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 For the ultralow altitude airdrop decline stage, many 
factors such as actuator nonlinearity, the uncertain 

atmospheric disturbances, and model unknown 

nonlinearity affect the precision of trajectory 
tracking. A robust adaptive neural network dynamic 

surface control method is proposed. The neural 
network is used to approximate unknown nonlinear 

continuous functions of the model, and a nonlinear 

robust term is introduced to eliminate the actuator’s 
nonlinear modeling error and external disturbances. 

From Lyapunov stability theorem, it is rigorously 

proved that all the signals in the closed-loop system 

are bounded. Simulation results confirm the perfect 

tracking performance and strong robustness of the 
proposed method. 
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1 Introduction 
 

Ultra-low-altitude airdrop, mainly used for delivering 

heavyweight equipment and supplies to the desired 

region precisely, is one of the essential functions of a 

large transport aircraft and it is critical to the success 

of many military tasks [1,2]. The process of ultra-

low-altitude airdrop includes five stages: preparation, 

fallin, flat, tracking and pull.. After the stage of 

falling, heavyweight equipment and supplies are 

dropped to the desired place accurately. During the 

airdrop process, uncertainty is inevitable, so it is very 

likely that the model function is unknown. Besides, 

the ground effect [3,4,5], a sensor measurement error 

and the low altitude airflow and other uncertain 

factors seriously disturb trajectory control and 

threaten the flight safety and mission performance 

[6,7,8].What’s more, the aircraft with a low-speed 

flying state has a poor anti-interference performance, 

which is highly susceptible to low-altitude 

atmospheric disturbances. Over the recent years, 

quite a few meaningful achievements have been 

reported in developing advanced aircraft controllers 
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to ensure the accuracy and aircraft safety of the 

airdrop [1,9-16]. For example, a strong robustness of 

double ring mixed iterative sliding mode controller is 

proposed to reject constant uncertainties and 

uncertain atmospheric disturbance [1]. In addition, on 

the basis of decoupled and linearized aircraft model 

achieved by using the input-output feedback 

linearization approach, an iterative SM(sliding-

mode) flight controller is presented. This method 

establishes a global dynamic switching function in 

the first-level for the sake of eliminating the reaching 

phase of the sliding motion, meanwhile, a nonlinear 

function in the second-level is designed to constitute 

an integral sliding manifold, weakening the over-

compensation of the integral term to big errors 

effectively [9]. Moreover, on the basis of the 

feedback linearization aircraft-cargo model, a 

SMC(sliding-mode control) approach has been 

developed based on a projection adaptive function 

approximation, in which an adaptation strategy is 

designed to acquire robustness against the 

uncertainties of a model, besides, the prior 

knowledge of the complicated uncertainties is not 
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demanded[10]. However, it is  noted  that when 

designing the controller, the above references are not 

considering actuator nonlinearities' input, such as 

dead zone and backlash, ignoring the actuator 

dynamic characteristics and nonlinear factors, and 

considering that the actual deflection angle is equal 

to the rudder angle instruction[11]. But because the 

actual steering control rudder deflection actuator 

includes mechanical link and hydraulic transmission 

device, which will inevitably lead to dead zone or 

backlash nonlinearity in the steering gear, weakening 

of the stability of the system occures,  even resulting 

in the system divergence [16]. 

