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An improved two-dimensional Q-State Monte Carlo Potts model for describing anisotropic growth of grains of ce-
ramics is established. The sintering additives, pores, and second-phase particles introduced into the ceramic matrix 
have been fully considered in the new algorithm. Using this model, the influence of the second-phase particles on 
the microstructural evolution of ceramics with elongated grain morphology are investigated. Results show that the 
addition of the second-phase particles obviously hinders the anisotropic growth of grains, thereby resulting in a 
slightly decreased average grain size and grain growth exponent. The preliminary investigation indicates that the 
simulation results are in good agreement with the existing sintering kinetic theory.
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INTRODUCTION

The in situ toughened ceramics have excellent me-
chanical properties at room and high temperature [1]. 
Increasing evidence has been observed on the introduc-
tion of second-phase particles to the in situ toughened 
ceramic matrix as enhanced components to achieve a 
synergistic toughening effect of the two mechanisms 
[2]. However, the anisotropic growth of grains during 
liquid phase sintering (LPS) determines the final micro-
structural morphology of the self-toughening ceramic 
material, and the addition of the second-phase particles 
complicates the formation of the microstructure. There-
fore, investigating the microstructural evolution of ce-
ramic materials by modeling and numerical simulation 
of LPS is a significant task. 

Recently, the Q-State Monte Carlo Potts (QSMCP) 
model has been expanded to investigate the grain growth 
mechanisms of two-phase ceramic material. For example, 
Fang et al. [3] proposed a two-dimensional (2D) Monte 
Carlo Potts(MCP) model for isotropic grain growth for 
two-phase ceramic materials, and the effect of two-phase 
size on the growth rate of matrix phase was discussed in 
detail. However, the presence of pores and liquid additives 
were not considered. Also, the MCP model was widely ap-
plied to simulate the anisotropic growth of grains. Yang et 
al. [4] first established a Monte Carlo model to investigate 
the anisotropic grain growth of single-phase ceramics and 
found that the anisotropy of grain boundary energies can 
significantly affect the anisotropy microstructure. Brown 
et al. [5] extended Yang’s model to simulate the pore mi-
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gration and vacancy annihilation of ceramics with aniso-
tropic grains. Currently, reports on the microstructural 
evolution of ceramic materials co-toughened by self-
toughening and diffusion toughening of second-phase par-
ticles have been few. 

SIMULATION MODEL

The model consists of a QSMCP model, a liquid 
phase growth model, and a pore migration and vacancy 
annihilation model.

QSMCP model

The continuum microstructure is mapped onto a 
suite of 2D discrete hexagonal lattice sites. In the QSM-
CP model, each lattice site possesses two states (P and 
Q), where Q is the maximum value for the grain orienta-
tion and P represents the type of the site, to distinguish 
each other from the coexistence of the matrix phase 1, 
second particle phase 2, liquid phase 3, and gas phase 4 
in the material system. For the matrix phase 1, the value 
of P is 1 and the orientation indices of matrix phase 1 
are randomly assigned in the range of 1 to q; adjacent 
grain lattices with the same orientation form crystal 
grains, and adjacent grain lattices with different orienta-
tions form grain boundaries. For the second particle 
phase 2, the value of P is 2 and the value of Q is -1. For 
the liquid phase 3, the value of Q is -2. For the gas phase 
4, the value of Q is -3 [6]. The total energy of the system 
and grain boundary energy of each phase can be ex-
pressed as follows:

  (1)
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  (2)
  (3)

  (4)

  (5)

  (6)

          (7)

  (8)

  (9)

  (10)

