The Use of Weighted Adjacency Matrix for Searching Optimal Ship Transportation Routes

Uporaba ponderirane matrice susjedstva za traženje optimalnih brodskih prometnih ruta

Karel Antoš
Institute of Technology and Business
Department of Informatics and Natural Sciences
České Budějovice, Czech Republic
e-mail: antos.vste@seznam.cz

Summary

This article provides a new approach to searching solutions of watan transpo optimization problems. It brings a new tool of the graph theory whicb ne Weighted Adjacency Matrix. This Weighted Adjacency Matrix is suitable for arching for the Minimum Spanning Tree (MST) of the graph. It describes the W Matrix as a new element, and shows how it could be used in cas edges of the graph are given. This creates a new procedure of se wing the MST of ghted Adjacency the graph and completes previously known algorithms of searchin, or the MST the field of ship transportation it could be succesfully for solutions_ng transportation routes where lowest transport costs a neen Droposed weighted Adjacency Matrix could be used in similar issues in the ald of theory, where graphs with weighted edges are given. The procedure is whe the ex example. The paper discusses the application of te optil ation technique forthe maritime sector.

Sažetak

U radu se prikazuje novi pr traženju rjé ia optimizacije brodskog transporta.
 je prikladna za traženie ninimalın zgranatog sııbla (MST) na grafu. Ponderirana matrica susjedstvap azanaje kao no. 'ement iopisanoje kako se njomemože koristiti u situacijama kg su zadani ponderiran bovi grafa. Ovim se stvara novi postupak pretraživanja ln arafa i d šavaju se prènodni algoritmi pretraživanja MST-a. Ovim postupkom bi sem 'o ješno koristiti u brodskom prijevozu za optimizaciju isplativih transpo ta. Pré Senom pon riranom matricom susjedstva može se koristiti i za drug aćajeb eorije of kad zadani ponderirani bridovi. Postupak je prikazan na loženom imjeru. © se raspravlja o primjeni takve tehnike optimizacije u poma oms

1. INTRODU YN / Uvod

One of the important aims in the field of shipping traffic is to find the ideal combination of shipping traffic routes so as to ensure the serviceability of all places, and to reduce the costs of transport connections to the lowest level. It is necessary to reach each hub and to reduce transport costs to the minimum. Hubs are ports and transport routes are shipping lanes.

Graph theory offers useful tools for solving problems in this area. To model this situation we created a connected weighted graph where vertices represent sea ports and the edges represent the routes between the ports through which ships transport goods. The weight of an edge between two vertices represents the energy consumed to conduct the boat between these ports.

At the beginning there was a situation where ships transported goods between hubs over many different routes
and in different ways, but the transport links were inefficient and expensive as a whole.

The task of our algorithm is to optimize the connections between hubs, so that the cost of transport links between all ports would be minimal,given that every port is reachable through traffic routes.In this approach, transport cost functions are linear, depending only on distances and they are not in relation to the amount of cargo on the ship, capacity limitation of the ship, loading/unloading expenses in ports etc.

To search for optimal transport connection we can use the tool spanning tree from the graph theory. This tool is useful to optimalize the connections between all hubs to be as simple as possible. Another tool is the minimum spanning tree, which ensures that this unique connection will be the least expensive. To search the minimum spanning tree we offer a new algorithm,
which complements the previously known algorithms and demonstrates new and original approach.

2. DESCRIPTION OF THE MST ISSUES / Opis minimalno razgranatog stabla (MST)

All graphs in this article are finite, simple and connected. We can transform the system of shipping traffic routes into the the graph where vertices represent sea ports, edges represent transport routes and weights of edges represent the energy consumed to drive the boat between two ports. To model this situation we create a connected graph $G=(V, E)$ with weighted edges. The optimal traffic connection of the system is represented by the spanning tree of the graph. And the problem of the cheapest traffic system means that we must find the minimum spanning tree.

