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Abstract 

In the present study a pressure-assisted MEEKC method with reversed-polarity using a conventional CE 
instrument with UV detection and uncoated fused silica capillaries is validated as a high-throughput 
methodology for the lipophilicity determination of the neutral species of acidic compounds (pKa > 3.5). After 
the calibration of the system with four standard compounds of known log Po/w, mass distribution ratios (log 
kMEEKC) of new molecules can be directly converted into log Po/w values by means of a simple linear equation 
(log Po/w=a·log kMEEKC+b). The method was internally and externally validated for a log Po/w range between  
-1.54 and 4.75, with higher accuracies than conventional liquid chromatographic methods.  
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Introduction 

MEEKC as high-throughput surrogate model for the determination of lipophilicity 

According to IUPAC [1], lipophilicity represents the affinity of a molecule or a moiety for a lipophilic 

environment that is commonly measured by its distribution behavior in a biphasic system. Since lipophilicity 

plays a fundamental role in the processes of absorption, distribution, metabolism, excretion, and toxicity 

(ADMET) of chemical compounds in biological systems, it is a relevant physicochemical property to be 

determined in the drug discovery and design process [2]. Different lipophilicity indexes can be obtained 

depending on the particular biphasic system used, but the most widely used is the n-octanol/water 

partition coefficient (log Po/w, also indicated as log Ko/w). Moreover, since lipophilicity is a critical parameter 

for chemical safety assessment, according to the REACH Regulation ((EC) No 1907/2006) log Po/w must be 

reported for any organic compound produced in quantities of one tonne or more per year. Thus, two test 

procedures are described in the Test Methods Regulation ((EC) No 440/2008): a direct measurement via 

shake-flask methods [3] and a correlation approach by means of HPLC [4]. However, other experimental 

methods can be used provided that they show an acceptable level of quality assurance [5]. This is clearly 

the case of dual-phase potentiometric titration procedures [6,7], commonly used in pharmaceutical 

research for ionizable drugs with pKa values in a measurable pH range (2-12), which provide reliable and 

accurate log Po/w values [8]. 
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Several methods based on chromatographic retention have been proposed in order to measure 

lipophilicity, mainly using reversed-phase columns and acetonitrile/aqueous buffer mobile phases [9]. 

These approaches are much more time-efficient compared to shake-flask and potentiometric methods, 

with the additional benefit of a separation technique that does not require high purity samples. However, 

the accuracy of the estimated log Po/w values depends to a great extent on the similarity between the 

calibration standards and the sample compounds. For instance, octanol and C18 phases exhibit a different 

interaction with hydrogen-bond donor solutes; in the chromatographic system solutes with H-bond acidity 

are discouraged from partitioning out of the hydro-organic mixture and into the poorer H-bond acceptor 

C18 phase, whereas octanol (either containing water or other H-bond acceptor moieties) can form 

hydrogen bonds. Therefore, the introduction of molecular descriptors, either experimental or calculated, 

allows better correlations between chromatographic retention and log Po/w values [9–12], but is limited to 

unionized molecules. However, a lower accuracy from chromatographic methods (±0.5 log units [4]) can be 

expected in relation to the shake-flask method (±0.3 [3]). 

In previous papers [13,14] an approach based on microemulsion electrokinetic chromatography 

(MEEKC) was successfully demonstrated as an indirect method for log Po/w determination for compounds of 

pharmaceutical interest, using UV detection or hyphenated to an MS with an atmospheric pressure 

photoionizaion (APPI) source [15]. MEEKC is a chromatographic technique (microemulsion (ME) droplets 

acting as pseudo-stationary phase), and requires significantly shorter analysis times than reference shake-

flask and potentiometric methods, avoiding in addition the requirement of high-purity samples. Although it 

can only be applied to neutral species, the broad pH range of application (from pH 2 to 12) allows, in most 

cases, the finding of experimental conditions which ensure the analyte is in its neutral form. This is clearly 

an advantage over conventional chromatographic methods, since column stability might be a critical factor 

at such extreme pH values. In addition, and this is maybe the most significant advantage over traditional 

chromatographic methods, MEEKC measurements can be accurately correlated with log Po/w without the 

need of molecular descriptors since ME are better surrogates of n-octanol/water systems than C18 

stationary phases. Additionally, running costs of capillary electrophoresis techniques are lower because of 

the lower price of fused silica capillaries in relation to chromatographic columns and the lower solvent 

consumption. Last but not least, MEEKC is a very robust technique for log Po/w determination, since 

variations in the ME composition (pH, buffer nature, surfactant type and concentration, and even the 

addition of organic modifiers) [14] were shown to produce insignificant changes in its predictive capacity. 