Where ETol is the total energy, E11 is the grain bound-
ary energy of the neighboring anisotropic grain (phase 
1) sites, E22 is the grain boundary energy of the neigh-
boring second-phase grain (phase 2) sites, E12 is the 
grain boundary energy of the neighboring phase 1 and 
phase 2, E13 is the grain boundary energy of the neigh-
boring phase 1 and phase 3, E23 is the grain boundary 
energy of the neighboring phase 2 and phase 3, E14 is the 
grain boundary energy of the neighboring phase 1 and 
phase 4, E24 is the grain boundary energy of the neigh-
boring phase 2 and phase 4, and E34 is the grain bound-
ary energy of the neighboring phase 3 and phase 4. N1 is 
the site number of the matrix phase 1, N2 is the site num-
ber of the second particle phase 2, N3 has a smaller value 
than N1 and N2. n1 is the phase 1 site number around one 
specific site of phase 1 (≤6), n2 is the phase 2 site num-
ber around one specific site of phase 2 (≤6), n3 is the 
phase 2 site number around one specific site of phase 1 
when N3 = N1; otherwise, it is the phase 1 site number 
around one specific site of phase 2 when N3 = N2 (≤6), n4 
is the phase 1 site number around one specific site of 
phase 3 (≤6), and n5 is the phase 1 site number around 
one specific site of phase 4 (≤6). δ(qi, qj) is the Kro-
necker function(δ(qi, qj)=1 when qi=qj, δ(qi, qj)=0 when 
qiqj). Jθ (qi) is the surface energy of qi at the plane nor-
mal to the axisθ (where θ=0, π/3, or 2π/3), Jb is the 
grain boundary binding energy which is equal to 0,3, 
and Jθ (qj) is calculated by Wulff plot in detail according 
to the literature [4]. 

In this study, grain growth is achieved by a lattice 
reorientation attempt. The energy change before and af-
ter reorientation of the system is calculated by equation 
(1), and equation (11) is used to determine the accept-
ance of the orientation attempt.

  (11)

Where ∆E is the energy difference before and after 
reorientation, kB is the Boltzmann constant, and T is the 
absolute temperature.

Dissolution-diffusion-precipitation model

For the liquid phase lattice, exchange attempts are 
made in the following three states for the neighboring 
solid-phase lattice A and liquid-phase lattice B [7], as 
shown in Figure 1.

Pore migration and 

vacancy annihilation model

The pore lattice adjacent to the grain boundary and 
the solid-phase lattice adjacent to the selected pore lat-
tice are randomly selected. The aforementioned two se-
lected lattices are exchanged, and then a new orienta-
tion that satisfies minimizing the system energy is given 
to the solid-phase lattice after the exchange. The energy 
change (∆E) after the aforementioned exchange at-
tempts is calculated, and then the probability of accept-
ing the exchange attempt is calculated according to 
equation (11), which is used to simulate the pore diffu-
sion process [8]. For the vacancies on the grain bounda-
ries, the vacancy annihilation method is used to simu-
late the pore discharge process [8].

Figure 1  Schematic of state exchange attempt for neighb- 
oring solid and liquid lattice

Simulation conditions

This model is implemented by using C# program-
ming language. The simulation domain is performed in 
256 × 256 hexagon sites. The maximum value for the 
grain orientation (Q) is 60. The edge length of the hex-
agonal site is 0,6 μm. The vacancy diffusion rate is 0,3 
and KbT is 0,7. The specific grain boundary energy ratio 
is J11: J12:J22 J13:J23:J14 J24:J34 = J11(qi, qj):1:3:1:1:1:1:1. 
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The simulation time is represented by the number of 
MCS, and the simulation time is 1 200 MCS for the 
Systems I and , where the initial grains size is 2,7 m, 
the porosity is 30 vol %, and the liquid phase is 4 vol %. 
There is no second-phase particle addition in System I, 
but there is 3 vol % second-phase particles with size of 
1,0 m added in System . The simulation data are the 
average results of the 15 independent simulations to en-
sure the accuracy of statistical results.

RESULTS AND DISCUSSION

Microstructure evolution 

Figure 2 shows the temporal microstructure evolu-
tion for grain growth at the same temperature for differ-
ent MCS, where the white regions indicate the matrix 
phase, the red regions indicate the sintering liquid addi-
tives, the blue regions indicate the second-phase parti-
cles and the dark regions indicate the grain boundary 
and pores. From Figures 2(a) to 2(c), a large number of 
stomatal series channels are formed in the simulation 
region, which promotes the stomata move from the in-
ternal simulation zone to the boundary, thereby achiev-
ing the densification of materials. In addition, grain 
growth and densification are performed simultaneously, 
and the grain anisotropy characteristics become increas-
ingly obvious with the increase in simulation time. 
However, grain growth becomes relatively slow due to 
the hindrance of pores [5].

