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SUMMARY 

A new stiffness matrix for nonlinear dynamic analysis of triangular TLPs is formulated utilising 

both the equilibrium of forces and energy balance approach for arbitrary surge, sway and yaw. 

Static numerical analysis is performed for a triangular TLP, ordinarily used as a benchmark in 

the relevant literature, by imposing surge force and yaw moment. In order to validate the new 

stiffness formulation, the obtained results are compared with those determined by an FEM 

analysis. Some shortcomings of the traditionally used stiffness matrix are pointed out. 
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1. INTRODUCTION 

Cost of the fixed offshore structures grows rapidly with the increased water depth. Therefore, 

development of the compliant offshore structures is encouraged, due to possible minimisation 

of their response to the environmental loads by the structural flexibility. A typical offshore 

compliant structure is a tension leg platform (TLP), used extensively in oil gas industry as a 

semi-submersible structure attached to the sea bottom by vertical pre-tensioned tendons or 

tethers, [1]. TLP consists of a pontoon, columns and a deck with production equipment, [2]. 

Additionally, TLP can be used as a floater to support bridge superstructure, [3], and, more 

recently, to provide support for offshore wind turbine, [4, 5]. 

TLP performs nonlinear motion in waves due to nonlinear restoring stiffness and damping, [6]. 

Amplitudes of horizontal motion are much larger than those of vertical motion, since the 

former and latter depend on low tendon geometric stiffness and high tendon axial stiffness, 

respectively. Vertical motion is caused by the first order wave forces, while horizontal motion 

is due to the second order wave forces of low forcing frequency, [7]. 

Horizontal motion of TLP is nonlinear, since restoring stiffness is a function of surge, sway and 

yaw. Stiffness of vertical motion is almost linear and slightly depends on platform set-down 

caused by the offset as a position parameter. Value of set-down is limited in platform design, [8]. 

In dynamic analysis of TLPs, the secant stiffness matrix from [9], based on the equilibrium of 

restoring forces due to large displacements, is commonly used, [10, 11]. That formulation 
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results in larger values of surge, sway and yaw stiffness elements, since tendon axial stiffness 

of increased buoyancy is taken into account. That problem is analysed in details in [12]. 

The above shortcomings are overcome in [13]. The stiffness matrix is derived by the energy 

approach and application of Lagrange’s equations. Dynamic analysis of TLP is performed by 

uncoupled and fully coupled models [14]. In the former case, the platform is considered as a 

rigid body without tendon influence. Fully coupled model is 3D FEM model of platform and 

tendons adapted to large displacements. Due to mechanical and hydrodynamic nonlinearity, 

the problem is solved in the time domain. 

Since the uncoupled dynamic analysis of TLPs is mainly performed using linear stiffness matrix 

or inadequate nonlinear stiffness matrix, an effort for derivation of consistent stiffness matrix 

is undertaken in [15]. The force equilibrium approach is employed, and stiffness matrix similar 

to that in [13], determined by the energy approach, is derived with some additional coupling 

terms for surge, sway and yaw. 

The relevant literature mainly deals with square TLPs. However, nowadays building of 

triangular TLPs as floaters for offshore wind turbines have become actualised. Therefore, in 

this paper, the nonlinear stiffness matrix for triangular TLP is presented. The same approach, 

i.e. the equilibrium of forces and the energy balance, as in [2] for square TLPs, is used. In order 

to evaluate two different restoring stiffness formulations, static response of a triangular TLP 

exposed to surge force and yaw moment are analysed. The obtained results are compared to 

those determined by FEM analysis. 

2. STIFFNESS OF IN-PLANE MOTION BASED ON EQUILIBRIUM OF FORCES 

2.1 LARGE DISPLACEMENTS 

A triangular tension leg platform (TLP), with three tendons and main parameters is shown in 

Figure 1. The platform performs large motion consisting of surge, sway and yaw, δx, δy and ϕ, 

respectively, which are transmitted to all tendons, Figure 2. Trajectory of the tendon top, 

denoted as platform node due to yaw is a circular one, rϕ, where r is the tendon radial distance 

from the platform centroid. The tendon offset is the secant displacement, Figure 2: 

 δ 2r sin
2

ϕ
ϕ= . (1) 

According to Figure 2, the tendon top coordinates in an offset position can be expressed in the 

local coordinate system as: 

 xn x xn x nL δ δ δ sin
2

ϕ
ϕ∆ ϑ = − = − + 

 
, (2) 

 yn y yn y nL δ δ δ cos
2

ϕ
ϕ∆ ϑ = + = + + 

 
, (3) 

 
2 2 2

zn xn yn 1 2nL L L L L 1 g g= − − = − + , (4) 

 ( )2 2 2
1 x y2

1
g δ δ δ

L
ϕ= + + , (5) 
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 2n x n y n2

2δ
g δ sin δ cos

2 2L

ϕ ϕ ϕϑ ϑ    = + − +    
    

, (6) 

where L is the tendon length and ϑn, n=1, 2, 3, is the tendon central angle. 

