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Abstract 

Dermal absorption is a key process in the drug delivery studies of the pharmaceutical and cosmetic 
industries, as well as in the fields of dermal toxicology, risk assessment, and the exposure of environmental 
pollutants. This process is typically described by the skin-water permeability coefficient. However, in vivo 
determination is laborious and expensive. Thus, in the last few years, the development of prediction models 
from structure descriptors or subrogation through physico-chemical measurements has gained interest. In 
the present work, a previous subrogation model based on the chromatographic retention on a common 
C18 column has been tested for a wide set of drugs with very different chemical nature and having a wide 
range of permeability values. A total of 65 compounds have been used to establish the correlation between 
skin permeation and the HPLC retention, corrected by the McGowan volume of the drug. Afterwards it was 
successfully validated in terms of robustness and prediction ability. Finally, the permeability coefficient was 
estimated for a set of 29 new drugs, and results compared to the ones obtained by other estimation 
methods, as well as the available in vitro measured values, with very good agreement.  
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Introduction 

The skin is the largest organ of the body, covering about 1.7 m2 and comprising approximately 10% of 

the total body mass of an average person. The primary function of the skin is to provide a barrier between 

the body and the external environment (ultraviolet radiation, chemicals, allergens and microorganisms, 

and the loss of moisture and body nutrients). Although the skin presents a barrier to the permeation of 

most compounds, it provides an ideal site for the administration of therapeutic compounds for local and 

systemic effects [1]. 

Dermal absorption is a global term that refers to the transport of a chemical from the outer surface of 

the skin into the skin and the systemic circulation. The outermost layer of the skin, the stratum corneum, 

controls the dermal absorption process, since substances must initially permeate through it to be absorbed 

into the body. Hence stratum corneum is considered the rate-determining barrier and the absorption 

process can only occur by passive diffusion since skin does not have any active transport mechanism [2,3]. 

http://www.pub.iapchem.org/ojs/index.php/admet/index
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Dermal absorption is a key process in the drug delivery studies of the pharmaceutical and the cosmetic 

industries as well as in the fields of dermal toxicology, risk assessment and the exposure to environmental 

pollutants. It is typically described by the skin-water permeability coefficient (kp, units in cm s
-1

) and can be 

determined using experimental techniques, both in vivo and in vitro [3]. However, these methods are 

usually laborious, costly and ethically questionable. For this reason, there is a need for finding methods 

capable of predicting kp values in a simple, economic, fast and ethical way. 

To predict skin-water permeability coefficients and thus reduce the number of in vivo and in vitro 

assays, two types of models, empirical and theoretical, can be developed. Empirical models relate the kp 

values of compounds to physicochemical descriptors, as for example descriptors of hydrophobicity, 

polarity, solubility, hydrogen bonding, or size [4]. In general, empirical models for skin permeation, as 

proposed by Patel et al. [5], usually reveal the important roles of lipophilicity and molecular size. 

Theoretical models are mechanistic approaches that attempt to simulate the dynamic processes that 

are involved in skin permeation. They consist of mathematical transport models that relate dermal 

absorption to parameters like diffusion coefficients and partition coefficients, taking into account factors 

such as possible routes of penetration and interactions between the permeating chemicals and the skin 

constituents [6-8]. 

Linear free-energy relationships (LFERs), a particular type of Quantitative Structure-Activity Relationship 

(QSAR), are widely used to characterize chemical and biochemical processes. LFERs assume that the free 

energy change associated with the property of interest is linearly related to solute molecular descriptors. 

The linear solvation energy relationships (LSERs), proposed by Kamlet et al. [9], are based on the change of 

free energy due to the solvation process of a solute into a solvent. Among the variety of models based on 

these principles, the solvation parameter model developed by Abraham [10] is one of the most widely used 

in order to achieve a better understanding of the type and the relative strength of the chemical 

interactions that control any solvation process of neutral compounds [11,12]. This model has been 

successfully applied to characterize many biological processes, including some toxicological and 

environmental ones, as well as a wide range of physicochemical processes ruled by the passive transport of 

solutes between two phases. The solvation parameter model [10,12] has been also applied to model the 

human skin permeation process [12-16]. Abraham and Martins [15] proposed the following equation for 

characterizing the permeation of neutral solutes from aqueous solution through the human skin, 

 

log kp = – 5.246 – 0.106E – 0.473S – 0.473A – 3.000B + 2.296V  (1) 
n = 119  R2 = 0.832  SD = 0.461  F= 112 

 

This equation was obtained through the analysis of 119 compounds of different chemical type, which 

covered a wide range of log kp values. E, S, A, B, and V are independent variables and are the solute 

descriptors proposed by Abraham: E represents the excess molar refraction, S is the solute 

dipolarity/polarizability, A and B are the solute’s effective hydrogen-bond acidity and hydrogen-bond 

basicity, respectively, and V is the McGowan’s solute volume. Eq. 1 shows that size is the only solute 

property that contributes to an increase in skin permeation (the only positive coefficient). 