In 2000 Poole and co-workers [16] published a study about lipophilicity determination by MEEKC that 

included acidic compounds using a running buffer of pH 3, and employing sulfonated silica capillaries in 

order to provide an adequate electroosmotic flow at such an acidic pH. In a previous study involving buffers 

over a wide range of pH values [14], we proposed a seminal pressure-assisted method with reversed 

polarity allowing measurements to be made at pH 2 and using conventional uncoated fused silica 

capillaries, which are much less expensive than the sulfonic acid coated capillaries. In this paper, a 

systematic study of structurally diverse compounds is presented, proposing a high-throughput validated 

method for the lipophilicity determination of acids with pKa values as low as 3.5. 

The partition of analytes between the aqueous bulk solvent and the pseudo-stationary oil phase in the 

ME is measured by the logarithm of the mass distribution ratio (log kMEEKC) [17]: 
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where tR and tEOF are the migration times of the analyte and the electroosmotic flow (EOF) marker (e.g. 

DMSO), respectively, and tME is the migration time of a very lipophilic compound used as ME marker (e.g. 

dodecanophenone). Thus, log kMEEKC values obtained for unionized species can be used to estimate their 

lipophilicity according to the following linear equation:  

o/w MEEKClog ·logP a k b   (2) 

where a and b are the slope and intercept, respectively, of the linear regression calculated by the least 

square method. 

Internal and external validation of the method 

The ability of the model to reproduce the data included in the set of compounds (the goodness-of-fit) is 

measured by the determination coefficient of the model (R2), which in our case estimates the proportion of 

the variation in the predicted log Po/w that can be explained according to the model. The robustness of the 

model can be assessed by cross-validation, in which a number of compounds are iteratively excluded from 

the set of substances used for model development and the results then allow the prediction to be made for 

the left-out compounds. Thus, the cross-validated correlation coefficient (Q2), which is a measure of the 

goodness of the internal power to predict, can be calculated by the formula: 
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where iy  is the observed response (literature log Po/w) for the ith object, /ˆi iy  is the response of the ith object 

estimated by the model obtained without using the ith object (log Po/w from log kMEEKC measurements), and 

y  is the mean value of observed responses for the n elements of the complete data set. The size of the 

group of excluded chemicals at every step is normally in the range of only one (leave-one-out, LOO) to 50 % 

of the whole set of compounds (leave-many-out, LMO). High mean Q2 values in LOO (Q2
LOO) and LMO 

(Q2
LMO) validations (> 0.7) are necessary but are not sufficient conditions for a model to be robust and 

internally predictive [18].  

The external validation is performed by splitting the whole data set into two different sets, a training set 

used for method development and a test set for the assessment of the predictive capacity. Predicted values 

are correlated with the experimental ones, and the linear regression is expected to be as close as possible 

to that of unity slope and null intercept. This closeness can be calculated as (R2-R0
2)/R2 [19], where R0

2 is the 

determination coefficient of the regression line forced to pass through the origin, or by means of the 

concordance correlation coefficient (CCC) [20], which can be calculated by the formula: 
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where x and y correspond to the abscissa and ordinate values of the correlation plot, x and y  are mean 

values and n is the number of compounds in the test set. The main advantage of CCC is the independence 

of the closeness value in relation to the disposition of the axes. Thus, a model can be assessed as externally 

predictive if R2 and R0
2 are close to 1, slopes of linear regressions are in the range between 0.85 and 1.15, 

and (R2-R0
2)/R2 < 0.1 [19], or alternatively if CCC ≥ 0.85 [20]. 
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Experimental 

Instrumentation 

A G1600 capillary electrophoresis (Agilent, Waldbronn, Germany) with UV detection and polyimide 

coated capillaries of 50 μm id, 375 μm od and 57.0±0.1/48.5±0.1 cm of total/effective lengths (Polymicro 

