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Abstract: In this paper, we consider a molecular descriptor called the Wiener polarity index, which is defined as the number of unordered pairs 
of vertices at distance three in a graph. Molecular descriptors play a fundamental role in chemistry, materials engineering, and in drug design 
since they can be correlated with a large number of physico-chemical properties of molecules. As the main result, we develop a method for 
computing the Wiener polarity index for two basic and most commonly studied families of molecular graphs, benzenoid systems and carbon 
nanotubes. The obtained method is then used to find a closed formula for the Wiener polarity index of any benzenoid system. Moreover, we 
also compute this index for zig-zag and armchair nanotubes. 
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INTRODUCTION 
ENZENOID systems (also called hexagonal systems) 
represent a mathematical model for molecules called 

benzenoid hydrocarbons and form one of the most 
important classes of chemical graphs.[1] Similarly, carbon 
nanotubes are carbon compounds with a cylindrical struc-
ture, first observed in 1991 by Iijima.[2] Carbon nanotubes 
posses many unusual properties, which are valuable for 
nanotechnology, materials science and technology, elec-
tronics, and optics. They can be open-ended or closed-
ended. Open-ended single-walled carbon nanotubes are 
also called tubulenes. In this paper, we model benzenoid 
hydrocarbons and tubulenes by graphs. 
 Theoretical molecular structure-descriptors (also 
called topological indices) are graph invariants that play an 
important role in chemistry, pharmaceutical sciences, and 
in materials science and engineering since they can be used 
to predict physico-chemical properties of organic 
compounds.[3] For example, molecular descriptors were 
used to study molecular complexity of benzenoid hydro-
carbons[4] and to investigate the topological symmetry of 
some nanostructures.[5] The most commonly studied 
molecular descriptor is the Wiener index introduced in 

1947,[6] which is defined as the sum of distances between 
all the pairs of vertices in a molecular graph. Wiener 
showed that the boiling points of alkanes are closely 
correlated with a linear combination of (what later become 
known as) the Wiener index and the Wiener polarity index. 
Further work on quantitative structure-activity relation-
ships for the Wiener index showed that it is also correlated 
with other quantities, for example the parameters of its 
critical point,[7] the density, surface tension, and viscosity of 
its liquid phase.[8] 
 The Wiener polarity index of a graph is defined as the 
number of unordered pairs of vertices at distance three. As 
already mentioned, this index was first introduced in the 
same paper as the Wiener index.[6] Later, Lukovits and 
Linert[9] demonstrated quantitative structure-property 
relationships for the Wiener polarity index in a series of 
acyclic and cycle-containing hydrocarbons. Also, Hosoya 
found a physico-chemical interpretation for this index.[10] 
Furthermore, the Wiener polarity index is closely related to 
the Hosoya polynomial,[11] since it is exactly the coefficient 
before 3x  in this polynomial. In recent years, a lot of 
research has been done in investigating the Wiener polarity 
index of trees[12,13] and unicyclic graphs.[14] Also, the 
Nordhaus-Gaddum-type results for this index were 
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considered.[15,16] Some other recent investigations on the 
Wiener polarity index include results about fullerene 
graphs,[17] generalizations of the Wiener polarity index,[18] 
and algorithms.[19] Furthermore, Behmaram et al.[20] ex-
pressed the Wiener polarity index by using the Zagreb 
indices[21,22] and by applying that result, formulas for 
fullerenes and catacondensed benzenoid systems were 
found. In this paper, we choose a different approach and 
express the index by the number of hexagons and the 
Wiener polarity indices of smaller graphs. 
 We proceed as follows. In the following section, 
some basic definitions and notations are introduced. Next, 
we develop a cut method for computing the Wiener 
polarity index of benzenoid systems and tubulenes. Finally, 
the main result is used to find the closed formulas for the 
Wiener polarity index of benzenoid systems, zig-zag 
tubulenes, and armchair tubulenes. For more details about 
the cut method see a survey paper by Klavžar and Nadjafi-
Arani.[23] Some recent applications of this method include 
investigations of various molecular descriptors on benzen-
oid systems,[24,25] partial cubes,[26] and interconnection 
networks.[27]  
 