Over the last few years, the computational models based on calculated descriptors [17-19] have also 

become very useful and powerful approaches to provide estimations of kp values. However, skin 

permeation models based on experimental descriptors are generally preferred when the prediction of skin-
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water permeability of chemicals requires more accuracy and reliability. 

In a previous study [20] the ability of different chromatographic systems, basically liquid 

chromatography (HPLC) and micellar electrokinetic chromatography (MEKC), were assessed to subrogate 

the permeation of aqueous solutions of neutral solutes through human skin. It was observed that the 

correlations were improved after introducing the calculated McGowan solute’s volume as an additional 

variable. With the volume correction, the best subrogation was obtained with an HPLC system fitted with a 

C18 column according to the following equation, 

 

log kp= - 4.76(±0.18) + 1.44(±0.12) log k - 1.16(±0.10) V  (2) 

n = 27   R
2
 = 0.834   SD = 0.390   F = 126 

 

This system was chosen to establish a methodology for the prediction of human skin permeability of 

untested compounds by chromatographic measurements. This methodology was developed only for 

neutral compounds at pH 7.0. This study has been expanded in the present work to compounds of 

pharmaceutical interest with a wide range of pKa values, containing basic and acidic functions. Additionally, 

a new methodology based on fast measurements by MS (mass spectrometry) has been developed and 

established to predict kp values of drugs of pharmaceutical interest. 

Materials and methods  

Instruments 

Chromatographic measurements were performed with an Agilent Technologies 1200 Series instrument 

equipped with a G1312B binary pump and a G1367D autoinjector. A G1315C DAD was used at 254 nm for 

non-ionizable compounds and a UHD 6540 Accurate-Mass Q-TOF detector with electrospray ionization 

(ESI) source was used for ionizable compounds. A 100 mm, 4.6 mm i.d, 2.6 µm octadecylsilica Kinetex EVO 

C18 analytical column provided by Phenomenex with a core-shell Technology was used for all 

determinations. This material is stable within the pH range 1-12. 

pH measurements were done with a MicropH 2001 pH-meter (CRISON) with a precision of ± 0.01 pH 

units. 

Reagents 

Acetonitrile LCMS grade was purchased from Fluka Analytical VWR (West Chester, PA, USA) and water 

was purified by a Milli-Q deionizing system from Millipore (Billerica, MA, USA) to a resistivity of 18.2 M. 

Reagents used to prepare the buffer solutions were sodium phosphate monobasic monohydrate (Sigma-

Aldrich, Puriss PA ≥99.0%), formic acid (Scharlau, eluent additive for LC-MS), acetic acid (Fluka Analytical, 

eluent additive for LC-MS), ethylendiamine (Fluka Analytical, Puriss PA ≥ 99.5%) and ammonia solution 

25 % w/w (Sharlau, extrapur, Pharmpur, PH Eur). Most drugs were purchased from Sigma-Aldrich 

(Steinheim, Germany), Fluka Analytical VWR (West Chester, PA, USA), Riedel-de Haën (Seelze, Germany), 

Merck (Darmstadt, Germany), Carlo Erba (Milano, Italy) and Baker (Center Valley, PA, USA). Other drugs 

were synthesized in ESTEVE (Barcelona, Spain) only for the purpose of this study. 
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Procedure 

94 solutes of different chemical nature were injected in the HPLC system at 6 different pH values, 

between 2 and 11, to obtain the retention factors of the neutral species. The mobile phase composition 

was 40 % acetonitrile and 60 % aqueous buffer. The buffer solutions were selected according to their 

compatibility with the detection mode. Volatile buffers were used for mass spectrometry detection. Formic 

acid, acetic acid and ammonia solution were used at pH 3.0, 5.0 and 9.0, respectively. Ethylendiamine was 

used at pH 7.0 and 11.0. The buffer concentrations at pH 3.0, 5.0, 7.0, 9.0 and 11.0 were 10 mM and were 

adjusted by addition of diluted acetic acid or diluted ammonia. The detection mode was ESI+ or ESI- for 

ionizable compounds and UV for non-ionizable compounds. For mass spectrometry detection, the 

compounds were grouped for faster analysis. At pH 2.0, the detection was only performed by UV and a 

mixture of phosphoric acid and sodium dihydrogenphosphate was used as buffer, at a concentration of 

50 mM. pH was adjusted with diluted hydrochloric acid. All experiments were done at 25 °C. 