The spanning tree of a connected graph G is a subgraph G ' which connects all vertices and which does not contain any cycles [3]. The minimum spanning tree we denote $T=\left(V, E^{\prime}\right)$, where $V^{\prime}=V$ and E^{\prime} is the set of $n-1$ edges of the minimum spanning tree, and it applies that $E^{\prime} \subseteq E$. In the subsequent text we use the abbreviation MST (short for the Minimum Spanning Tree) [6]. The sum of the weights of edges of MST is minimal.

For searching for the minimum spanning tree there are several obviously known algorithms which search for the MST in different ways. For example The Kruskal's algorithm, Prim's algorithm or Borůvka's algorithm are the generally un In the article we use some principles of Prim's algori n searching the MST [4]. But this article presents a new prod ure for searching for the MST, which is Weighted ANency Ma

Let $G=(V, E)$ be a connected, finite an con-o thed gra with positively weighted edges, wher is a set n vertice and E is the set of m edges. The set ver s $V v \quad V=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the set of edge denote ere $e_{i j}$ demiss the edge between vertices $y \quad$ then it is $\left.e_{i j} \quad v_{j}\right\} \in E . W\left(e_{i j}\right)$ denotes the weight of th edge necting vert $\quad y_{i}$ and $v_{j^{\prime}}$ where $e_{i j}=\left\{v_{i}, v_{j}\right\} \in$.

The spanning of a connected G is a subgraph G^{\prime} which conne all vertice and which a not contain any cycles [5]. For this gra G^{\prime} it holds that $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where $V^{\prime}=V$ and Note the set E^{\prime} ntains $n-1$ edges [2]. $w\left(e^{\prime}\right.$ abgrap $G^{\prime}=\left(V\right.$ of graph G we put $w\left(G^{\prime}\right)=\Sigma_{e \epsilon E^{\prime}}$ Th. any $=\left(V, E_{1}\right)$ of the graph G we call the minimum ning tree for each spanning tree $T_{2}=\left(V, E_{2}\right)$ of the graph G Ids that

$$
w\left(T_{1}\right) \leq w\left(T_{2}\right)
$$

The minimum spanning tree we denote $T=\left(V, E_{1}\right)$, where V^{\prime} $=V$ and E^{\prime} is the set of $n-1$ edges of the minimum spanning tree, and it applies that $E^{\prime} \subseteq E$. In the subsequent text we use the abbreviation MST (short for the Minimum Spanning Tree).

If we define the function $w: E \rightarrow R$ (ie. evaluation of edges), then the minimum spanning tree is such a spanning tree $\{\backslash$ displaystyle (\{\mathit $\left.\left.\{V\}\},\{\backslash m a t h i t ~\{E\}\}^{\prime}\right)\right\}$ for which it holds that the sum of the weights of edges of MST is minimal, i.e. $w\left(E^{\prime}\right)=$ $\Sigma_{e \in E} W(e)$ is minimal.

In the following capture a new algorithm is displayed which uses some new elements for searching the MST and adapts them to one of the previously mentioned, to the Prim's algorithm.

3. WEIGHTED ADJACENCY MATRIX / Ponderirana matrica susjedstva

At first, in the proposed algorithm we create a modified adjacency matrix, which we call " Weighted Adjacency Matrix". This matrix is similar to the Adjacency Matrix where in positions of elements of the matrix are either 1 is an edge between vertices v_{i} and v_{j} or not this modifie Yeighted Adjacency Matrix the positive nur $w_{i j}$ on the posit of the element v_{i} and v_{j} indicates th weig f the edge co lecting vertices v_{i} and v_{j} if the ed between *ices v_{i} an $/ j$ exists. A value of 0 indicates there is pedge we vertices v_{i} and $v_{i}[6]$.

Weighted Ad ency Mio ang 1) is thys a square matrix W
$n x n$, where notes the nu of y ces and the value of $=n \times n$, where
the elemetes the nu ar of y^{\prime} and the value of

if $e_{i j} \in E$ otherwise

Figure 1 Weighted Adjacency Matrix Slika 1. Ponderirana matrica susjedstva

Weighted Adjacency Matrix is symmetric with respect to the main diagonal, the diagonal elements have a value of 0 , the algorithm will only use the elements of the triangle above the main diagonal. The algorithm of searching for the MST works in the Weighted Adjacency Matrix and works with elements in the triangle above the main diagonal.