PRELIMINARIES 
A graph G is an ordered pair G = (V, E) of a set V of vertices 
(also called nodes or points) together with a set E of edges, 
which are 2-element subsets of V. For some basic concepts 
about graph theory see a book written by West.[28] Having 
a molecule, if we represent atoms by vertices and bonds by 
edges, we obtain a molecular graph. The graphs considered 
in this paper are always simple and finite. The distance 

( , )Gd x y  between vertices x and y of a graph G is the length 
of a shortest path between vertices x and y in G. If there is 
no confusion, we also write ( , )d x y  for ( , )Gd x y . Then the 
Wiener polarity index of a graph G, denoted by ( )pW G , is 
defined as  

= ⊆ =( ) | {{ , } ( ) | ( , ) 3} | .p GW G u v V G d u v  

 Let ℋ be the hexagonal (graphite) lattice and let Z be 
a cycle on it. Then a benzenoid system G is induced by the 
vertices and edges of ℋ, lying on Z and in its interior, see 
Figure 1. In such a case, every hexagon lying in the interior 
of Z is called a hexagon of benzenoid system G. The number 
of all the hexagons of G will be denoted by h(G) and the 
number of vertices in cycle Z is denoted by |Z|. Moreover, 
a vertex of a benzenoid system G is called internal if it lies 
on exactly three hexagons of G. 
 An elementary cut of a benzenoid system G is a line 
segment that starts at the center of a peripheral (boundary) 
edge of a benzenoid system G, goes orthogonal to it and 
ends at the first next peripheral edge of G. In what follows, 
by an elementary cut we usually mean the set of all edges 

that intersect the elementary cut. Note that all benzenoid 
system are also partial cubes, which are defined as 
isometric subgraphs of hypercubes (a subgraph H of G is 
isometric if for any two vertices , ( )x y V H∈  it holds 

( , ) ( , )H Gd x y d x y= ) and represent a large class of graphs 
with a lot of applications. In particular, every elementary 
cut of a benzenoid system coincides with a Θ-class. Recall 
that two edges e1 = u1v1 and e2 = u2v2 of a connected graph 
G are in relation Θ, e1Θe2, if 1 2 1 2( , ) ( , )G Gd u u d v v+ ≠  

1 2 1 2( , ) ( , )G Gd u v d u v+  and that in a partial cube this relation 
is always transitive. For more details about Θ relation and 
partial cubes see a book by Hammack et al.[29]  
 Next, we define open-ended carbon nanotubes, also 
called tubulenes,[30] which represent an important family of 
chemical graphs. Choose any lattice point in the infinite and 
regular hexagonal lattice as the origin O. Moreover, let A be 
a point in the hexagonal lattice such that the graph distance 
between O and A is an even number greater or equal to six. 
In addition, let 1a  and 



2a  be the two basic lattice vectors 
(see Figure 2). 
 Obviously, there are integers n, m such that 

1 2OA na ma= +


 

. Draw two straight lines L1 and L2 passing 
through O and A perpendicular to 



OA , respectively. By 
rolling up the hexagonal strip between L1 and L2 and gluing 
L1 and L2 such that A and O superimpose, we can obtain a 
hexagonal tessellation ℋ𝒯𝒯 of the cylinder. L1 and L2 
indicate the direction of the axis of the cylinder. Using the 
terminology of graph theory, a tubulene G is defined to be 
the finite graph induced by all the hexagons of ℋ𝒯𝒯 that lie 
between c1 and c2, where c1 and c2 are two vertex-disjoint 
cycles of ℋ𝒯𝒯 encircling the axis of the cylinder. Any such 
hexagon (between c1 and c2) is called a hexagon of a 
tubulene G and the number of these hexagons will be 
denoted by h(G). The vector 



OA  is called a chiral vector of 
G and the cycles c1 and c2 are the two open-ends of G. For 
any tubulene G, if its chiral vector is 1 2na ma+

 

, G is called 
an (n,m)-type tubulene, see Figure 2. 
 