Stock solutions of the compounds at 5000 mg·L
-1 

were prepared by dissolving the appropriate weight or 

volume in methanol. More diluted solutions were prepared at 100 mg·L
-1 

by dissolving an aliquot of the 

previous stock solution in an ACN-H2O mixture (40:60). Isocratic conditions were used at a flow rate of 1 

mL min
-1

 and the injection volume was 10 µL. The column hold-up time was measured by injections of an 

aqueous solution of potassium bromide (0.1 mg mL-1), whose detection was performed by UV at 200 nm. 

All results were the average of triplicate injections. 

The HPLC retention factor (k) was calculated according to Eq. 3, 

R 0

0 e

t t
k

t t





  (3) 

where tR corresponds to the solute retention time, t0 is the column hold-up time determined by an 

aqueous potassium bromide solution, and te is the extra column time determined by an analysis that 

excludes the chromatographic column, for each different detection system. 

Calculation 

Microsoft Excel 2010 was used for all calculations and for multiple linear regression analysis. Solvation 

parameter model descriptors of the compounds (E, S, A, B, V) were obtained from Percepta [21].  

MATLAB® (MathWorks) was used for Principal Components Analysis (PCA). 

Model establishment and validation 

Data collection 

The evaluation of the consistency and quality of the experimental skin permeation data used is 

fundamental to the establishment of a good prediction model. For any QSAR model, experimental data 

should be produced from standardized experimental procedures, and obtained for a set of chemicals that 

cover the domain of relevant chemical properties [22]. 

Several studies that have focused on the determination of skin permeability coefficients [23-25] have 

pointed out that inter- and intra-variability within experimental kp values is mainly due to the thickness of 

the skin and also to the variability inherent to different human donors. In this work, the permeation data 

employed was selected from the Abraham Database [15], an extensive and carefully examined data set. 65 

solutes that belong to different families, with different structural complexity and with varied experimental 
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log kp values were selected to develop this model. Because the permeation coefficients are from water 

through human skin, it might be expected that acids and bases would be partially ionized in solution 

depending on the pH of the solution. Values of kp for ionized species are smaller than kp values for the 

neutral species. In these cases, Abraham adjusted the literature values of the skin-water permeability 

coefficients for ionization in water and for a temperature of 37 °C [15]. 

A different set of 29 solutes was selected from other sources [5,26,27] to predict the kp values from our 

model’s equation and then compare them to the available literature experimental and/or estimated data. 

Model establishment 

A correlation between the experimental log kp values and the parameters log k and the McGowan 

solute’s volume (V) of the selected compounds was performed through a multiple linear regression 

analysis. Log k values were the ones measured at a pH in which the solutes were in the neutral form. The 

McGowan volume of the compounds can be easily calculated from the empirical formula and the number 

of single, double, and triple bounds in the molecule. Compounds with a standard residual higher than 2.5 in 

absolute value were considered outliers.  

Model validation 

The model required an internal validation to evaluate its robustness, and an external validation to 

evaluate its predictive ability. To this aim, the total data set of 65 compounds was divided into two sets, 

the training set for the internal validation and the test set for the external validation [28]. To construct the 

two subsets a representation of scores after principal components analysis (PCA) was performed based on 

the Abraham’s molecular descriptors of the compounds. The scores plot distributes the solutes according 

to their physicochemical properties, so it is easier to do a representative division of the global set of 

compounds into the two subsets. 

The training set, which is aimed at evaluating the robustness of the model, usually has around 50-70% 

of the selected compounds. The remaining compounds are used in the test set, which evaluates the 

predictive ability of the model. The correlation is repeated only with the training set compounds. The 

results of this second correlation must be compared to the global correlation. If the model is robust, the 

coefficients of both correlations should be similar. Traditional statistical parameters such as the 

determination coefficient (R2), the standard deviation (SD), and the F statistic were also considered to 

evaluate the robustness of the model. Additionally, the leave-multiple-out cross-validation coefficient, 

Q2
LMO

 [29,30], was calculated. This coefficient is a parameter that assesses how the results of a statistical 

analysis will generalize to an independent data set. 