 

Fig. 1  Triangular TLP 

Components of the tendon tension force in an offset position are proportional to the tendon 

top coordinates, i.e. 

 n
xn x n

T
T δ δ sin

L 2
ϕ

ϕϑ  = − +  
  

, (7) 

 n
yn y n

T
T δ δ cos

L 2
ϕ

ϕϑ  = + +  
  

, (8) 

 n
zn zn

T
T L

L
= , (9) 
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where Tn is the initial tendon tension force. Hence, the initial total platform force is 

N

n

n 1

T T

=
=∑ . 

Components of the platform force in an offset position, according to Eqs. (7), (8) and (9), read: 

 

N

x xn x

n 1

T
T T δ

L=
= =∑ , (10) 

 

N

y yn y

n 1

T
T T δ

L=
= =∑ , (11) 

 

N N

z zn zn

n 1 n 1

T
T T L

N= =
= =∑ ∑ . (12) 

 

Fig. 2  Large surge, sway and yaw, xδ , yδ , δϕ  

Horizontal components Tx and Ty depend only on horizontal displacements δx and δy, since the 

trigonometric functions vanish from (7) and (8) upon summation of the given values of tendon 

central angle, ϑn, Table 1. 

In order to make summation of Lzn in (12), it is necessary to expand function Lzn into the power 

series. Since 
21 1 1

1 ε 1 ε ε ...
2 2 4

⋅− = − − −
⋅

, the following is obtained: 

 
2 2

zn 1 1 1 2n 2n

1 1 1 1 1
L L 1 g g L g g g

2 8 2 4 8

    = − − + + −    
    

. (13) 
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By taking into account Eqs. (7) and (8), as well as values of the trigonometric function from 

Table 1, one finds that 

N

2n

n 1

1
g 0

N =
=∑ , while the tendon central angle ϑn  vanishes from 

N
2
2n

n 1

1
g

N =
∑ . As a result, the following is obtained: 

 ( )
N

z zn 1 2

n 1

1
L L L 1 f f

N =
= = − −∑ , (14) 

where: 

 ( )2 2 2
1 x y2

1
f δ δ δ

2L
ϕ= + + , (15) 

 2
2 1 3

1
f f f

2
= + , (16) 

 ( )
2

2 2
3 x y4

δ
f δ δ

4L

ϕ= + . (17) 

Table 1  TLP node parameters 

Node n nϑ  nϑ
)

 nsinϑ  ncosϑ  nx  ny  

1 0 0 0 1 r 0 

2 120˚ 
2

π
3

 3

2
 

1

2
−  1

r
2

−  3
r

2
 

3 240˚ 
4

π
3

 3

2
−  

1

2
−  

1
r

2
−  

3
r

2
−  

The tendon offset causes platform set-down 
S

zδ L L= − , and additional buoyancy ∆U and 

tension forces ∆Tn. The total additional tendon force is determined from the equilibrium of the 

vertical forces: 

 ( )
N

n n zn

n 1

1
U U Q T T L

L
∆ ∆

=
+ = + +∑ , (18) 

where Q is the platform weight. The increased buoyancy is: 

 
S

WLU ρgA δ∆ = , (19) 

where AWL is the waterplane area. By taking the floating condition T = U − Q into account and 

by substituting (19) into (18), the total additional tendon force is: 

 ( )
N

S
n zn WL

z zn 1

1 1
T T L T ρgA δ

L L
∆ ∆

=
= = +∑ . (20) 

The horizontal components of the total tendon forces, Eq. (10), are increased and equalled to 

the external forces, Tx = Fx and Ty = Fy, i.e. 
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( )

( )

x x 11 x

y y 22 y

1
F T T δ K δ ,

L

1
F T T δ K δ ,

L

∆

∆

= + =

= + =

%

%

 (21) 

where 11K%  and 22K%  represent surge and sway stiffness, respectively. Substituting (20) into 

(21), the following is yielded: 

 ( )S
11 22 0 WL

z

1
K K K T ρgA δ

L
= = = +% % % , (22) 

where 0K%  is the nonlinear secant stiffness. 