At present, controllers with actuator input dead zone 

or backlash of transport have not been reported, but 

the control methods for nonlinear system with dead 

zone or backlash have been already done a lot of 

researches[17-23]. For example, a novel adaptive 

inverse method is proposed to cope with 

nonlinearities, which constructs the adaptive inverse 

of the dead-zone [17]and backlash [18] that are 

cascaded with the control object to eliminate the 

adverse effects. Recently, a novel robust adaptive 

controller is designed. The proposed method 

constructs a global linear model  regarding dead-zone 

as a linear input and bounded of nonlinear 

perturbation, and effectively overcomes the influence 

of dead-zone on the system[19] Moreover, an 

adaptive tracking scheme has been proposed to use a 

global linear model to establish a dead-zone 

nonlinear model, which relaxes the condition that the 

slopes of dead-zone must be time invariant[20]. More 

recently, an adaptive neural method is proposed for a 

class of nonlinear system by using Nussbaum gain 

technique, where the dead-zones are entirely 

unknown [21]. In addition, for a class of unknown 

backlash nonlinear uncertain system, on the basis of  

the backstepping method, the adaptive compensation 

term of backlash nonlinearity is introduced to 

suppress the modeling error of backlash. However,  

in the controller design process, the differential of the 

virtual control variables needs to be repeated, which 

greatly increases the complexity of the algorithm 

[22]. 

Inspired by the discussion above, in the execution of 

the input nonlinearity of airdrop decline phase of 

flight path angle tracking control problem, this paper 

proposes an adaptive neural network dynamic surface 

control method, of which a first-order low-pass filter 

is introduced in the traditional backstepping 

technique to avoid explosion of differential 

problems[23]. The adaptive law is used to estimate 

the unknown model error and external disturbance, 

and the robust compensation term and neural network 

are introduced to achieve the closed-loop system 

stability control, which effectively eliminates the 

effect of actuator nonlinearity on the system. 

Moreover, It is proven that the designed controller is 

able to guarantee that all signals are the(semi-global) 

uniform ultimate bounded. Finally, simulation 

verifies the feasibility and effectiveness of the 

obtained theoretical results. 

 

2 Problem statement 
 

2.1 Aircraft model with an actuator nonlinearity 
 

At the airdrop decline stage, the pilot tracks the 

reference flight path angle instruction mainly through 

the frequent manipulation servo drive the rudder 

deflection to ensure an aircraft quickly and 

accurately. .In this process, considering only the 

aircraft pitch movement, including steering nonlinear 

aircraft longitudinal model it can be expressed as 

follows[1]: 
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where   is the flight path angle;      with   

being the pitch angle; q  is the pitch rate; u  is rudder 

angle instruction and  is the servo actuator driving 

actual rudder angle. ( )f   is theservoactuator 

nonlinearities; 0 0 ,A m yf qSc C I 1 ,A mq yf qSc C I

2 ,A m yf qSc C I
3 ,

eA m yf qSc C I
4 ,f g V Ac is the 

mean aerodynamic chord;    5 ,Lf qSC T mV 

 6 0 ,Lf qSC mV   S  is the wing area; yI is the 

pitch moment of inertia; m  is the mass of the aircraft; 

V is the airspeed; T is the engine thrust, 2 2q V is 

the dynamic pressure;  is the air mass density; mC 

is the pitch moment coefficients and 
LC 

 is the lift 

coefficients. 

Assumption 1: There are uncertain functions 

( , , )wd C   and ( , , , , )nd C q   satisfy

( , , )w wd C D    , ( , , , , )n e nd C q D     ,where 

0wD   and 0nD   are unknown constants. 
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2.2 The actuator input dead-zone or backlash 

nonlinearity model 
 

In order for the actual aircraft actuator to perform 

with dead-zone and backlash, a class of nonlinearities 

can be represented by a generalized model as follows: 

 

 ( ) ( , ) ( )f u k u t u u     (2) 

 

Where ( , ) 0k u t  is an unknown continuous function, 

( )u is bounded modeling error which satisfies 
*( )u   with *

  being an unknown constant. 

Assumption 2: ( , )k u t  is bounded and there exist 

unknown constants 
mink  and 

maxk  satisfy 

min max0 ( , )k k u t k   . 

Case1: When considering the dead-zone nonlinearity, 

( )u  can be described as 
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where ( , )k u t  stands for the slope of the dead-zone 

characteristic, 
rb  and 

lb  represent the breakpoints of 

the dead-zone nonlinearity, 
rb  and 

lb  are unknown 

positive constants, the ( )u  function is chosen as 
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According to the eq.(4) and the assumption 2, it can 

be known that *

max( ) max{ , }r lu k b b     . 