The test set was used to perform the external validation of the model, i.e. ensure its predictive ability. 

The external validation consists in predicting the biological property value of the test set compounds with 

the training set equation. Then, predicted log kp values are plotted against the experimental values. To 

ensure that the model has a good predictive ability, the slope must be close to 1 and the origin ordinate 

close to 0. 

Results and Discussion 

Establishment of a model to predict kp values 

Table 1 shows the 65 compounds selected to establish the model, their experimental log kp values, 

chromatographic retention factors, log k values, and McGowan volumes, V. A multiple linear regression 
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analysis was done between the experimental log kp values and the two parameters log k and V. The set of 

compounds comprises a wide variety of chemical classes and structural complexity. This is important in 

order to make the model general enough to predict kp values of compounds of very different chemical 

nature. Results are shown in Equation 4 and Figure 1. 

 

Table 1. Experimental log kp values, log k values of the neutral species and McGowan solute’s volume of the 
compounds selected to establish the model 

Compounds log kp log k McGowans's Volume (V) 

2,4-Dichlorophenol -4.30 0.556 1.0199 

2-Amino-4-nitrophenol -6.54 -0.089 1.0491 

2-Chlorophenol -4.56 0.237 0.8975 

2-Hydroxybenzoic acid (Salycilic acid) -5.33 0.080 0.9904 

2-Isopropyl-5-Methylphenol (Thymol) -4.35 0.849 1.3387 

2-Naphtol (beta-naphthol) -4.65 0.419 1.1441 

2-Nitrophenol -4.08 0.343 0.9493 

2-Nitro-p-phenylenediamine -6.66 -0.187 1.0902 

2-Phenylethanol -5.20 0.003 1.0569 

3-Methylphenol (m-Cresol) -4.89 0.172 0.9160 

3-Nitrophenol -5.33 0.145 0.9493 

4-Amino-2-nitrophenol -5.91 -0.010 1.0491 

4-Bromophenol -4.52 0.361 0.9501 

4-Chloro-3-methylphenol (4-Chloro-m-cresol) -4.34 0.474 1.0384 

4-chlorophenol -4.52 0.299 0.8975 

4-Ethylphenol -4.53 0.380 1.0569 

4-Hydroxybenzyl alcohol -6.26 -0.560 0.9747 

4-Hydroxy-methylphenylacetate -5.26 -0.177 1.2722 

4-Hydroxyphenylacetamide -6.89 -0.606 1.1724 

4-Hydroxy-phenylacetic acid -6.06 -0.539 1.1313 

4-Methylphenol (p-cresol) -4.83 0.169 0.9160 

4-Nitrophenol -5.33 0.091 0.9493 

5,5-Diethylbarbituric acid (Barbital) -7.29 -0.377 1.3739 

5-Ethyl-5-phenylbarbituric acid (Phenobarbital) -6.68 -0.059 1.6999 

5-Fluorouracil -6.82 -0.977 0.7693 

8-Methoxypsoralen -5.12 0.376 1.4504 

Aniline -4.73 0.018 0.8162 

Aspirin (Acetylsalicylic acid) -5.69 -0.165 1.2879 

Atropine -7.15 0.551 2.2820 

Benzaldehyde -3.93 0.221 0.8730 

Benzene -4.27 0.587 0.7164 

Benzoic acid -5.15 -0.073 0.9317 

Benzyl alcohol -5.30 -0.113 0.9160 

Benzyl nicotinate -4.87 0.569 1.6393 

Caffeine -7.08 -0.487 1.3632 

Chloropheniramine -6.14 1.009 2.2098 
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Table 1. Continued… 

Compounds log kp log k McGowans's Volume (V) 