In order to determine yaw stiffness, let us specify the yaw moment due to action of the 

horizontal tendon forces, Figure 3: 

 ( ) ( )
N N

z xn xn n yn yn n

n 1 n 1

M T T y T T x∆ ∆
= =

= − + + +∑ ∑ , (23) 

where xn and yn are the tendon top coordinates, Table 1. By substituting Eqs. (7) and (8) into 

(23), the following is yielded: 

 

( )
N

z n n x n n

n 1

x n n

1
M T T δ δ sin y

L 2

                                   δ δ cos x .
2

ϕ

ϕ

ϕ∆ ϑ

ϕϑ

=

   = + − − + +   
  

  + + +   
   

∑
 (24) 

 

Fig. 3  Tendon and platform forces 

Employing values of sinϑn, cosϑn, xn and yn from Table 1, the following is obtained upon 

summation: 

 
2

z 0 66M K r sin Kϕ ϕ= =% % , (25) 

where 0K%  is presented in Eq. (22). Finally, the yaw stiffness reads: 

 
2

66 0

sin
K K r

ϕ
ϕ

=% % . (26) 
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Value of the yaw stiffness is decreased from the maximum value at ϕ = 0, to the zero value at 

π
2

ϕ = . 

2.2 SMALL DISPLACEMENTS 

If the platform displacements are small, the second order terms in (14) for Lz can be omitted, 

and for the set-down the following is obtained: 

 ( )S 2 2 2
z 1 x y

1
δ L L Lf δ δ δ

2L
ϕ= − = = + + , (27) 

where δϕ = rϕ, Eq. (1). In this case the set-down, as a result of platform offset, can be 

constructed in a simple way as shown in Figure 4. The yaw stiffness, Eq. (26), is also simplified, 

i.e. 
2

66 0K K r=% % . Hence, the restoring stiffness for all horizontal displacements depends on the 

common parameter 0K% , Eq. (22). 

 

Fig. 4  Construction of set-down in offset plane 
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3. STIFFNESS OF IN-PLANE MOTION BASED ON BALANCE OF POTENTIAL 

ENERGY 

3.1 LARGE DISPLACEMENTS 

TLP is exposed to action of the following forces: Q, T, U, ∆T and ∆U. Tendon elongation ∆Ln due 

to tendon forces Tn + ∆Ln is quite small compared to the platform set-down, and therefore can 

be ignored. Work of the resulting external force, T = U − Q is realised in the way of set-down, 
Sδ . The reacting internal force is buoyancy variation ∆U, Eq. (19), which is increased 

proportionally to the set-down. Hence, the platform potential energy can be presented in the 

form: 

 ( )2
S S

WL

1
V Tδ ρgA δ

2
= + . (28) 

The platform vertical coordinate Lz is defined by Eq. (14), and the set-down, 
S

zδ L L= − , takes 

the following form: 

 ( )S
1 2δ L f f= + . (29) 

where functions f1 and f2 are defined by Eqs. (15) and (16). 

On the other hand, Lz can be also determined as the quadratic mean of tendon vertical 

coordinates, Eq. (4), i.e. 

 ( )
N

22
z zn

n 1

1
L L

N =
= ∑ . (30) 

Since trigonometric functions of angles ϑn in Lzn vanish upon summation, Eq. (30) yields: 

 ( )2 2
z 1L L 1 2 f= − . (31) 

Furthermore, relation 
S

zδ L L= −  gives: 

 ( )2
S 2 2

z zδ L 2LL L= − + . (32) 

and by substituting (14) and (31) into (32), the following is yielded: 

 ( )2
S 2

2δ 2L f= . (33) 

Finally, substituting (29) and (33) into (28) results in: 

 1 2V TLf CLf= + , (34) 

where: 

 WLC T ρgA L= + . (35) 

Derivatives of potential energy per displacements represent restoring forces. Hence, for the 

secant stiffness of surge, sway and yaw, the following applies: 

 
* 1 2
11

x x x

f fL
K T C

δ δ δ

 ∂ ∂
= + ∂ ∂ 

% , (36) 
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* 1 2
22

y y y

f fL
K T C

δ δ δ

 ∂ ∂
= + 

 ∂ ∂ 

% , (37) 

 
* 1 2
66

f fL
K T C

ϕ ϕ ϕ
∂ ∂ = + ∂ ∂ 

% . (38) 

Derivatives of functions f1 and f2, Eqs. (15) and (16), are the following: 