4. ALGORITHM PROCEDURE / Izrada algoritma

Search through the elements of the matrix and find the one with the smallest positive value $w_{i j}$. Denote chosen matrix element in bold and underlined, then mark the rows v_{i}, v_{j} and columns v_{i} v_{j} (Denote the columns and rows with arrows at the top of the table). If there is more than one element with the same smallest positive value, it is possible to choose arbitrary one of these. Then more than one MST exists.

Figure 2
Slika 2.
Search again through the elements of the matrix and find another smallest positive element, search between elements in the marked rows and columns (Fig. 2). Denote the chosen element in the matrix in bold and underlined. Let the new element be $w_{j k}$. According to the index position of the element mark the row v_{k} and column v_{k}. Rows and columns an in the previous steps remain marked.

This step ensures the connection of the ge rated MSTbecause the connecting edge has of the in the same as the previous selected el ent, this ele, nt connects to any of previously conne d vertices

Furthermore delete (i.e. replar by t, ross) in positions where newly mar fow and in interseu uth rows and columns previoy Jrked. Here o te the element $w_{i k}$. This step prevents d ang c, ns.

Figure 3
Slika 3.
Search again through the elements of the matrix and find another smallest positive element, search between elements in the marked rows and columns. Denote the chosen element in the matrix in bold and underlined (Fig. 3). Let the new element be $w_{1 \text { i }}$

According to the index position of the element mark the $\operatorname{row} v_{1}$ and column v_{1}. Rows and columns marked in the previous steps remain marked. Furthermore delete all the elements in positions where newly marked row and column intersect with rows and columns previously marked. Here delete the elements $w_{1 j}$ and $w_{1 k}$ (Fig. 4).

Suppose that our algorithm made k steps.
ik $k=n-1$, algorithm stops, we have made all steps
lin $<n-1$, we make $(k+1)$-th step analogously
After we make the ($n-1$)-th step in our Weighted Adjacency Matrix ($n-1$) chosen elements are labeled (in bold and underlined), the other elements (which were not chosen) are replaced by a cross. At the same time all rows and columns in our matrix are labeled (Fig. 5). Elements denoted in the matrix in bold and underlined are values of weights of edges of the MST. Labeling the rows and columns of the selected element indicates the vertices v_{i} and v_{j} that the edge on this position connects. The sum of the values of all chosen elements give the total weight of the MST.

Figure 5 Final Matrix
Slika 5. Konačna matrica

5. VERIFICATION OF THE ALGORITHM / Verifikacija algoritma

1. Continuity of generated MST is guaranteed by the fact that newly connected edge has one of the indices the same as the indices of previously selected elements [4]. Therefore, it connects to one of the previously connected vertices.
2. The cycles are avoided by deleting all the elements in positions where newly marked row and column intersect with rows and columns previously marked [5].
3. The algorithm is a variant of the Prim's algorithm, with the difference that in the first step we do not begin by selecting the arbitrary initial vertex, but in our Weighted Adjacency Matrix we begin by selecting the edge with the smallest weight. From the second step our algorithm works analogously as in the Prim's algorithm (which has been proven, see [1]). This guarantees selection of the minimum spanning tree.

6. DEMONSTRATION OF SOLVED EXAMPLE/ Prikaz riješenog primjera

Imagine the system of the sea transport between many ports and their distances. Transport is going in many directions, conecting two or more ports. So the route can consist of one or more ports. At first we transform the system of transport directions into the weighted graph (Fig. 6). There are 6 ports represented by 6 vertices of the graph $v_{1}, v_{2^{\prime}}, \ldots, v_{6^{\prime}}$ connections between the ports are represented by the edges in the and numbers belonging to the edges represent the cos o energy consumed to conduct the ship (boat) between ports. As we said before, costs are in relation to-distances, b other expenses could be incorporated, too creq have ful mesh network structure but in reality it sly occur Because of geografic topology it is not ration to direction and skip some ports on

Figure 6
Slika 6.