Codeine -7.20 0.116 2.2057 

Corticosterone -6.84 0.230 2.7389 

Dexamethasone -7.27 0.172 2.9132 

Diclofenac -5.30 0.995 2.0250 

Diethylcarbamazine -6.15 -0.049 1.7241 

Digitoxin -8.15 0.642 5.6938 

Ephedrine -5.49 0.314 1.4385 

Estradiol -5.61 0.534 2.1988 

Ethylbenzene -3.00 1.065 0.9982 

Fentanyl -4.89 1.144 2.8399 

Fluocinonide -6.33 0.904 3.4603 

Hydrocortisone -7.22 -0.055 2.7976 

Ibuprofen -5.30 1.007 1.7771 

Indomethacin -5.39 1.001 2.5299 

Isoquinoline -5.11 0.220 1.0443 

Lidocaine -5.42 0.764 2.0589 

Methyl 4-hydroxybenzoate -5.12 0.002 1.1313 

Methyl phenyl ether (Anisole) -4.68 0.543 0.9160 

Naproxen -4.97 0.557 1.7821 

Nicotine -6.03 0.061 1.3710 

o-Phenylenediamine -6.70 -0.313 0.9160 

Phenol -5.27 -0.006 0.7751 

p-Phenylenediamine -6.98 -0.415 0.9160 

Progesterone -4.90 1.130 2.6215 

Resorcinol -6.70 -0.412 0.8338 

Scopolamine -7.90 -0.036 2.2321 

Sufentanil -4.84 1.379 3.1051 

Testosterone -5.54 0.557 2.3827 

Toluene -3.64 0.826 0.8573 

 

log kp= - 4.47(±0.12) + 1.98(±0.13) log k - 1.02(±0.07) V  (4) 
n = 63   R2 = 0.826   SD = 0.461   F = 143 

From the 65 substances, only atropine and chloropheniramine were excluded from the regression 

analysis because their standard residuals were greater than 2.5 in absolute value. Both coefficients in 

equation 4 have statistical meaning at a 95 % level of confidence, and log k has the highest contribution to 

skin permeation. Note that the log k coefficient is almost twice in absolute value the V coefficient. Log k 

contributes in a positive way, which suggests that a high retention factor implies a better dermal 

absorption. The V coefficient applies a negative correction to the log kp value, more important for those 

compounds with higher volume. 

Equation (4) is very similar to the previous equation (2). Direct comparison of the parameters in both 

cases reveals almost the same values for the V coefficient and the intercept, and only a slight difference in 

the log k coefficient. This difference is mainly attributed to the number and variety of compounds studied. 

Since the present work covers a larger number of compounds and they are more representative of a wide 

chemical space, it is considered that equation 4 might be more robust than Eq. 2. 
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Figure 1. Correlation between log kp experimental values and log k and V of the set of 65 compounds selected 
to establish the model 

As described previously, to validate the model, the global set of 63 compounds was divided into two 

sets: the training set (42 compounds) and the test set (21 compounds). A multiple linear regression 

between experimental log kp values and log k and V was performed with the 42 compounds of the training 

set. Equation 5 and Figure 2a show the results of the regression. 

 

log kp= - 4.57(±0.13) + 2.06(±0.17)log k - 0.98(±0.08) V  (5) 
n = 42   R

2
 = 0.832   SD = 0.450   F = 97   Q

2
LMO=0.832 

 

  

Figure 2. (a) Correlation between log kp experimental values and log k and V of the set of compounds selected 
in the training set. (b) Estimated vs. experimental log kp values for the compounds of the test set 

Comparison of the intercept and the coefficients of Eq. 5 to those of Eq. 4 demonstrate that nearly the 

same equation is obtained with less compounds, which means that the model is robust, i.e. with fewer 

points the physical meaning of the coefficients does not change. Adequate determination coefficient, 

(a) (b) 
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standard deviation and F values were obtained. Q
2

LMO was higher than 0.6 and it can be ensured that none 

of the compounds present in the training set has had a big influence in the final model equation. 

To perform the external validation, the log kp values of the 21 compounds of the test set were predicted 

through the training set equation (Eq. 5). Agreement between experimental and predicted kp values is 

shown in Figure 2b and through Equation 6: 

 

log kp,pred = - 1.08(±0.53) + 0.82(±0.09) log kp,exp  (6) 
n = 21   R

2
 = 0.807   SD = 0.469   F = 80   Q

2
LMO=0.983 

 

According to statistics, the model shows good prediction ability: the slope and intercept of the trend 

line are not significantly different from unity and zero, respectively, at 95% confidence level according to 

Student’s t test. The determination coefficient is above 0.6, the correlation cross-validation coefficient is 

above 0.5 and Fisher’s F parameter is significant.  