 
2

1 1 1
x y2 2 2

x y

f f f1 1 r
δ , δ , sin

δ δL L L
ϕ

ϕ
∂ ∂ ∂

= = =
∂ ∂ ∂

, (39) 

 

2
22

1 x x2 4
x

f 1 2r
f δ δ sin

δ 2L L

ϕ∂
= +

∂
, (40) 

 
2

22
1 y y2 4

y

f 1 2r
f δ δ sin

δ 2L L

ϕ∂
= +

∂
, (41) 

 ( )
2

2 22
1 x y2 2

f r 1
f δ δ sin

L 2L
ϕ

ϕ
∂  = + + ∂  

. (42) 

By substituting Eqs. (39) – (42) into Eqs. (36), (37) and (38), the following is obtained: 

 

2
* * * 2
11 22 3

r
K K K 2C sin

2L

ϕ= = +% % % , (43) 

 ( )
2

* * 2 2 2
66 x y3

r sin
K K r C δ δ

2L

ϕ
ϕ

 
= + + 
  

% % , (44) 

where: 

 
S

* 1 δ
K T C

L L

 
= +  

 

% , (45) 

and Sδ  is presented by Eq. (29). 

3.2 SMALL DISPLACEMENTS 

If displacements are small: 

 

2
* * * 2
11 22 3

r
K K K C

L
ϕ= = +% % % , (46) 

 ( )
2

* * 2 2 2
66 x y3

r
K K r C δ δ

2L
= + +% % , (47) 

and Sδ in *K% , Eq. (45), is presented by Eq. (27). 
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4. COMPARISON OF TWO IN-PLANE RESTORING STIFFNESS FORMULATIONS 

Restoring stiffness for surge, sway and yaw, based on equilibrium of forces 11K% , 22K%  and 66K%  

are presented by Eqs. (22) and (26), while those based on energy balance, 
*
11K% , 

*
22K%  and 

*
66K% , 

by Eqs. (43) and (44). The latter includes some additional coupling terms. Also, there is a 

difference between the basic stiffness parameters 0K%  and 
*K% , Eqs. (22) and (45). The 

following applies for said difference: 

 
( )2

S

*
0 WL

z

δT
K K ρgA

L LL

 − = − 
 

% % , (48) 

which is of the second order of magnitude. 

A numerical analysis of influence of different stiffness formulations on response of square TLP 

is performed in [15], Table 2. 

Table 2  Main particulars of TLP 

Parameter Symbol Value 

Platform weight Q 3.3·105 kN 

Buoyancy U 4.655·105 kN 

Total tendon pre-tension T 1.355·105 kN 

Column spacing b 75.66 m 

Column diameter D 16.39 m 

Tendon length L 269 m 

Water depth L+d 300 m 

Water plane area AWL 633 m2 

Tendon cross-section area An 0.05 m2 

Young’s modulus E 2.1·108 kN/m2 

Tendon stiffness EAn/L 3.4·104 kN/m 

Hydrostatic stiffness kn 2.07·103 kN/m 

Centre of gravity above keel KG  27.47 m 

Distance of columns from CG r b 3=  43.682 m 

The following values of basic displacements for the considered triangular TLP are used: 

xδ 0.1L 26.9= =  m, 30 0.523598ϕ = ° =  rad. The derived displacements read: approximate yaw, 

δ r 22.782ϕ ϕ= =  m, real yaw, Eq. (1), δ 22.612ϕ =  m, approximate set-down, Eq. (27), 

Sδ 2.317=  m, real set-down, Eq. (29), Sδ 2.309=  m. The surge and the yaw stiffness for the 

approximate and real displacements in the case of the force equilibrium and energy balance 

formulation are listed in Table 3. Variation of stiffness due to the approximate and real 

displacements is negligible. Some discrepancies are noticeable for the force equilibrium and 

energy balance stiffness formulation. 
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Table 3  Nonlinear surge and yaw stiffness, xδ 26.9 m= , 30ϕ = °  

Case Approach K11 (kN/m) K66 (kNm) Sδ (m)  

1 
Force equilibrium, 

approximate set-down 
562.05 1.0724·106 2.317 

2 
Force equilibrium, 

real set-down 
561.84 1.0237·106 2.309 

3 
Energy balance, 

approximate set-down 
585.91 1.1355·106 2.317 

4 
Energy balance, 

real set-down 
585.05 1.1351·106 2.309 

In order to analyse which of the stiffness formulations is more reliable, the above nonlinear 

problem is solved by the finite element method employing LS DYNA software, [16]. A quite 

simple FEM model is constructed, as shown in Figure 5. The platform is modelled as a 1m thick 

plate and each tendon has four beam elements. 