Corresponding Weighted Adjacency Matrix is (Fig. 7):

1. Search ou the elements matrix and find the one with the smalles sitive value $w_{13}=2$. Denote chosen matriy ement in bold anderlined, then mark the rows v_{1}, v_{3} ar columns v_{1}, v_{3} (Fig. 8).

Figure 8
Slika 8.
2. Search again through the elements of the matrix and find another smallest positive element $w_{36}=3$, search between elements in the marked rows and columns. Denote the chosen element in the matrix in bold and underlined. According to the index position of the element mark the row v_{6} and column v_{6}. Rows and columns marked in the previous steps remain marked (Fig. 9). Furthermore we delete (ie. replace by the cross) all the elements in positions where newly marked row and column intersect with rows and columns previously marked. Here we delete the element w_{16}.

Figure 9
Slika 9.
3. Search again through the elements of the matrix and find another smallest positive element $w_{56}=4$, search between elements in the marked rows and columns. Denote the chosen element in the matrix in bold and underlined. Accord index position of the element mark the row v_{5} and v_{5}. Rows and columns marked in the previous steps marked. Furthermore delete all the element ositions u newly marked row and column intersect hrow nd colur previously marked. Here delete the nents, $w=x, w_{35}=$ (Fig. 10).
marked. Furthermore delete all the elements in positions where newly marked row and column intersect with rows and columns previously marked. Here delete the elements $w_{34}=x, w_{45}=x, w_{46}$ $=x$ (Fig. 11).

Slika 11.
5. Search again through the elements of the matrix and find another smallest positive element $w_{23}=5$, search between elements in the marked rows and columns. Denote the chosen element in the matrix in bold and underlined. According to the index position of the element mark the row v_{2} and column v_{2}. Rows and columns marked in the previous steps remain marked. Furthermore delete all the elements in positions where newly marked row and column intersect with rows and columns previously marked. Here delete the elements $w_{12}=x, w_{24}=x, w_{25}$ $=x, w_{26}=x$ (Fig. 12).

Figure 12
Slika 12.

8. TERMINATION OF THE ALGORITHM / Kraj algoritma

When the graph G has n vertices then the MST has $n-1$ edges [3]. At each step of the algorithm we add to the gradually rising MST one edge, then algorithm makes $n-1$ steps. In our example, the graph has 6 vertices, then the MST has 5 edges. That is the reason why algorithm makes 5 steps.

After the final step, all the elements in the Weighted Adjacency Matrix went through processing, ie. the edges chosen for the MST are denoted in the agreed way, i.e. here in bold and underlined, deleted edges are marked by symbol x.

At the same time, after the last step all the rows and columns of the matrix are marked with the arrows next to the rows and above columns.

9. FINAL GRAPH OF THE MST IS HERE / Konačni graf MST-a

11. R^{\prime} ULT D CUSSIC ve sprava

From ts in we hav spanning tree that generaly offers min transportation. But at glance it is not obvious can we apply that route in practise. Firstly, any transportation n s (ship, train, airplain etc.) has to be backed to home port, whic, results in extra costs. So, in practice we use loop structure for ship routing very often. In that way we can significantly reduce costs. But if we say that home port has to be in port v3 (in fig. 13.), the result makes sense. It is obvious that ship has three directions (branches) for shipping, toward port v2, to port v4 over port v1, and to port v5 over port v6. It means that we can optimally organize our fleet, by using periodically the same ship for each of the three directions, or to use more ships, each for one direction. In suchrouting solution we don't consider the problem of the ship's own capacity and loading/
unloading strategy for each port. Also, we do nottake into accountthe cargo contingents and their amounts, transporting them from the predefined starting to the predefined ending port. If laod (cargo) influences the route definition then we have to use algoriths for multi-commodity flow problem [7] and [8].