Technologies, Phoenix, USA) were used. The cassette temperature was set to 25 °C (forced air) and samples 

were injected hydrodynamically by application of a pressure of 50 mbar for 10 s. Separations were carried 

by out applying a voltage of -24 kV (inlet, cathode; outlet, anode) and an external pressure of 50 mbar (on 

the inlet vial). Current intensities were typically in the range between 30 and 40 µA. Capillary 

preconditioning was performed by ME for 2 min and postconditioning by 1 M sodium hydroxide and water 

for 2 min each.  

pH was measured with a Crison GLP 22 pH meter (Barcelona, Spain) using a 5014 combination glass 

electrode and a reference electrode with a 3.0 mol L−1 KCl solution in water salt bridge. MEs were sonicated 

in a J.P. Selecta (Barcelona, Spain) ultrasonic bath at a power of 360 W. 

Reagents 

Water was deionized to a resistivity of 18.2 MΩ cm by a Milli-Q® plus system (Millipore, Billerica, MA, 

USA), and buffers were prepared for analysis from phosphoric acid (Merck, 85 %), and sodium hydroxide 

(Sigma-Aldrich, pellets, >98%). ME consisted of SDS (≥99.0 %), 1-butanol (HPLC grade), and heptane (HPLC 

grade), all from Sigma-Aldrich. Injected compounds were purchased (Table 1) from J.T. Baker, Carlo Erba, 

Fluka, Merck, Sigma-Aldrich, and Schuhardt; all of high purity grade. The neutral and ME markers were 

DMSO (Merck, for analysis) and dodecanophenone (Sigma-Aldrich, 98%), respectively. 

Microemulsion and sample preparation 

20 mM aqueous buffers were prepared from phosphoric acid by adjusting the pH to 2.0 by the addition 

of small volumes of a 3 M sodium hydroxide solution prepared shortly before use. 1.3% w/v of SDS was 

dissolved in the aqueous buffer at room temperature and stirred by magnetic stirrer until a transparent 

colorless solution was obtained, and the pH then adjusted if necessary. Afterwards, 1-butanol (Sigma-

Aldrich, ≥ 99.4%) was added up to 8.15% (v/v), followed by heptane (Sigma-Aldrich, ≥ 99%) up to 1.15% 

(v/v). Both organic solvents were slowly added with a burette. At this point, the solution became white and 

turbid. Magnetic stirring was maintained for 5 minutes and then the ME was sonicated until it became clear 

again. Finally, the solution was left to stand at room temperature for at least 1 hour. Immediately before 

use the ME was filtered using a 0.45 μm nylon syringe filter (Simplepure, Membrane-Solutions, USA).  

Sample solutions were prepared by dissolving the ME marker (dodecanophenone, 0.5 mg/mL) directly 

into the ME by sonication, followed by the addition of the EOF marker (DMSO, 0.1% in volume) and the 

analytes (0.5 mg/mL from a stock solution of 10 mg/mL in methanol). 

Results and Discussion 

Method development: pressure-assisted MEEKC with reversed polarity using uncoated fused silica capillaries 

Firstly, it was necessary to establish the experimental conditions (pH, SDS content, capillary length, 

applied voltage and pressure) to allow the determination of a wide range of lipophilicity values in relatively 

short analysis times. Thus, mixtures of substances with known log Po/w values were injected in order to test 

the system behavior. These compounds were N,N-dimethylacetamide, 1-phenylthiourea, acetophenone, 

butyrophenone, propylbenzene, and pentachloronitrobenzene, and their corresponding measured log Po/w 
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values are -0.77, 0.73, 1.58, 2.66, 3.72, and 5.10, respectively [21]. These compounds were easily detected 

by UV and they behave as neutral species nearly over all of the pH range. Only 1-phenylthiourea could 

behave as an ampholyte, but basic and acidic groups were expected to be too extreme to cause a 

significant ionization at pH 2.0 (their calculated pKa values are 0.7 and 13.1, respectively [22]). Under the 

conditions of assay in the present work, pentachloronitrobenze was too lipophilic to be sufficiently resolved 

from the ME marker (dodecanophenone). It must be pointed out that at very acidic conditions the direction 

of the EOF is found to be reversed in relation to neutral and alkaline running buffers. Therefore, in order to 

overcome this EOF issue the instrument polarity was reversed, with the anode in the destination vial 

(outlet) and the cathode in source vial (inlet). Thus, the negatively charged ME droplets (because of the 

SDS) were the first to reach the detector window, while the EOF marker migrated last. The application of an 

external pressure, which pushes the ME filling the capillary towards the detector, is fundamental to 

achieving a good separation of the standard mixture in relatively short analysis times. 