 

Fig. 5  TLP FEM model 
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The surge force and yaw moment are determined by the corresponding stiffness based on the 

force equilibrium (FE) and the energy balance formulation (EB), and the real displacements, 

Table 3: 
4

xFE 11 xF K δ 1.511 10= = ⋅%  kN, 
5

zFE 66M K 5.360 10ϕ= = ⋅%  kNm, 

* 4
xEB 11 xF K δ 1.574 10= = ⋅%  kN, 

* 5
zEB 66M K 5.943 10ϕ= = ⋅%  kNm. Force Fx is lumped in the plate 

corners, while moment Mz is distributed in all 16 nodes. The hydrostatic springs are placed in 

the plate corners with the equivalent stiffness of n WL

1
k ρgA 2070

3
= =  kN/m. Value of the 

Young’s module is considerably increased ( * 3E 10 E= ) in order to constrain the initial tendon 

strain due to the imposed tendon pretension force 4
n

TT 4.517 10
3

= = ⋅  kN, Figure 5. 

A numerical calculation is performed separately for the particular loads Fx and Mz, and then for 

their simultaneous action. Static nonlinear problem of large displacements is solved by a 

general routine for dynamic problem in the time domain by the step-by-step explicit 

integration method and slowly increased load values in order to avoid influence of inertia. 

First force Fx is imposed and then moment Mz, so that their particular influence on the 

response can be noticed. The bird’s view of the platform in the equilibrated translated and 

rotated position due to action of FzFE and MzFE is shown in Figure 6. Figures 7 and 8 represent 

the zoomed lateral and front view in which a small platform roll and pitch can be noticed. 

 

 

Fig. 6  Bird’s view of platform in offset position 

 

 

Fig. 7  Lateral view of platform in offset position 
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Fig. 8  Front view of platform in offset position 

The time history of the platform longitudinal, transversal and vertical displacements is shown 

in Figures 9-11, respectively. During the FzFE action the displacements of all three platform 

corners, as well as the centroid, are the same. Activation of MzFE causes spreading of 

displacements due to the platform rotation. The displacements obtained using the FEM 

analysis based on the forced equilibrium approach (FE) and energy balance (EB) and the 

individual and simultaneous action of loads, Fx and Mz, are listed in Table 4. For Fx and Mz, FEM 

FE results are closer to the analytical input, whereas for the common action of Fx and Mz, FEM 

EB provides somewhat better results. Hence, both FE and EB restoring stiffness formulations 

are acceptable. However, since the real platform rotation is quite smaller than 30˚, a slight 

advantage for practical use can be given to the FE restoring stiffness formulation. 

 

 

Fig. 9  Time history of platform longitudinal displacement, Force Equilibrium (FE) 
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Fig. 10  Time history of platform transverse displacement, Force Equilibrium (FE) 

 

 

Fig. 11  Time history of platform set-down, Force Equilibrium (FE) 
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Fig. 12  Time history of platform longitudinal displacement, Energy Balance (EB) 

 

 

Fig. 13  Time history of platform transfer displacement, Energy Balance (EB) 
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Fig. 14  Time history of platform set-down, Energy Balance (EB) 

 

Table 4  Platform displacements 

Case Approach 
xF  

zM  
xF  & 

zM  

xδ  (m)  Sδ  (m)  ϕ  Sδ  (m)  xδ  (m)  ϕ  Sδ  (m)  

1 Analytical 26.900 1.348 30˚ 0.952 26.900 30˚ 2.309 

2 FEM, FE 27.577 1.416 31˚ 1.006 25.835 27.5˚ 2.060 

3 FEM, EB 28.602 1.524 34.5˚ 1.232 26.454 30.5˚ 2.296 

5. CONCLUSION 

Dynamic behaviour of TLPs substantially depends on the nonlinear restoring stiffness. In 

dynamic analysis, the stiffness matrix derived in [10, 11] is ordinarily used. However, that 

formulation is not reliable enough, as explained in [13]. Therefore, a new formulation of the 

restoring stiffness matrix, based on both the equilibrium of forces and energy balance, is 

presented in [12]. A detailed analysis of the problem related to square TPLs, is undertaken and 

the obtained results are validated by the FEM analysis, [15]. 

In this paper, a similar analysis is performed for the derivation of the restoring stiffness for 

triangular TLPs. A correlation analysis of the analytical and numerical results shows that the 

restoring stiffness determined by both the force equilibrium and energy balance are reliable 

enough for a practical application. 
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