Remark 2.1. Sometimes, the definition of a tubulene does 
not contain the requirement that the graph distance 
between O and A is at least six (but very often, some other 
condition on n and m is added). However, if this distance is 

 

Figure 1. Benzenoid system G with the boundary cycle Z. 
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four (or even less), it can happen that two distinct hexagons 
have two common edges, which is not usual for the 
considered molecules. Moreover, by including such a 
requirement, a tubulene can not contain a cycle of length 
four (or less), which is essentially used in Theorem 3.5. 
 

A CUT METHOD FOR BENZENOID  
SYSTEMS AND TUBULENES 

To develop a cut method for the Wiener polarity index, 
some definitions and lemmas are first needed. Obviously, 
in the regular hexagonal lattice there are exactly three 
directions of edges. Let 1E ′ , 2E ′ , and 3E ′  be the sets of 
edges of the same direction. Moreover, if G is a benzenoid 
system or a tubulene (drawn in the hexagonal lattice), we 
define ( ) ( )i iE G E E G′= ∩  and often use iE  instead of ( )iE G , 
where {1,2,3}i ∈ . One can notice that for a benzenoid 
system the set iE  is the set of all elementary cuts in a given 
direction. For our consideration it is important to observe 
that for any benzenoid system or a tubulene G it holds: 

(i) any two hexagons of G have at most one edge in 
common (see Remark 2.1), 

(ii) on any hexagon of G there are exactly two edges from 

1E , two edges from 2E , and two edges from 3E , 

(iii) if , ie e E′ ∈ , {1,2,3}i ∈ , are two distinct edges, then 
they have no vertex in common. 

 In the rest of the paper we will denote by iG E− , 
{1,2,3}i ∈ , the graph obtained from G by deleting all the 

edges from iE . Also, for {1,2,3}i ∈  let ( )i G  (or simply i ) 
be the set of all connected components of the graph iG E− . 
Furthermore, let 1 2 3= ∪ ∪    . 
 
Lemma 3.1. If G is a benzenoid system, then every 
connected component of iG E− , {1,2,3}i ∈ , is a path on 
at least three vertices. 
 
Proof. It is obvious that every connected component is a 
path. Since every elementary cut goes through two 
opposite edges of a hexagon, every component must have 
at least three vertices.  □ 
 
 However, in the case of tubulenes a connected 
component can be a cycle (see, for example, zig-zag 
tubulenes from Figure 4). 
 
Lemma 3.2. If G is a tubulene, then every connected 
component of iG E− , {1,2,3}i ∈ , is a path or a cycle. 
 
Proof. All vertices of degree three in G have exactly one 
incident edge in jE  for every {1,2,3}j ∈ . Therefore, after 
deleting all the edges of iE  from G, every vertex of iG E−  
has degree at most two. Therefore, every connected 
component of iG E−  is a path or a cycle. □ 
 
 A hexagon H of the hexagonal lattice ℋ is called 
external for a benzenoid system G if H is not a hexagon of 
G but ( ) ( )E h E G∩ ≠ ∅ . Similarly, a hexagon H of the 
hexagonal tessellation ℋ𝒯𝒯 is called external for a tubulene 
G if H is not a hexagon of G but ( ) ( )E h E G∩ ≠ ∅ . 
 If H is an external hexagon of a benzenoid system or 
a tubulene G, we notice that a largest connected 
component of the intersection h G∩  is always a path. 
Especially important are external hexagons for which such 
a component is a path on at least four vertices. Therefore, 
the set of all external hexagons H for which the largest 
connected component of h G∩  is a path 4P  will be 
denoted as 1( )H G . Also, the set 2( )H G  (or 3( )H G ) is defined 
as the set of all external hexagons of G for which the largest 
connected component of h G∩  is a path 5P  (or 6P ).  
 Moreover, we denote the cardinality of ( )kH G  by 

( )kh G , i.e., =( ) | ( ) |k kh G H G  for {1,2,3}k ∈ . 
 In Figure 3 we can see a benzenoid system G, where 
hexagons of G are coloured grey and external hexagons of 
G are white. Obviously, 1( )h H G∈ , 2( )h H G′ ∈ , and 

3( )h H G′′ ∈ . 
 In order to develop a cut method for the Wiener 
polarity index, we next study the structure of shortest paths 
of length three. 
 
