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ABSTRACT. For n > 1, the n*® Ramanujan prime is defined as the
smallest positive integer R, such that for all x > R,,, the interval (%,a:]
has at least n primes. We show that for every e > 0, there is a positive
M), then Rn < ppqy) for all
logn + j(n)

n > N, where p; is the i*? prime and j(n) > 0 is any function that satisfies
j(n) = oo and nj’(n) — 0.

integer N such that if a = 2n (1 +

1. INTRODUCTION

For n > 1, the n*® Ramanujan prime is defined as the smallest positive
integer R, such that for all x > R,,, the interval (5, z] has at least n primes.
Note that by the minimality condition, R, is prime and the interval (R2 , Ry
contains exactly n primes. Let R, = p,s, where p; denotes the " prime.
Sondow ([7]) showed that pa, < R, < pan for all n, and conjectured that R,, <
pan for all n. This conjecture was proved by Laishram ([4]), and the upper
bound ps,, improved by various authors ([1], [8]). Subsequently, Srinivasan
([9]) and Axler ([1]) improved these bounds by showing that for every € > 0,
there exists an integer N such that

R, < Pi2n(1+e)] for all n > N.

Using the method in [9] (outlined below), a further improvement was pre-
sented by Srinivasan and Nicholson, who proved that

3
2n (1
s < n( +10gn+1og(logn)4)
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for all n > 241. The above result follows from a special case of our main
theorem given below. Yang and Togbé ([11]), also used the method in [9], to
give tight upper and lower bounds for R, for large n (greater than 103°°). For
some interesting generalizations of Ramanujan primes the reader may refer to
2], [5] and 6]

The main idea in [9] is to define a function F(z) that is decreasing for
x > 2n and that satisfies F(s) > 0. Then, an a > 2n is found such that
F(a) < 0 for n > N, which would imply that s < « for n > N given the
decreasing nature of F'. We employ a variation of this method, where we first
show that F'(«) is a decreasing function for n > N. Then we find an integer
greater than N for which F'(«) < 0, which leads us to the desired result. Our
main result is the following.

THEOREM 1.1. Let R,, = ps and ¢ > 0. Let j(n) > 0 be a function such
that j(n) — oo and nj'(n) = 0 as n — oo and let

logn + j(n)
(n) = an i)
log2+ ¢

Then there exists a positive integer N such that for alln > N, we have s < «,

— _1
where o = 2n (1 + g(n)).

Let log, = denote loglogx. In the following corollary we record a bound
obtained with e = 0.5, where j(n) is chosen so as to minimize the number of
calculations. Similar results can be given for smaller values of € (with different
j(n)) where the determination of N depends solely on computational power.

COROLLARY 1.2. Let R, = ps. Then for n > 43 we have

s<2n<1+$),

_ logn +logyn —log2 —0.5
N log2 +0.5

where

g(n)

2. THE BASIC FUNCTIONS AND LEMMAS

We will use the following bounds for the k" prime given by Dusart.

LEMMA 2.1. The following hold for the k'™ prime py..

L p > k (logh +logy b — 1+ “5/20) for all k > 3.

2 pr <k (1ogk tlogyk— 1+ 1"%5;,;2) for all k > 688383.

PROOF. See [3]. O
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Let
B logy k — 2
Uk)=k <logkz+log2kz—1+ log k )
and
logy k — 2.1
L(k) = 1 1 -1+ —).
(k) k(ogk—i— ogy k + ogk )
Note that U(z) = L(x) + f(z) where f(x) = IO'LT. We define
ogx
F(z,n)=U(z) —2L(x —n) =U(z) = 2U(z —n) + 2f(x — n)
and
G(n) = F(a,n),
where a« = 2n (1 + ﬁ) and g(n) is a function that satisfies g(n) > 1 and

g(n) — oo as n — .

LEMMA 2.2. Let R, = ps. Then the following hold.

1. ps—n < %ps-

2. 2n < s < 24n for all n > 43.

3. F(x,n) is a decreasing function for all x > 2n and F(s,n) > 0 for
n > 688383.

PROOF. For parts 1 and 2 see [9, Lemma 2.1] and [9, Remark 2.1] respec-
tively. For part 3 see [11]. O

The following lemma contains useful results that include an expression
for the derivative G’(n) in terms of the function U(z).

LEMMA 2.3. Let A=U'(a) —U'(a« — ). Then the following hold.

1. A= A(n) = log2 as n — oo.

2 16/ (n) = A+ fla—n) + (375) (A~ U'(a—n) +2f'(a— ).
3. L'(x) > logz + logy « for x > 20.
4

A+ fl(a - n) - 1Og2 < 1Og (logl?ongn)) + 1100120?‘ + log(lézlfn) + }Z?EZ:Z% :

PRrOOF. We have
1 3 logo = logyx
logz  log?z log?z logx

A =log (ﬁ) +log (bgk’(ii)n)) +t(n),

_1
g(n)

(2.1) U'(z) =logz + logy @ —

and hence

where t(n) - 0asn — 00. As a = 2n<1+
A — log2.

