }.

4.  Empirical application

Unlike many previous studies that have focused mainly on the S&P500 index and index 
option, in this section we apply the approach developed to the H.S.I. index and index war-
rant data on the Hong Kong Stock Exchange.4 The H.S.I. index warrant was chosen over 
the H.S.I. index option because the index warrant was more actively traded than the index 
option in the Hong Kong stock market.

4.1.  The data

In the empirical analysis we use daily data on the H.S.I. returns and index warrant prices 
from 21 July 2011 to 28 March 2013. The H.S.I. returns are calculated as xt = log pt − log pt-1,  
where pt is the closing price of the H.S.I. index. On the Hong Kong Stock Exchange, a 

(34)p(ht|t) = � p(ht , ht−1|t)dht−1 = �
p(ht , ht−1|t)

p(ht−1|t−1)
dP(ht−1|t−1)

(35)
p(ht , ht−1|t) =

p(lnCt , xt , ht , ht−1|t−1)

p(lnCt , xt|t−1)
=

p(lnCt , xt|ht , ht−1,Θ)p(ht , ht−1|t−1)

p(lnCt , xt|t−1)

=
p(lnCt|xt , ht ,Θ)p(xt|ht , ht−1,Θ)p(ht|ht−1,Θ)p(ht−1|t−1)

p(lnCt , xt|t−1)

(36)p(ht|t) = �
p(lnCt|xt , ht ,Θ)p(xt|ht , ht−1,Θ)p(ht|ht−1,Θ)

p(lnCt , xt|t−1)
dP(ht−1|t−1)
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number of warrants were traded on the H.S.I. index, corresponding to different exercise 
prices, maturity dates and exercise ratios. We selected the HS-HSI.@EC1309, which is one of 
the most actively traded H.S.I. index warrants.5 The selected warrant is European-style call 
warrant which is similar to a European-style call option. Its maturity date is 27 September 
2013, exercise price is 25,000 and exercise ratio is 12,000. The sample size is 836 for joint 
H.S.I. index and index warrant data. The joint time-series is plotted in Figure 1. Finally, we 
use the 1-year Hong Kong Interbank Offer Rate (H.I.B.O.R.) as a proxy for the risk-free 
interest rate. All of the data are obtained from the Wind Database of China.

Summary statistics for the H.S.I. returns and HS-HSI@EC1309 prices are shown in  
Table 1. As can be seen from the table, the H.S.I. returns are skewed and leptokurtic. Jarque–
Bera statistics suggests that the assumption of normality is rejected for the H.S.I. return 
series. Furthermore, from Figure 1 we can observe that the H.S.I. returns exhibit time-var-
ying volatility and volatility clustering during the sample period. These results suggest that 
the S.V. model, e.g., the G.A.R.C.H. diffusion model, may be appropriate for modelling the 
H.S.I. index.

Figure 1. Joint time series of H.S.I. returns and HS-HSI@EC1309 prices for the sample period from 21 July 
2011 to 28 March 2013. Source: Author calculation.

Table 1. Summary statistics of H.S.I. returns and HS-HSI@EC1309 prices.

Notes: The number in parenthesis is the P-values of Jarque–Bera tests.
Source: Author calculation.

Data Mean Max Min Std. Skew Kurt Jarque–Bera
H.S.I. returns 0.0000 0.0552 −0.0583 0.0140 −0.2706 5.6206 124.714 (0.000)
HS-HSI@ EC1309 prices 0.0489 0.1770 0.0130 0.0284 2.0931 9.0129 934.910 (0.000)



ECONOMIC RESEARCH-EKONOMSKA ISTRAŽIVANJA﻿    27

4.2.  Estimation results

Based upon the joint data, the objective and risk-neutral parameters of the G.A.R.C.H. 
diffusion model are estimated by applying the E.I.S.-M.L. method described in Section 3. 
Table 2 reports the estimation results. Traditionally, this model is estimated using single 
returns data, so we also report this configuration for comparison. While the use of option 
prices can lead to very accurate estimates, even in short samples in our case, estimation of 
the model from the single returns data requires relatively long samples to properly identify 
all parameters. We use daily data on the H.S.I. index over the period from 3 January 2005 
to 28 March 2013, a sample size of 2044 observations, to estimate the model.

Our results show that there are large discrepancies in the estimates with single data 
and joint data. The mean of the H.S.I. returns with the single data is μ = 0.1210, which is 
lower than the value 0.1869 with the joint data. The long-run mean of the volatility with 
the single data is α/β = 0.0682, which is obviously higher than the value of 0.0374 with the 
joint data. The estimate of the long-run mean of the volatility with joint data is closer to the 
unconditional sample variance of 0.0490 (= 0.01402 × 250) (see Table 1).