Case 2: When considering backlash nonlinearity, the 

analytical expression of ( )u  can be delivered as 
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where ( , ) 0k u t   is the slope of the backlash, 0rB   

and 0lB   are relative positions and they are 

constant parameters. The function ( )u  in model (2) 

is chosen as 
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Then we have that assumption 2 is satisfied and
*

max( ) max{ , }r lu k b b     . Thus, it can be seen 

from the above discussion that dead-zone and 

backlash nonlinearities can be viewed as the 

particular cases of the input nonlinearity in our note. 

Assumption 3: The reference flight path angle 

instruction 
dy 、

dy  and 
dy  are smooth and bounded, 

and they are included in the compact set 
1  

 

   2 2 2

1 0, , |d d d d d d K           (7) 

 

Objective: For the aircraft longitudinal model with 

the actuator nonlinearity, uncertain external 

atmospheric disturbance, and unknown model 

function, the Nussbaum-gain technique will be used 

in this paper to design controller so that the flight path 

angle y  can track the reference flight path angle 
dy  

instruction quickly and accurately. 

Remark 1: For the convenience of the 

expression,definedvariables 1 2 3[ , , ] [ , , ]T Tx x x q  ; 

( )wd  、 ( )nd  、 ( )wD   and ( )nD   are replaced by 

wd 、
nd 、

wD  and
nD , thus, the system model(1) 

can be rewritten as 
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where 1 1 6 5 1 4 1( ) cos ,g x f f x f x    2 2( ) 0g x   are the 

known model functions and 

3 3 0 1 3 2 2 2 1( )g x f f x f x f x     is an unknown smooth 

function. 

 

2.3 The Nussbaum type gain 
 

Since  the Nussbaum-gain technique will be used in 

this paper, some results for the Nussbaum-gain are 

given as following:. 

A function ( )N is called a Nussbaum-type function if 

it is even smooth and has the following properties[24]: 
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Lemma 1 [25]: Let ( )V  and ( )   be smooth 

functions defined on [0, )ft  with ( ) 0V t , 

[0, )ft t  , where [0, ] ft . ( )N  is an even 

smooth Nussbaum function. If the following 

inequality holds: 
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where 
1  represents a suitable constant, 

2  is a 

positive constant, and ( ( ))g x   is a time-varying 

parameter, which takes values in the unknown closed 

intervals ,I l l     , with 0 I , then ( )V t , ( ) t  and 

0
( ( ))

t

N d     must be bounded  on [0, )ft . 

Lemma 2 [26]: The hyperbolic tangent function 

tanh( )  will be used in this note, and it is well known 

that it is continuous, differentiable, and monotonic, 

and it fulfills that for any 0   and q R . 
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3 The adaptive neural flight control law 

design 
 

3.1 NN basics 
 

Considering the unknown nonlinear function of 

model (8), this paper uses the RBF neural network to 

approximate the unknown function ( )i ig x  
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optimal weight vector and is an unknown constant 

parameter, ( ) : isi

i ix R R   is the basis function 

vector, is  is the number of nodes in the neural 

network i . ˆ
iW  is the estimate of *

iW , define the 

estimate error * ˆ
i i iW W W  . 

i  and 
i  indicate the 

( )i ix  and ( )i ix  respectively, 
i  is neural network 

approximation error, and satisfies *

i i  , *

i  is an 

unknown positive constant. 

 

3.2 Controller design 
 

According to the backstepping progressive controller 

design method, the adaptive law is introduced to 

estimate the system unknown parameters. The design 

steps of the adaptive dynamic surface controller are 

as following: 

To begin with this work, define the first tracking error 

variable 
1 1 de x   ,and the time derivative of 

1e  is 
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a combination Eq.(11), we can rewrite (13) as 
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The virtual control law and adaptive law of 

parameters are designed as following: 
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Where *

1 1 wD     , 
1Ŵ  and 

1̂  are the estimates of 
*

1W  and *

1  respectively, 

1 1 1 1 20, 0, 0, 0, 0k          are design 

parameters. 1

1 1

    is the adaptive gain matrix. The 

term 
1̂  in (16) is viewed as a robust compensator 

which can reject the influence of modeling 

approximation error and external disturbance. 