Lemma 3.3. Let G be a benzenoid system or a tubulene and 
let P be a shortest path of length three in G such that 

( ) iE P E∩ ≠ ∅  for any {1,2,3}i ∈ . Then all vertices and 
edges of P lie on a hexagon of G or on an external hexagon 
of G. 
 

 

Figure 2. A tubulene of type (4,–3) with two basic lattice 
vectors. 
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Proof. Denote the edges of P by 1e , 2e , and 3e  such that 1e  
is incident with 2e  and 2e  is incident with 3e . Without loss 
of generality assume that i ie E∈  for any {1,2,3}i ∈ . 
Obviously, there is exactly one hexagon H, which is a hexagon 
of G or an external hexagon of G, such that 1e  and 2e  belong 
to H. Let v be an end-point of 2e  such that v is not an end-
point of 1e  and let e be an edge of H such that e is incident 
with 2e  and 1e e≠ . Since edges of any hexagon alternative-
ly belong to 1E , 2E , and 3E , it follows that 3e E∈ . There-
fore, since no two edges from 3E  are incident, it follows that 

3e e=  and the proof is complete. □ 
 
Lemma 3.4. Let G be a benzenoid system or a tubulene and 
let P be a shortest path of length three in G. Then exactly 
one of the following two statements holds: 

(i) P belongs to exactly one hexagon, which is a hexagon 
of G or an external hexagon of G, 

(ii) there exists exactly one {1,2,3}i ∈  such that P 
belongs to exactly one connected component of 

iG E− . 

Proof. If two edges e and e' are incident, they can not both 
belong to the set iE , {1,2,3}i ∈ . Therefore, the edges of P 
can not all belong to one set iE . Hence, we have two 
possibilities: 

• If ( ) iE P E∩ ≠ ∅  for any {1,2,3}i ∈ , then by Lemma 
3.3. P belongs to (exactly) one hexagon of G or to one 
external hexagon of G. 

• If there exists {1,2,3}i ∈  such that ( ) iE P E∩ = ∅  
(note that such i is unique), then all vertices and edges 
of P belong to the graph iG E− . Since P is connected, 
it belongs to exactly one component of iG E− . 

Therefore, the proof is complete. □ 
 
 Finally, we are able to prove the main result of this 
section, which enables us to compute the Wiener polarity 

index of a benzenoid system or a tubulene. 
 
Theorem 3.5. Let G be a benzenoid system or a tubulene. 
Then 

1 2 3( ) 3 ( ) ( ) 2 ( ) 3 ( ) ( ).p p
C

W G h G h G h G h G W C
∈

= + + + + ∑


 

Proof. Denote by V' the set of all unordered pairs of vertices 
{ , }u v  such that u,v lie on the same hexagon of G and 

( , ) 3d u v = . Similarly, denote by V'' the set of all unordered 
pairs of vertices { , }u v  such that u,v lie on the same external 
hexagon of G and ( , ) 3d u v = . Moreover, let V''' be the set 
of all unordered pairs of vertices { , }u v  such that 

( , ) 3d u v =  and u,v do not lie on the same hexagon. It 
follows 

′ ′′ ′′′= + +( ) | | | | | |.pW G V V V  

 Obviously, for any hexagon of G, there are three 
unordered pairs of vertices on H at distance three. On the 
other hand, if for two vertices u, v on the same hexagon it 
holds ( , ) 3d u v = , then by Lemma 3.4. this hexagon is 
unique. Therefore, ′ =| | 3 ( )V h G . 
 If 1( )h H G∈ , there is exactly one pair of vertices 

, ( ) ( )u v V h V G∈ ∩  at distance three. If 2( )h H G∈  we have 
two such pairs and for 3( )h H G∈  there are exactly three 
such pairs. Hence, ′′ = + +1 2 3| | ( ) 2 ( ) 3 ( ).V h G h G h G  
 If u, v are vertices at distance three that do not lie on 
the same hexagon, then by Lemma 3.4. they belong to 
exactly one connected component of iG E− , where 

{1,2,3}i ∈ . For the contrary, let u, v belong to exactly one 
connected component C of iG E−  for some {1,2,3}i ∈  
and ( , ) 3Cd u v = . We will show that ( , ) 3Gd u v = . Consider 
two cases: 

• If G is a benzenoid system, it obviously follows 
( , ) 3Gd u v =  since there is only one shortest path 

between u and v in G. 