The estimates of the mean reversion rate of the volatility β differ considerably, implying 
that the estimated spot volatility process is much more persistent when estimated from the 
joint data than when estimated from the single data. This result is consistent with previous 
findings (see e.g., Cheng et al., 2008). The estimate of the volatility of volatility σ is notice-
ably smaller with the joint data than using the single data. Notice that the ‘leverage effect’ 
parameter ρ is significantly negative with both single data and joint data, indicating that 
the return and the volatility processes are negatively correlated during the sample period. 
But the estimate with the joint data is slightly more negative than with the single data 
(� = −0.5276 versus –0.5149, respectively).

With the joint data, the estimated objective and risk-neutral parameters (α, β) and (α*, β*) 
are quite different. Under the risk-neutral measure, the long-run mean of the volatility is 
α*/β* = 0.0464 and the mean reversion rate of the volatility is β* = 0.7603. The volatility 
dynamic under the risk-neutral measure is different from that under the objective probabil-
ity measure. In other words, the volatility risk has mostly likely been priced by the market.

The estimate for δ, which is the standard error of the pricing error, is small, implying 
that the pricing results based on the G.A.R.C.H. diffusion are fairly stable.

Table 2. Estimation results.

Notes: The E.I.S.-M.L. method is implemented by using S = 32 Monte Carlo draws and 5 E.I.S. iterations. The number in paren-
thesis is the asymptotic (statistical) standard error which is obtained from a numerical approximation to the Hessian. The 
number in bracket is the Monte Carlo (numerical) standard error based upon 20 Monte Carlo replications under different 
sets of C.R.N.s.

Source: Author calculation.

Single data Joint data
μ 0.1210 (0.0605) [0.0000] 0.1869(0.0672) [0.0001]
α 0.1095 (0.0339) [0.0001] 0.1444(0.0461) [0.0001]
β 1.6063 (1.2040) [0.0031] 3.8642(2.5730) [0.0021]
σ 2.2768 (0.2884) [0.0006] 1.2707(0.0412) [0.0004]
ρ −0.5149 (0.0807) [0.0003] −0.5276(0.0156) [0.0002]
α* 0.0353(0.0081) [0.0000]
β* 0.7603(0.0219) [0.0003]
δ 0.0176(0.0017) [0.0000]
Log-lik 5979.28 [0.0045] 1881.83 [0.0021]
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The use of additional derivative data provides noticeably more precise parameter esti-
mates, in some cases by a factor of about 5–7. In fact, the most significant reduction for the 
asymptotic (statistical) standard errors is for the volatility of volatility and leverage effect 
parameters, σ and ρ. This finding agrees with results reported by Chernov and Ghysels 
(2000), Eraker (2004), Polson and Stroud (2003) and Cheng et al. (2008). Finally, we note 
that the Monte Carlo (numerical) standard errors of the estimates of model parameters 
are quite small, implying that the E.I.S.-M.L. estimates are numerically extremely accurate.

The estimated parameters allow us to estimate the volatility, Vt, via the particle filter 
algorithm. The number of particles used in the empirical studies is 1000. Figure 2 plots the 
estimated volatilities based upon the joint data (solid line) and single returns data (dotted 
line). It can be seen from the figure that although there is a consistent trend, there are large 
discrepancies in the estimates with the single data and joint data. In fact, the volatilities 
estimated using the joint data are less volatile and more persistent than their counterparts 
based upon the single returns data, which is consistent with the estimate of volatility of 
volatility parameter σ in Table 2. In addition, the estimates of volatilities with the joint data 
are higher than using the single data in most cases.

As noted in Section 2.2, the estimation of the complete objective and risk-neutral param-
eters and spot volatility based upon the joint data allow us to compute the market prices of 
risks. Therefore, we can compute the sample paths for the market prices of risks appearing 
in Equations (8) and (9). These parameters are reported in Figure 3. It can be seen from the 
figure that both the asset and volatility risks are priced by the market.

4.3.  Option price fit

In this section, we discuss the empirical performance of the G.A.R.C.H. diffusion model 
based upon the single data and joint data in fitting the historical option prices. For the 

Figure 2. Estimated volatilities: Single data vs. joint data. Source: Author calculation.
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purpose of comparison, we also report the pricing results of the classical Black–Scholes 
(B.-S.) model with the volatility estimate based on the implied volatility.

Figure 4 plots the pricing results for the different models. As can be seen from the figure, the 
B.-S. model with implied volatility and G.A.R.C.H. diffusion model base upon the joint data fit 

Figure 3. Time series of the market prices of the return and volatility risks. Source: Author calculation.

Figure 4. The pricing results. Source: Author calculation.
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the option data reasonably well. The G.A.R.C.H. diffusion model seems to perform relatively 
poorly whenever the calculations are based on parameter estimates obtained using single returns 
data, i.e., under a zero market price of the volatility risk assumption. Figure 5 presents further 
evidence on the fit of the various models. The figure plots the percentage pricing errors for the 
different models. Notice that the percentage pricing errors for the G.A.R.C.H. diffusion model 
based upon the joint data are smallest and close to zero in most cases.6 In fact, we compute the 
mean percentage pricing error for the G.A.R.C.H. diffusion model based upon the joint data is 
0.43%, while it is 6.11% for the B.-S. model with implied volatility and 23.86% for the G.A.R.C.H. 
diffusion model based upon the single data. Thus, the use of parameter estimates based upon 
joint data on the underlying asset and option prices provide economically significant perfor-
mance enhancements. In other words, the market price of the volatility risk plays an important 
role in fitting option prices.