Table 1. Experimental log Po/w from the literature [21] and the calculated pKa values (GALAS [22]) of the acidic 
compounds included in the study, together with the estimated molar percentage of the neutral species at pH 2.0. 

Compound log Po/w pKa %neutral  Compound log Po/w pKa %neutral 

Piracetam -1.54 13.6 100%  4-Nitrobenzoic acid 1.89 3.3 95% 
Barbituric acid -1.41 4.0 99%  4-Nitrophenol 1.91 7.2 100% 
2,4-Dithiouracil -0.86 6.7 100%  Furosemide 2.03 3.5 97% 
Hydroxypropyltheophylline -0.77 13.6 100%  Pentobarbital 2.10 7.9 100% 
Thymine -0.62 9.7 100%  2-Methyl-4,6-dinitrophenol 2.13 4.2 99% 
Thiouracil -0.28 7.5 100%  Cinnamic acid 2.13 4.4 100% 
Chlorothiazide -0.24 6.7 100%  Xipamide 2.19 4.8 100% 
Hydrochlorothiazide -0.07 8.9 100%  2,4-Dimethylphenol  2.30 10.0 100% 
Theophylline -0.02 8.7 100%  Methyl salicylate 2.34 9.8 100% 
Pyrogallol *0.29 9.0 100%  3-Methylbenzoic acid 2.37 4.1 99% 
Mandelic acid 0.62 3.4 96%  2-Methylbenzoic acid 2.40 3.7 98% 
Barbital 0.65 7.9 100%  Estriol 2.54 10.0 100% 
Gallic acid 0.70 4.3 100%  Clofibric acid 2.57 4.0 99% 
Resorcinol 0.80 9.6 100%  Warfarin 2.70 4.9 100% 
Catechol 0.88 10.0 100%  2,4-Dimethylbenzoic acid *2.82 3.7 98% 
Acetylsalicylic acid 1.19 3.5 97%  3-Bromobenzoic acid 2.87 3.6 98% 
Vanillin 1.21 7.3 100%  1-Naphthoic acid 3.10 3.5 97% 
2,6-Dinitrophenol 1.37 3.5 97%  Ketoprofen 3.12 4.1 99% 
Phenol 1.47 10.0 100%  3,5-Dichlorobenzoic acid 3.29 3.3 98% 
Phenobarbital 1.47 7.5 100%  Naproxen 3.34 7.2 100% 
Carbromal 1.54 10.8 100%  Ibuprofen 3.50 3.5 100% 
Morin 1.54 7.4 100%  2,4,5-Trichlorophenol 3.72 7.9 100% 
4-Hydroxybenzoic acid 1.58 4.6 100%  4-tert-Butylbenzoic acid 3.85 4.2 99% 
2,4-Dinitrophenol 1.67 4.2 99%  Estradiol 4.01 4.4 100% 
3-Nitrobenzoic acid 1.83 3.4 96%  Diclofenac 4.50 4.8 100% 
Benzoic acid 1.87 4.1 99%      

*Data from ref. [23] 

Selected set of substances 

A set of 51 acidic substances, structurally different, was selected for the validation of the proposed 

method (Table 1). They covered a wide region of chemical space, with lipophilicity values covering 5 log Po/w 

units (between -1.5 and 4.5) and calculated pKa values in the range between 3.3 and 13.6. Stronger acids 

had to be excluded, since the ME employed had a pH value of 2.0 and this approach required the solutes to 

be in their neutral form (a molar fraction of 5 % of ionized species was set as threshold).  
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Internal validation 

As shown in Figure 1, there was an excellent correlation between experimental log Po/w values found in 

the literature and log kMEEKC measurements performed in the present work. The model successfully 

explained  92.75 % of the log Po/w variation in the selected set of compounds, and the summarized overall 

error in the prediction of the model (0.38) is only slightly higher than the admitted differences from log Po/w 

replicates by the shake-flask methods [3,24]. Only three compounds presented higher errors than two 

times the standard error of the fitting; these were 2,4-dithiouracil, hydroxypropyltheophylline, and morin. 