To avoid repeatedly differentiating 1 , which 

results in the explosion of complexity, let 
1  pass 

through a first-order filter with time constant 2 0   

to acquire 2, f  as 

 

 2 2, 2, 1 2, 1( )+ ( ) ( ) , (0) (0)f f ft t t        (17) 
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Then, define the second tracking error variable 

2 2 2, fe x   , and the time derivative of 
2e  is 

 

 2 3 2, fe x    (18) 

 

Similarly, design the virtual law and the parameter 

adaptive law 
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where *

2 2   , 
2Ŵ  and 
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2W and
*

2 respectively,
2 0k  ,

2 0  2 0  ,
3 0  and

4 0   are design parameters. 1

2 2

    is the 

adaptive gain matrix. let 
2  pass through a first-order 

filter with time constant 
3 0   to achieve 3, f  as 
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Design the third tracking error variable 3 3 3, fe x   , 

noting(8) and (12), and the time derivative of 3e  is 
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Finally, The  virtual  control  law and adaptive law of 

parameters are designed as following: 
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6 0   are design parameters. 
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is the adaptive gain matrix. 

 

4 Stability and tracking performance 

analysis 
 

Theorem 1: According to the control system (8), for 

the closed-loop system composed of control law(14) 

(19) (23)  (24), and the adaptive law of parameters(15) 

(20)  (25), if assumptions 1~4 are satisfied, and the 

initial states of the system are bounded,  control 

parameters ( 1 6)i i  、
ik 、

i and ( 2,3)i i  exist 

there. Make all the variables of the closed-loop 

system semi-globally uniformly ultimately stable  

and the tracking error can converge to a point of 

origin that can be made arbitrarily small.. 

Define the third order subsystem Lyapunov 

function 
3V  
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a combination Eq.(22) (23) and (25), the time 

derivative of (26) is 
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 (27) 

 

Adding and subtracting   on the right-hand side of 

(27), one has 
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 (28) 

 

Substituting Eq.(25) into Eq.(28) and according to 

the lemma 2 leads to 
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  * 2

3 3 3 3 3 3

5 3 3 6 3 3

( , ) ( ) 1 0.2785

ˆˆT

V f k u t N k e

W W

   

   

   

 
 (29) 

 

using the following inequalities 

 

 

2 2
*5 5

5 3 3 3 3

2 *26 6

6 3 3 3 3

ˆ
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ˆ
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 



 
    

  

  

 (30) 

 

Noting (30), one can obtain 

 

  3 3 3 0( , ) ( ) 1V V f k u t N a        (31) 

 

where  1

3 3 6 5 max 3min 2 , , ( )k       , *26

0 3
2

a




2
* *5

3 3 30.2785
2

W


   . 

Multiply (31) by te , and then integrate (31) over 

[0, ]t . Thus 

 

 

  ( )

3 3
0

0

3

( , ) ( ) 1

(0)

t
tV f k u N e d

a
V

    



   

 


 (32) 

 

According to the assumption 2 and lemma 1, hence，

the 3 ( )V t with ( )t and the term 3
0

( , ) ( )
t

f k u N d     

are bounded. 

Define the upper bound Q  as follows 
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3
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( , ) ( ) 1
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From (32) and (33), we can get 
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Notice (26) and (34), the 3 ( )V t  is bounded and 
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where 0Q   and 0M   are unknown 

constants. 

Define the output error 2 2, 1fy     

and 3 3, 2fy    . From (13)~(16)、 (18)~(21) and 

(23)~(26) we can know that  continuous functions 

2 ( )B   and 
3 ( )B  exist there 
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From (36), we can get the following inequalities 
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To be same as (26), define the first order subsystem 

of the Lyapunov function 
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Notice 
2 2 1 2x e y   , according to the lemma 2、

Eq.(15) and (16) and the young’s inequalities
2 2 2 2

5 1 2 5 1 2 5 1 2 2( ) 2 2, 2f e e f e e f e y y   2 2

5 1( ) 2f e , the 

time derivative of 
1V  is 
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 (39) 

 

where 
2

*2 * *2 1

1 1 1 1 10.2785
2 2

a W
 

     . Then, 

define the second order subsystem of the Lyapunov 

function 
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Using lemma 2, the time derivative of 2V is 
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where
2

*2 * *

2 4 2 3 2 2 22 2 0.2785a W       . 