5.  Conclusion

In this paper we proposed an estimation procedure for extracting the market prices of risks 
in the context of a G.A.R.C.H. diffusion model of non-affine specification using joint data 
on the underlying asset and option prices. This approach is flexible and can be applied in 
other S.V. option pricing models. Moreover, it is simple to implement. The proposed esti-
mation procedure is based on the M.L. method, where the likelihood function of the model 
is evaluated using the E.I.S. technique. A quasi-closed form pricing formula for European 
options in the G.A.R.C.H. diffusion model is derived. It is efficient enough to apply the 
E.I.S.-M.L. method to the estimation of model (objective and risk-neutral) parameters from 
the joint data. To estimate the latent state variable, we developed a particle filter algorithm 
based upon the joint data. The empirical results from data on the H.S.I. and index warrant 

Figure 5. The percentage pricing errors. Source: Author calculation.
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prices show that both the return and volatility risks are priced by the market. Moreover, 
an option pricing study demonstrates that the market price of the volatility risk plays an 
important role in fitting option prices.

Notes

1. � While we focus on the G.A.R.C.H. diffusion model, it should be noted that our analysis is not 
limited to any particular model. The choice of the G.A.R.C.H. diffusion model is motivated 
by our previous discussion. It should be mentioned that any model that admits a formulation 
of the option pricing formula could be considered with the same methodology.

2. � Joint estimation of the objective and risk-neutral parameters using both the underlying asset 
and option prices is necessary to maintain the internal consistency of the objective and risk-
neutral measures. More precisely, the volatility of volatility and the correlation between the 
return and volatility shocks should be equal under the objective and risk-neutral measures. 
Broadie et al. (2007) find the evidence that it is easy to obtain misleading results if one ignores 
the theoretical restrictions that certain parameters must be consistent across measures. Hence, 
an efficient estimation procedure would use both the underlying asset and option prices and 
estimate the objective and risk-neutral parameters jointly.

3. � Assuming that there are 250 trading days per year, then the time interval Δ for one trading 
day is 1/250 year, and in this case the discretisation bias of Euler scheme is expected to be 
negligible (see Duan & Yeh, 2010; Eraker et al., 2003; Johannes et al., 2009; Jones, 2003).

4. � Warrants are contracts that give the holder the right, but not the obligation, to buy (call 
warrant) or to sell (put warrant) an underlying asset at a pre-determined price (the exercise 
price) on a specified date (the maturity date). As the definition of warrants is similar to that 
of options, it is natural to value warrants using the standard option pricing models.

5. � There are also other ways to exploit the information available in option prices. For example, 
Pan (2002) selected each day the option closest to the money. The choices should not 
substantially affect the estimation results when the option pricing model adopted is accurate.

6. � Notice in particular that the effects of the Standard & Poor on 5 August 2011 cut the long-term 
U.S. credit rating to AA-plus on concerns about the government’s budget deficits and rising 
debt burden, the H.S.I. index on 9 August 2011 fell 1159.87 points. However, the HS-HSI@
EC1309 price on that day does not fall but rises. The event seems to have been captured by 
the option pricing error which reached –34.17% on that day.
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Appendix A. Explicit expressions for the characteristic functions

Following Heston (1993), the characteristic functions, fj, j = 1, 2, satisfy the following partial differ-
ential equations (P.D.E.s):
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and
 

with the boundary conditions:
 

It is apparent that Equations (A.1) and (A.2) are non-linear P.D.E.s, and there is no known exact 
analytical solutions to these equations. To overcome this problem, we utilise a perturbation method 
to derive an approximate solution (Chacko & Viceira, 2003; Wu et al., 2012). The idea is to approx-
imate V 3∕2

t  and V 2

t  in the P.D.E.s using Taylor expansions around the long-run mean of volatility 
Vt = α*/β* as follows:
 

 

Plugging Equations (A.4) and (A.5) into Equation (A.1) and Equation (A.2), we have
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The linear P.D.E.s (A.6) and (A.7) have exponential-affine solutions of the form
 

with the boundary conditions
 

Plugging Equation (A.8) into Equations (A.6) and (A.7), we have
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and
 

These lead to the following ordinary differential equations (O.D.E.s)
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Solving these linear O.D.E.s, we can obtain
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and
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Appendix B. E.I.S. distribution and explicit expression for ln χt

Assuming that E.I.S. density mt(ht|xt, ht-1, at) is normally distributed with mean �at
 and variance �2

at
,  

its log density is given by
 

Also, from Equations (28) and (30), we have
 

where μt and �2

t  are the mean and variance of the N.I.S. density p(ht|xt, ht-1, Θ), respectively, which 
are defined in Equations (22) and (23).
Compare (B.1) and (B.2), we have
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