Prediction of log kp values 

As a first step, skin permeability coefficients of the neutral species of a set of 20 solutes were 

determined through the model equation (Eq. 4), after measuring their retention factors in the HPLC 

system. Table 2 shows the experimental log kp values [26, 27] for these compounds, the values predicted 

through Eq. 4, and also the values predicted by the solvation parameter model (Eq. 1). For the latter 

prediction the knowledge of solvation parameter model descriptors of the compounds is necessary. There 

is quite good agreement between the experimental log kp values and the values obtained by Eq. 4. In most 

cases the error is around 10%, and is similar to the error presented by the Abraham model (Eq. 1).  Figure 3 

represents the experimental values against the log kp obtained by both models. The solid line represents 

the theoretical line of slope equal to one and zero intercept. The plot clearly indicates that the accuracy of 

both models is very similar, with points equally distributed at both sides of the theoretical line, and with 

similar dispersion. Only famotidine presents an anomalous low log kp value when predicted by the 

Abraham model.  

In a second step, log kp values were predicted again through Eq. 4 and then through Eq. 1 for another 

set of 9 compounds, for which experimental log kp values were not known. Only for five of them were the 

values calculated by Patel et al. (5) available.  

As indicated in Table 3, comparison of the data demonstrates that values obtained through 

chromatographic measurements (Eq. 4) and through the Abraham model (Eq. 1) are in general consistent. 

However, Patel’s predictions are systematically lower compared to the other two models. 

Finally log kp values for four compounds of pharmaceutical interest (capsaicin, oxycodone, tramadol, 

and warfarin) are proposed for the first time. 
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Table 2. Comparison of experimental (in vitro) and predicted log kp values 

Compounds 
In vitro log kp values  Predicted log kp values 

[26] [27]  This method [15] 

Aminopyrine -6.55 -  -6.45 -6.97 

Antipyrine -7.74 -  -6.56 -7.31 

Atrazine -5.56 -  -5.26 -5.45 

Catechol - -6.07  -5.88 -5.96 

Cortexolone -7.68 -  -6.72 -5.94 

Cortisone - -7.38  -7.29 -6.74 

Estriol -7.95 -  -7.09 -6.67 

Estrone -6.00 -  -5.29 -5.11 

Famotidine - -8.35  -7.63 -10.49 

Flurbiprofen -3.40 -  -4.60 -4.09 

Griseofulvin -6.44 -  -5.93 -5.92 

Hydroquinone - -6.51  -6.32 -6.44 

Hydroxyprogesterone -6.78 -  -5.80 -5.08 

Ketoprofen -4.71 -  -5.43 -5.06 

Ketorolac - -5.80  -5.79 -5.72 

Piroxicam -6.02 -  -6.19 -7.18 

Prednisolone -7.91 -  -7.46 -6.90 

Pregnenolone -6.38 -  -4.93 -4.70 

Propanolol - -6.05  -4.96 -5.71 

Ranitidine - -7.61  -7.17 -7.97 

 

 

 

Figure 3. Experimental vs. predicted log kp values. For each compound, log kp is predicted through the 
chromatographic model (●) and through the solvation parameter model (▲) 
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Table 3. Prediction of log kp values through different estimation models 

Compounds  This method [15] [5] 

2-Toluidine  -5.09 -5.22 -5.83 

3-Xylene  -3.37 -3.93 -4.41 

Cumene  -3.11 -3.59 -6.14 

N.N-Dimethylaniline  -4.20 -4.62 -5.29 

Pyridine  -5.56 -5.90 -6.10 

Capsaicin  -5.41 -4.19 - 

Oxycodone  -5.89 -7.05 - 

Tramadol  -5.16 -5.02 - 

Warfarin  -5.37 -5.25 - 

Conclusions 

A methodology has been developed for the prediction of skin permeability of neutral species. The 

method is based on measurements on an HPLC system fitted with a C18 column, coupled to UV-vis and MS 

detection. The model has been established with a set of 63 compounds with different chemical natures 

and structural complexity, which ensures the applicability of the model to a wide range of compounds. The 

chromatographic retention factor is the parameter that makes the highest contribution to the calculation 

of the permeation through skin, the kp value being greater as the retention increases. On the contrary, the 

McGowan volume decreases the permeation value. The model has been validated, showing both good 

robustness and good prediction ability. The prediction ability has been further tested by comparison of the 

results to other prediction models (Abraham and Patel). Results from this work are similar (both in 

accuracy and precision) to the results obtained through Abraham’s model. However, the permeation 

coefficients obtained through Patel’s model seem to be slightly lower. The main advantage of the present 

methodology is that kp can be directly obtained from simple chromatographic retention measurements and 

the McGowan’s molecular volume of the compounds, without the need of additional molecular descriptors 

calculation and/or determination. 
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