• If G is a tubulene, it could happen that ( , ) 1Gd u v =  
(the distance must be odd since every tubulene is a 
bipartite graph).[31] In such a case, u and v are 
adjacent with an edge and we obtain a cycle of length 
four in G, which is a contradiction by Remark 2.1. 
Therefore, ( , ) 3Gd u v = . 

Since ( , ) 3Gd u v =  and u, v belong to one connected 
component of iG E− , they can not both belong to one 
hexagon. Hence, 

∈

′′′ = ∑| | ( )p
C

V W C


 

and we are finished. □ 
 
 The previous result enables us to reduce the 
problem of computing the Wiener polarity index of G to the 
problem of computing the Wiener polarity indices of paths 

 

Figure 3. Benzenoid system G with external hexagons. 
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or cycles, which is trivial. In particular, if nP  is a path on 
1n ≥  vertices, then 

  
0, 1,2

( )
3, 3p n

n
W P

n n
=

=  − ≥
 (1) 

and if nC  is a cycle on 3n ≥  vertices, we have 

  
0, 3,4,5

( ) 3, 6
, 7.

p n

n
W C n

n n

=
= =
 ≥

 (2) 

 

A CLOSED FORMULA FOR  
BENZENOID SYSTEMS 

In this section we focus on benzenoid system and use the 
developed cut method to obtain a closed formula for the 
Wiener polarity index of an arbitrary benzenoid system. 
Throughout the section we denote by ( )iα G , {1,2,3}i ∈ , 
the number of elementary cuts of a benzenoid system G 
that contain only edges from iE  (the elementary cuts in a 
given direction). First, three auxiliary results are needed. 
 
Lemma 4.1.[32] Let G be a benzenoid system with ( )in G  
internal vertices. Then ( ) 4 ( ) 2 ( )in G h G n G= + − . 
 
Lemma 4.2. Let G be a benzenoid system with the boundary 
cycle Z. Then = + +1 2 3| | 2( ( ) ( ) ( )).Z α G α G α G  
 
Proof. Obviously, every elementary cut of G intersects the 
boundary cycle Z exactly twice. Since the number of 
elementary cuts is 1 2 3( ) ( ) ( )α G α G α G+ + , we have that the 
number of edges in Z is 1 2 32( ( ) ( ) ( ))α G α G α G+ + . Hence, the 
result follows. □ 
 
Lemma 4.3. Let G be a benzenoid system. Then the graph 

iG E− , {1,2,3}i ∈ , has exactly ( ) 1iα G +  connected 
components. 
 
Proof. When all the edges from one elementary cut are 
deleted, the obtained graph has exactly two connected 
components. Therefore, if we delete elementary cuts one 
by one, at every step we get one additional component. 
After deleting all the elementary cuts we have ( ) 1iα G +  
connected components. □ 
 
Note that Lemma 4.3. also follows from the fact that the 
quotient graph iT , which has connected components of 

iG E−  as vertices, two such components being adjacent 
whenever there is an edge in iE  connecting them, is always 
a tree.[33] In such a tree, every vertex represents a 
connected component of iG E−  and every edge represents 
an elementary cut in direction iE . 

 Finally, we are able to show the main result of this 
section. 
 
Theorem 4.4. Let G be a benzenoid system. Then ( )pW G =

1 2 39 ( ) ( ) 2 ( ) 3 ( ) 6.h G h G h G h G+ + + −  
 
Proof. Let {1,2,3}i ∈ . Since by Lemma 4.3. the graph 

iG E−  has exactly ( ) 1iα G +  connected components, we 
denote by 1 ( ) 1, ,

i

i i
α Gn n +…  the number of vertices in the 

connected components of iG E− . Obviously 

  
( ) 1

1

( ).
iα G

i
j

j

n n G
+

=

=∑  (3) 

By Theorem 3.5., 

1 2 3

1 2 3( ) 3 ( ) ( ) 2 ( ) 3 ( )