) and g(n) — oo, we have
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For the second part of the lemma, G(n) = U(a) —2U(a—n) +2f(a—n),
which gives G'(n) = U'(a)a = 2U'(a — n)(a/ — 1) + 2f"(a — n)(a/ — 1). As

I
a’:2+2(ﬁ> , we have

Lo/ = U'(a) <1 " (g)) T <1 2 <§)> (f'(a=n) = U'(a —n))

and the result follows by the definition of A.
For part 3 we have
logoz  log,x 1.1 3.1

L'(z) =logzx + log, = + - -
(z) & 82 logz  log?z logz  log’z

log, x logy @ 1.1
log log? x log

from which the claim follows as for n > 20 we have
For the last part, we have

A—log2+ f'(a—n)

~log ( log a ) log, a 1.1 logg (a —m) LT
log(a — n) loga  log(aw—n)  log”(a —n)
where )
T— log 1+@ _logyla—n) 1
1+ 55 log(a —n) loga
log, 3 3.1
- gg 2 2 <0
log°a  loga log“(a—mn)
3 3.1
as logZa  logZ(a—n) <0. O

3. PROOFS OF MAIN RESULTS

The following lemma shows that G’(n) is a decreasing function for large
n, which is crucial in the proof of Theorem 1.1.

LEMMA 3.1. Let e > 0 and

logn + j(n
g9(n) = logn + j{n)
log2 + €

where j(n) > 0 is a function that satisfies j(n) — oo and nj'(n) — 0 as
n — co. Then G'(n) — —2e.

PrOOF. We have
< n )/ (log2 +€)(logn + j(n) — 1 — nj’(n))
g(n) (logn + j(n))?

!
and therefore (%) — 0 as n — oo. By our assumption on j(n) it follows

. I
(using L’Hopital’s rule) that % — 0 which gives (ﬁ) log(a — n) —
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!/
log2 + € (as % — 1). Tt is easy to see that (ﬁ) logy(av — n) — 0. Tt
!/
follows that (ﬁ) U'(a — n) — log2 + € (see equation (2.1)). Lastly note
that f’(z) — 0 as x — 0o. The result follows now on using all the above and
the fact that A — log2 (Lemma 2.3 part 1) in part 2 of Lemma 2.3. O

PrOOF OF THEOREM 1.1. We will first show that there exists a positive
integer N, such that G(n) < 0 for n > N. We have G'(n) — —2¢ by the
lemma above, which means that if 0 < § < 2¢, then there exists an integer
M, such that for all n > M we have |G'(n) + 2¢| < 4, that is

—2e— 5 < G'(n) < =2+ 94,
for all n > M. Let a and b be two integers such that M < a < b. Then

b
G(b) — G(a) = / G'(n)dn < (b—a)(—2¢ +§) < 0.

If a is fixed, it follows that G(b) < G(a) + (b — a)(—2¢ + J) < 0 for large b.
Therefore there exists a positive integer N > M, such that for all n > N, we
have G(n) = F(a,n) < 0.

We may assume that NV > 688383 so that from Lemma 2.2, part 3 we have
F(s,n) > 0. Moreover, from the same lemma we have F(z,n) is decreasing
for x > 2n. As s and « are both bigger than 2n, we have s < o for n > N
and the result follows. O

PrOOF OF COROLLARY 1.1. Let € = €1 + €5 = 0.5. We will first show
that for n > 688383 we have G’'(n) < 0.
Let ¢ = 0.1. It is easy to verify that for n > 688383 we have
1+ logn €1
logn(logn + logy n — log 2 — €) < log2+¢€
It follows that for all n > 688383

ng(n) _ (log2+€)(1 + logn)
(3.1) g(n)?  logn(logn + log,n —log2 — €)?
. o

< .
logn +logyn —log2 — ¢
Next, we will show that A+ f'(a —n) —log2 < 3.
Using Lemma 2.3, part 4 and Lemma 2.2 part 2, we have

A+ f'(a —n) —log?2

(3.2) log(2.4n) logy(2.4n) 1.1 log,(1.4n)
< log 5 .
logn log(2n) logn log” n

Observe that for n > 36734

log(2.4n) €2
. 1 — —=
(3.3) og < log ) <%
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logn logn

‘ 2
as log (10g(2‘4n)) < % holds if log(24n) - o2 that is if 2.4n < n¢° . The
€2 _
above holds if 2.4 < n°®  or n > 36734.
Computation yields that for n > 688383
log,(2.4n) 1.1 log,(1.4n) - 4eq
log(2n) logn log®n 5

(3.4)

From equations (3.2)-(3.4) we have A+ f'(a—n)—log2 < €3. From Lemma
23 part 3, L'(a —n) =U'(a —n) — f'(a — n) > log(a — n) + logy(ax — n) >
logn + logy n and hence for n > 688383 we have
A+ f'(a—n) - log2 + €2
—A4+U'(a—n)—=2f(a—n) logn+logyn—log2— e
As €1 + €2 = ¢, equations (3.1) and (3.5) give

(3.5)

A+ f'(a—n) L o)
(3.6) —A+U(a—n)=2f(a-n) " g(n)?
. log2+ €1+ €2 1

logn +logan —log2 —¢  g(n)’

/ /
From Lemma 2.3, part 2, noting that (ﬁ) = ﬁ - T;%:;; , we have

G'(n) < 0 for all n > 688383. Also, G(688383) < 0 and hence we conclude
that G(n) < 0 for n > 688383.

From Lemma 2.2, part 3 we have F(s,n) > 0 and F(z,n) is decreasing
for x > 2n. As s and « are both bigger than 2n, it follows that s < « for
n > 688383. That the result holds for 43 < n < 688383 is a simple calculation.

O

REMARK 3.2. Similar results for lower bounds for R,, can be given using
G(z,n) = L(z) — 2U(x —n + 1) instead of F(z,n).
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