We can say that such minimum spanning tree (MST) solution provides solidgrounds for strategic planning of shipmentin the maritime sector. This approach is more effective when cargo amount does not influece the transport costs, for example in passenger line transport. Especially in cruise ships where passengers mostlyembark the in huis rts with big airports, making trips in differ directions fro home port. Similar strategy could be effic tor the fishir fleet. Alternative route plannings based the shorte path algorthms and Transport esman Proble, which i nother technique based on gra theory, sf 29] and

12. CONCLUS / Zak/j \quad, k This article de

 the minima spans tree. The pro sed algorithm is similar to the [1], which creates the minimum spa ng tree as a graduà rowing set of edges of the MST. In s regard there is a compwance with Prim's algorithm. The Pr 's algorithm starts with the arbitrary vertice. Here, however, the st element the gorithm starts with the lowest weight edgeThe nu nere is the "Weighted Adjacency Matrix (abr. 4"It follows the principle of adjacency matrix known in the aph ry, but in the positions of matrix elements there are values of edges weights connecting the vertices. The vertices denote the rows and columns of the matrix.

The whole process of searching MST begins with choosing the smallest element of the matrix, representing the edge with the lowest weight. Gradually, we add elements so that another new element has one index the same as some of the elements that have been chosen in previous steps. This step guarantees the continuity of MST.

Elements which are not selected in the denoted rows and columns, must be removed because these edges would create cycles. The entire process takes place in WAM, the original graph is not needed.

Benefits of the proposed algorithm arethe efficient and fast searching of the MST by using WAM.. According to my knowledge the search of the MST by using WAM is a new tool and it can be assumed that the WAM could be used for solving other similar problems in the graphs, where wighted edges are given. The algorithm procedure is shown on the solved example.

The proposed algorithm is suitable for optimising the ship transport besause the distances onthe ship traffic routes can be easily transformed into the WAM which is clear represenation of the graph with weighted edges. Solving the problem of searching for the minimum spanning tree goes in this matrix quickly and is illustratively presented in the solved example. Generaly, WAM is used fordefinition of optimal ship transportation routes but for the routes based on cycles we have to apply quite a different approach.

REFERENCES / Literatura

[1] Harris J. M., Hirst J. L., Hossinghofer M. J. (2000). Combinatorics and Graph Theory, Springer, New York, ISBN978-0-387-79711-3
[2] Matoušek J., Nešetril, J. (2009). Kapitoly z diskrétní matematiky, 4th edition, Prague, Charles University in Prague, ISBN 978-80-246-1740-4
[3] Kleinberg, J., Tardos, E. (2006). Algorithm Design, New York: Pearson Education, Inc.
[4] Kruska, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem, PAm Math Soc 7, 48-50. https://doi.org/10.1090/ 50002-9939-1956-0078686-7
[5] Cormen, T. H., Leiserson, C. E., Rivest, R. L, and Stein, C. (2001). Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, ISBN:0262033844 9780262033848
[6] Jackson, T. S. and Read, N. Theory of minimum spanning trees, Phys Rev E 81 (2010) 021130 https://doi.org/10.1103/PhysRevE.81.021131
[7] Ouorou, A., Mahey, P., Vial, J. Ph., (2000). A Survey of Algorithms for Convex Multicommodity Flow Problems, Markup Languages, Vol. 46, No. 1, pp. 126-147.
[8] Castro, J., Nabona N., (1996). An Implementation of Linear and Nonlinear Multi-commodity Network Flows, European Journal of Operational Research, Vol. 92, No.1, pp. 37-53. https://doi.org/10.1016/0377-2217(95)00137-9
[9] Case Study: "Shortest-Path Algorithms" http://www.mcs.anl.gov/~itf/dbpp/ text/node35.html\#algdij1
[10] Krile, S., (2013). Efficient Heuristic for Non-linear Transportation Problem on the Route with Multiple Ports, Polish Maritime Research, Gdansk, Poland, Vol. 20, No 4, pp. 80-86, https://doi.org/10.2478/pomr-2013-0044