( ) ( ) ( ).
p

p p p
P P P

W G h G h G h G h G

W P W P W P
∈ ∈ ∈

= + + +

+ + +∑ ∑ ∑
  

 

Since any iP ∈  , {1,2,3}i ∈ , has at least three vertices 
(see Lemma 3.1.), by Equation (1). and Equation (3) we get 

( ) 1

1

( ) ( 3) ( ) 3( ( ) 1).
i

i

α G
i

p j i
P j

W P n n G α G
+

∈ =

= − = − +∑ ∑


 

 By inserting this into the previous equation we 
deduce  

1 2 3

1 2 3

( ) 3 ( ) ( ) 2 ( ) 3 ( ) 3 ( )

3( ( ) ( ) ( )) 9
pW G h G h G h G h G n G

α G α G α G

= + + + +

− + + −
 

and then, using Lemma 4.2., one can obtain 

= + + +

+ − −

1 2 3( ) 3 ( ) ( ) 2 ( ) 3 ( )

3 | |
3 ( ) 9.

2

pW G h G h G h G h G

Z
n G

 

Obviously, the number of internal vertices of G is exactly 
( ) | |n G Z− . Hence, Lemma 4.1. implies | | 2 ( )Z n G= −

4 ( ) 2h G − . Inserting this in the previous equation we  
finally get 

1 2 3( ) 9 ( ) ( ) 2 ( ) 3 ( ) 6,pW G h G h G h G h G= + + + −  

which finishes the proof. □ 
 
Note the the number of hexagons of a benzenoid system 
can be obtained from its boundary edges code.[34] 
Therefore, by Theorem 4.4. the Wiener polarity index of a 
benzenoid system can be determined by the shape of its 
boundary. To show how Theorem 4.4. can be used, we 
demonstrate it on one simple example. Let G be a 
benzenoid system from Figure 3. We can immediately see 
that ( ) 8h G =  and 1 2 3( ) ( ) ( ) 1h G h G h G= = = . Therefore, by 
Theorem 4.4. we obtain 

( ) 9 8 1 2 1 3 1 6 72.pW G = ⋅ + + ⋅ + ⋅ − =  
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THE WIENER POLARITY INDEX  
OF ZIG-ZAG AND ARMCHAIR  

TUBULENES 
The aim of this section is to use the obtained cut method to 
calculate closed formulas for the Wiener polarity index of 
zig-zag and armchair tubulenes. 

Zig-zag Tubulenes 
If G is a (n,m)-type tubulene where n = 0 or m = 0, we call it 
a zig-zag tubulene. Let G be a zig-zag tubulene such that 

1 2,c c  are the shortest possible cycles encircling the axis of 
the cylinder (see Figure 4). If G has r layers of hexagons, 
each containing exactly h hexagons, then we denote it by 

( , )ZT r h , i.e., ( , )G ZT r h= . We always assume 1r ≥  and 
3h ≥  (see Remark 2.1.). 

 Obviously, the graph 1G E−  has 1r +  connected 
components, each isomorphic to a cycle on 2h vertices. 
Moreover, the graph 2G E−  has h connected components, 
each isomorphic to a path on 2 2r +  vertices, and the same 
holds for the graph 3G E− . Also, we notice that 

1 2 3( ) ( ) ( ) 0h G h G h G= = = . Therefore, by Theorem 3.5. we 
obtain 

2 2 2( ( , )) 3 ( 1) ( ) 2 ( ).p p h p rW ZT r h rh r W C hW P += + + +  

Using Equation (1) and Equation (2) we conclude 

24 3, 3
( ( , ))

9 , 4.p

r h
W ZT r h

rh h
− =

=  ≥
 

Armchair Tubulenes 
If G is a (n,m)-type tubulene where n = m, we call it an 
armchair tubulene. Let G be an armchair tubulene such that 

1c  and 2c  are the shortest possible cycles encircling the 
axis of the cylinder and such that there is the same number 
of hexagons in every column of hexagons (see Figure 5). If 
G has r vertical columns of hexagons, each containing 
exactly h hexagons, then we denote it by ( , )AT r h , i.e.,