In all cases, predicted log Po/w values were higher (1.2, 0.9, and 2.5, respectively) than those found in the 

literature. 

 

 
Figure 1. Correlation between log Po/w and log kMEEKC values for the acidic compound studied (Table 1). 

Statistical parameters for the fitting (correlation coefficient, root mean square error, and the Fisher statistic) 
are also shown. Legend: (■) pKa ≤ 4.0, (●) 4.0 < pKa ≤ 6.0, (▲) 6.0 < pKa ≤ 8.0, and (▼) pKa > 8.0. 

Since the validated model presents only one independent variable (log kMEEKC), as expected the cross-

validated correlation coefficients Q2
LOO (0.9211) was only slightly lower than the fitting parameter R2 

(0.9275), being all of them significantly much higher than the 0.7 threshold. The mean Q2
LMO, which was 

calculated from 2000 iterations excluding randomly 50 % of the chemicals of the set, presented a value of 

0.915 with a standard deviation of 0.023, being thus very close to Q2
LOO and with a low dispersion. 

Therefore, internal validation demonstrated that the model was stable and internally predictive, and thus 

ready for the external validation step. 

External validation 

The application of this method for log Po/w determination requires first the calibration of the response of 

the electrophoretic system according to equation (2). Thus, it would be convenient to define a small set of 

standards in order to allow system calibration using a single injection of a mixture of these compounds. 

With the aim of finding a suitable set, the three compounds identified as possible outliers (2,4-dithiouracil, 

hydroxypropyltheophylline, and morin) were left out and a new linear regression log Po/w vs. log kMEEKC was 

calculated. Four compounds covering a good range of lipophilicities and showing very little residuals were 

then selected as candidates for the calibration curve and, consequently, as the training set for the external 

validation. The chosen analytes and the calibration plots obtained with the equation are shown in Figure 2.  

After developing the model with the training set, the 44 remaining compounds (excluding the three 
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outliers) were used as a test set. In a strict sense this was not a proper external validation, since the 

chemicals belonging to the test set had been included in the previous step leading to the selection of the 

four training set compounds, thus not being completely new molecules. However, the aim of this validation 

was to prove the predictive capacity of the standard compounds selected for the calibration of the 

lipophilicity response of the MEEKC system. 

As shown in Figure 3, there was an excellent correspondence between predicted and observed log Po/w 

values, the slopes of the normal regressions and that forced to the origin being not different from 1. 

Moreover, (R2-R0
2)/R2 presented a value of 0.002, suggesting that the origin ordinate was not significantly 

different from 0. In addition, the value for CCC was 0.974, pointing out the very good accuracy of the model 

in terms of precision (scattering of observation in relation to the fitting line) and trueness (closeness of the 

regression to the full correspondence represented by a line of slope 1 and intercept 0).  

 

 

Figure 2. Electropherogram of the mixture of compounds selected as training set for the external validation and the 
calibration plot used as model development (dashed line). 

 

 

Figure 3. Correlation between observed and predicted log Po/w from external validation. Dashed line 
represents the regression forcing the null origin.  
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Conclusions 

In contrast to HPLC methods, MEEKC measurements can be accurately correlated with log Po/w without 

the additional need of molecular descriptors. Thus, a high-throughput pressure-assisted MEEKC 

methodology with reversed polarity for log Po/w determination of acidic compounds (pKa > 3.5) has been 

proposed and validated (internally and externally), using a conventional CE instrument with UV detection 

and uncoated fused silica capillaries. 3-methylbenzoic acid, phenobarbital, barbital, and thiouracil are 

proposed as calibration standards, allowing the measurement of log Po/w values in the range between -1.54 

and 4.75 with a prediction accuracy of ±0.4.  
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