As shown in Figure 2(d), the second-phase particles 
can cause grain aggregations during powder mixing 
processes. As shown in Figure 2(e), the grain size of the 
matrix phase around the pores is generally larger than 
that around the second-phase particles, thereby indicat-
ing that the effect of the second-phase particles on the 
grain growth retardation is stronger than that of the 
pores. This condition is due to the pore migration. How-
ever, the second-phase particles undergo difficult mi-
gration because no dissolution precipitation occurs dur-
ing the sintering process. Figure 2(f) shows that grains 
are almost elongated in shape, and most of the second-
phase particles migrate from the grain boundary to the 
triple point. The grain size of the matrix phase around 
the second-phase particles is obviously reduced, but the 

grain growth rate is faster in the region adjacent to the 
matrix phase. This condition indicates that the second-
phase particles have a strong pinning effect and the 
second-phase particles significantly inhibit the grain 
anisotropic growth.

Grain size and grain growth exponent

The grain growth can be described by the average 
grain radius increases during the simulation process, 
and the average grain size can be calculated by equation 
(12) as follows [3]:

  (12)

Where  is the average grain radius, A0 is the lattice 
area, and NTol and NGrain are the total number of site and 
grain in the simulation region, respectively.

The relation curves between average grain radius 
and simulation times (MCS) of systems I and II are 
shown in Figure 3. As shown in Figure 3, the average 
grain size increases with simulation time, but due to the 
addition of the second phase particles it is significantly 
reduced from 7,38 μm to 5,69 m after simulation with 
1 200 MCS.

Figure 4 shows the grain size distribution of the mi-
crostructure at 1 200 MCS. It can be found that the grain 
size is obviously reduced due to the addition of the sec-
ond phase particles. The small size of the grains in the 

Figure 2 Microstructure evolution

Figure 3  Relation curve between average grain radius and 
simulation times
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range of 0 μm to 2,25 μm is observed to account for the 
highest proportion of 24,5 % for system I, and the rela-
tively large grain sizes in the range of 3,5 μm to 4,5 μm 
are observed to account for the highest proportion at 
22,5 % for system II.

The grain growth rate can be characterized by the 
grain growth exponent, which can be calculated by the 
power law relationship for grain growth kinetics [3].

  (13)

Where n is the grain growth exponent,  is the average 
grain size at time t, and k is a constant.

The grain growth exponents at different times are 
shown in Table 1. Table 1 presents a certain degree of 
reduction for the grain growth exponents, which reduc-
es from 0,28 for Figure 2(c) to 0,24 for Figure 2(f) be-
cause the second-phase particles pin the matrix phase 
during the grain growth, which is close to the theoreti-
cal growth exponent [7].

CONCLUSIONS

An improved 2D QSMCP model to describe the ani-
sotropic growth of grains of self-toughening ceramic 
materials has been established. This model is developed 
to investigate the four-phase systems. The sintering 
mechanisms of anisotropic grain growth, pore migra-
tion and vacancy annihilation, LPS aids and the second-
phase particles were incorporated into the ceramic sys-
tems for simulation. The results show that the model 
can successfully simulate the microstructural evolution 
of ceramic materials with anisotropic grain morphology 
during LPS. The preliminary investigation indicates 
that the simulation results are in good agreement with 
the existing sintering kinetic theory.
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Figure 4 Grain size distribution, a) Sistem I, b) Sistem II

Table 1 Grain growth exponent

System Time 
/ MCS

Average grain radius 
/ m

Grain growth 
exponent

I 720 5,13 0,23
1 200 7,38 0,28

II 720 4,91 0,20
1 200 5,69 0,24