According to Eqs.(34) and (35), 3V  is bounded and 
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3 3
ˆe W、  and 

3̂  are semi globally uniformly 

ultimately stable  and bounded. 

Define the following Lyapunov function: 

 

 
1 2V V V   (42) 

 

Note (37) (39) and (41). The time derivative of V is  
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where 2

3 1 2 2a a a M   , define following set 

 2 1 2 3 2 3 1 2 1 2 3( , , , , , , , , )e e e y y W W V P e M    , ,wh

ere 0P   is a constant, since the 
1  is a compact set, 

1 2   is also compact, it is easy to see from (36) 

and (37) that all the variables of the continuous 

functions 
2 ( )B  、

3 ( )B   are in the set 
1 2  . 

Therefore, 2 ( )B   and 3 ( )B   have maximums, 2 ( )D   

and 
3 ( )D   on 

1 2  respectively. Using the 

inequalities 
2 2 2 2
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, where 
2 30, 0c c   are design parameters. So, 

Eq.(43) can be written as: 

 

 
 

 

2 2
31

1 2

3
2 2

2

2 2 2

5 1 1 2 2

2 22 4

1 2 4

2 2

(2 ) 1 1 2

3
( )
2

2 2

i i i i

i

V W W

D c y

f k e k e

a





 
 



   

   
 

    

  


 (44) 

 

where  4 3 2 3 2a a c c   , then, let 
21 (2 ) 1 2 ( 2,3)i i iD c i     and 2

1 5 0k f k  ,

2 03 2k k  , where 0 0 0k and    are design 

parameters, we arrive at 
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Solving the inequality (45), we can achieve 

  2

4 4(2 ) (0) (2 ) utV a V a e     , obviously, all the 

signals of the closed loop system are bounded and we 

can get 

 

 4lim ( )
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a
V t
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By increasing the design parameters 
0 ik  、 、  and 

,6i i ( =1, ) , and meanwhile reducing the 1

max 1( ) 

、 1

max 2( )  , which makes  4 2a P  . When 

V P , 0V  , so V P  is an invariant set. If 

(0)V P , then ( )V t P  is for 0t  . The tracking 

error can converge to a sphere with a radius of 

 4 2a  , choose  4 4max (2 ),a P a  , thus 
2

1 2e V   , by adjusting the design parameters, the 

  can be arbitrarily small, and the tracking error can 

converge to any small area of the origin. 

 

5 The simulation analysis 
 

We simulate a 25,000 kg transport aircraft with a 

5,000 kg cargo for example. Design of an adaptive 

dynamic surface control law guarantees the aircraft 

flight path angle   tracking of the desired trajectory 

3 sin( )d t   accurately, assuming the atmospheric 

disturbance 0.02sin(2 )wd t  and 0.05cos( )nd t  . 

The initial state of the system are 

1 2 3(0) (0) (0) 0x x x   , the estimation initial values 

of adaptive parameters are set 

1 2 3
ˆ ˆ ˆ(0) (0) (0) 0     , and (0) 1  . Adaptive gain 

matrix is 
1 3 [0.5]diag    , the controller design 

parameters are chosen as 

1 2 5 6 0 1 2 30.5, 2, 2.5, 1.5, 3,k k k k          

1 2 3 0.2      and 2 3 1, 0.5c c    after 

experimental tuning. The Nussbaum function 
2

( ) cos( 2)N e   is used. The Gauss function is 

selected as the basis function of radial basis neural 

network, so 
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i i i i l
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  
x x
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where ˆ ( )TW  x  contains 27l   nodes with centers 

evenly spaced in [ 4,4] [ 4,4] [ 4,4]      and width 

2i  , the initial values of the neural network 

weights ˆ (0)W  are set to 0. 
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5.1 Control performance analysis with 

considering dead zone nonlinearity 
 

In order to investigate the influence of the dead-zone 

on airdrop control performance, the scheme proposed 

in this paper (scheme 1) is compared with the 

traditional adaptive dynamic surface controller 

(scheme 2).  