( , )G AT r h= . Obviously, r must be an even number. Note 
that ( , )AT r h  is a 2 2( , )r r -type tubulene. Furthermore, we 
always assume 1h ≥  and 4r ≥  (see Remark 2.1.). 
 First, we observe 1( )h G r=  and 2 3( ) ( ) 0h G h G= = . 
Also, it is not difficult to see that the graph 1( , )AT r h E−  has 
exactly 2

r  connected components, each isomorphic to a 
path on at least three vertices, see Figure 6. 
 Denote the number of vertices in these components 
by 

2
1 , , rn n… . Therefore, by Equation (1) we get 

∈

= + + − = −

= + −

∑ 

1

1
2

3 3
( ) ( ) | ( ( , )) |

2 2
3

(2 2)
2

p r
P

r r
W P n n V AT r h

r
r h

  

and the same result holds for 3( , )AT r h E− . On the other 
hand, the graph 2G E−  has exactly r connected com-
ponents, each isomorphic to a path on 2 2h +  vertices. 
Therefore, by Equation (1) 

2

( ) (2 1).p
P

W P r h
∈

= −∑


 

 Finally, using Theorem 3.5. we conclude 

( ( , )) 9 .pW AT r h rh r= +  

 

Figure 4. Zig-zag tubulene (3,4)ZT  with three directions of 
edges ( 1E , 2E , and 3E ). 

 

Figure 5. Armchair tubulene (6,4)AT  with three directions 
of edges ( 1E , 2E , and 3E ). Curves 1L  and 2L  are joined 
together. 



 
 
 
 N. TRATNIK: The Wiener Polarity Index of Benzenoid Systems … 315 
 

DOI: 10.5562/cca3291 Croat. Chem. Acta 2018, 91(3), 309–315 

 

 

 

CONCLUSION 
In the paper we developed a new method for computing 
the Wiener polarity index for two classes of molecular 
graphs – benzenoid systems and nanotubes. Using this 
method, the Wiener polarity index can be obtained from 
the Wiener polarity indices of much simpler graphs and 
from some other parameters that are easy to calculate (the 
numbers of different types of hexagons). It is also shown 
how this method can be applied to calculate the closed 
formulas for the Wiener polarity index of benzenoid 
systems and special families of nanotubes. 
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Figure 6. The bold edges in = (6,4)G AT  represent a 
connected component of the graph − 1G E . 

https://doi.org/10.1007/978-3-642-87143-6
https://doi.org/10.1007/978-3-642-87143-6
https://doi.org/10.1007/978-3-642-87143-6
https://doi.org/10.1038/354056a0
https://doi.org/10.1002/9783527613106
https://doi.org/10.1002/9783527613106
https://doi.org/10.5562/cca3212
https://doi.org/10.5562/cca3212
https://doi.org/10.1021/ja01193a005
https://doi.org/10.1002/aic.690080421
https://doi.org/10.1021/ci970122j
https://doi.org/10.1021/ci970122j
https://doi.org/10.1016/0166-218X(88)90017-0
https://doi.org/10.1016/j.amc.2017.06.005
https://doi.org/10.1016/j.amc.2017.06.005
https://doi.org/10.1016/j.amc.2012.03.090
https://doi.org/10.1016/j.amc.2012.03.090
https://doi.org/10.1016/j.amc.2016.01.043
https://doi.org/10.1016/j.amc.2016.01.043
https://doi.org/10.1016/j.amc.2015.10.045
https://doi.org/10.1007/s00373-012-1215-6
https://doi.org/10.1016/j.aml.2012.01.006
https://doi.org/10.1016/j.aml.2012.01.006
https://doi.org/10.1016/0009-2614(72)85099-1
https://doi.org/10.1016/0009-2614(72)85099-1
https://doi.org/10.5562/cca2294
https://doi.org/10.2174/1385272819666141216232659
https://doi.org/10.2174/1385272819666141216232659
https://doi.org/10.1016/j.amc.2017.04.011
https://doi.org/10.1016/j.amc.2017.04.011
https://doi.org/10.1093/comjnl/bxw046
https://doi.org/10.1093/comjnl/bxw046
https://doi.org/10.1007/s10857-007-9028-x
https://doi.org/10.1021/ci9600869