Firstly, adopting of scheme 2 to merely investigate 

the effect of dead zone on closed loop system without 

taking the external disturbances into consideration, 

the dead-zone model is shown as Eq.(48). The 

simulation result is shown as in Figure 1. 
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Figure 1. Flight path angle tracking curves with 

considered dead zone  nonlinearities. 

 

It is easy to see from fig.1 that the dead-zone leads 

to reduction of performance of the control system, 

resulting in the aircraft unable to track the desired 

trajectory command accurately. 

Then, coupled with the outside atmosphere 

disturbance influence of wd  and nd  on the aircraft 

control performance, the simulation result is shown 

as in figure 2. 

It can be seen from fig.2 that flight path angle 

tracking performance declines seriously, which leads 

to the instability of the closed-loop system and 

seriously affects the accuracy and safety of airdrop. 

 

5.2 Tracking control analysis with considered  

dead-zone or backlash 
 

Example 1: When dead-zone nonlinearity happens to 

be present in the system (8), choose the expression of 

( )u  as following: 

 

1.2( 0.35), 0.35

( ) 0, 0.35 0.35

1.2( 0.35), 0.35

u u

u u

u u



 


   
   

 (5) 

 

The initial conditions and disturbance expressions 

remain unchanged. The simulation results are shown 

as in the figures 3-5. 
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Figure 2. Flight path angle tracking curves with 

considering dead zone and disturbances. 
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Figure 3. Flight path angle tracking curves with 

scheme 1. 

 

It can be seen from Fig. 3-4 that scheme 1 can 

effectively overcome the influence of the dead zone 

and disturbances on the system and ensure the fast 

track of the desired flight path angle instruction. 

Tracking error converges to zero rapidly. From fig.5, 

it can be seen that the scheme 1 can effectively 

overcome the problem of the control input flutter 

caused by dead-zone nonlinearity. 
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Figure 4. Comparison of tracking error curves. 
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Figure 5. Comparison of control input curves. 

 

Example 2: When the backlash nonlinearity is 

concerned, choose the expression of ( )u  as 

following: 

 

 

others

1.2( 1 57.3), 0
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 (6) 

 

The controller is the same as in example 1, without 

changing the control parameters, initial conditions, 

and the Nussbaum functions. The simulation results 

are as shown in Fig.6 and 7. 

From Fig.6, it can be seen that when considering 

actuator dead-zone nonlinearity, the scheme 1 can 

achieve the same good tracking control performance 

as that of the dead zone nonlinearity. It effectively 

overcomes the bad influence of backlash nonlinearity 

on the system and has strong robustness 

characteristics. According to the Fig.7, the estimation 

of the unknown parameters values are gradually 

approaching the actual values, with good 

approximation effect. 
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Figure 6. Comparison of flight path angle and 

control input curves. 
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Figure 7. The curves of adaptive parameter 

estimation. 

 

6 Conclusion 
 

The method has the following advantages. Firstly, the 

scheme is not only applicable to the aircraft actuator 

dead-zone nonlinearity, but also it is suitable for the 

backlash nonlinearity. Secondly, the approach can 

accurately estimate the unknown model parameters, 

using the neural networks to approximate the 

unknown system function. The assumption that 

model function must be known has been canceled. 

Thirdly, a robust adaptive compensation term is 

introduced to eliminate the adverse influence of the 

external atmospheric disturbances, neural network 

approximation error, and actuator nonlinear 

modeling error. The method has a certain reference 
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value for solving the tracking control problem for a 

class of uncertain nonlinear systems with actuator 

nonlinearity, which is similar to the structure. 
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