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STRONG EULERIAN TRIPLES
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Abstract. We prove that there exist infinitely many rationals a, b
and c with the property that a2 − 1, b2 − 1, c2 − 1, ab − 1, ac − 1 and
bc− 1 are all perfect squares. This provides a solution to a variant of the
problem studied by Diophantus and Euler.

1. Introduction

Let q be a non-zero rational. A set {a1, a2, . . . , am} of m non-zero ra-
tionals is called a rational D(q)-m-tuple if ai · aj + q is a perfect square
for all 1 ≤ i < j ≤ m. Diophantus found the first rational D(1)-
quadruple {1/16, 33/16, 17/4, 105/16}, while Euler found a rational D(1)-
quintuple by extending the integer D(1)-quadruple {1, 3, 8, 120}, found by
Fermat, with the fifth rational number 777480/8288641 (see [3,22]). Recently,
Stoll ([26]) proved that this extension of Fermat’s set to a rational D(1)-
quintuple is unique. The first example of a rational D(1)-sextuple, the set
{11/192, 35/192, 155/27, 512/27, 1235/48, 180873/16}, was found by Gibbs
in [18], while Dujella, Kazalicki, Mikić and Szikszai in [14] recently proved
that there are infinitely many rational D(1)-sextuples (see also [13]). It is
not known whether there exist any rational D(1)-septuples. However, Gibbs
([19]) found examples of “almost” septuples, namely, rational D(1)-quintuples
which can be extended to rational D(1)-sextuples on two different ways, so
that only one condition is missing that these seven numbers form a rational
D(1)-septuple (they formD(1)-septuples over corresponding quadratic fields).
One such quintuple is {243/560, 1147/5040, 1100/63, 7820/567, 95/112}which
can be extended to the sextuple with 38269/6480 or 196/45. For an overview
of results on D(1)-m-tuples and its generalizations see [8].
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It is known that for every rational q there exist infinitely many rational
D(q)-quadruples (see [5]). In 2012, Dujella and Fuchs ([11]) proved that for
infinitely many square-free integers q there are infinitely many rational D(q)-
quintuples, by considering twists of the elliptic curve y2 = x3 + 86x2 + 825x
with positive rank.

Apart of the case q = 1, the most studied case in the literature is q = −1.
The case q = −1 is closely related to another old problem investigated by
Diophantus and Euler, concerning the sets of integers or rationals with the
property that the product of any two of its distinct elements plus their sum
is a perfect square. We call a set {x1, x2, . . . , xm} an Eulerian m-tuple if
xixj + xi + xj is a perfect square for all 1 ≤ i < j ≤ m. The equality
xixj + xi + xj = (xi + 1)(xj + 1) − 1 gives an explicit connection between
Eulerian m-tuples and D(−1)-m-tuples. It is known that there does not exist
a D(−1)-quintuple in integers and that there are only finitely many such
quadruples, and all of them have to contain the element 1 (see [9, 10]). In
particular, there does not exist an Eulerian quadruple in positive integers.
On the other hand, there exist infinitely many rational D(−1)-quintuples,
and hence infinitely many Eulerian quintuples in rationals (see [4, 6]).

Note that in the definition of rational D(q)-m-tuples we excluded the
requirement that the product of an element with itself plus q is a square.
It is obvious that for q = 1 such condition cannot be satisfied in integers.
But for rationals there is no obvious reason why the sets (called strong D(1)-
m-tuples) which satisfy these stronger conditions would not exist. Dujella
and Petričević ([17]) proved in 2008 that there exist infinitely many strong
D(1)-triples, while no example of a strong D(1)-quadruple is known.

In this paper, we study the existence of strong Eulerian triples, i.e. sets
of three rationals {x1, x2, x3} such that x1x2 + x1 + x2, x1x3 + x1 + x3,
x2x3 + x2 + x3, x2

1 + 2x1, x2
2 + 2x2 and x2

3 + 2x3 are all perfect squares.
Equivalently, by taking ai = xi + 1, we may consider strong rational D(−1)-
triples, i.e. sets of three rationals {a1, a2, a3} such that a1a2 − 1, a1a3 − 1,
a2a3 − 1, a21 − 1, a22 − 1 and a23 − 1 are all perfect squares. It is clear that all
elements of a strong rationalD(−1)-triple has to have the same sign, and that
{a1, a2, a3} is a strong rational D(−1)-triple if and only if {−a1,−a2,−a3}
has the same property. Thus, there is no loss of generality in assuming that
all elements of a strong rational D(−1)-triple are positive. By connecting
the problem with certain families of elliptic curves, we will show that there
exist infinitely many strong rational D(−1)-triples. We find only eight strong
rational D(−1)-triples that do not contain the number 1 (see Example 2.1
and Remark 4.3). Accordingly, our construction gives several infinite families
of strong rational D(−1)-triples which all contain the number 1. This means
that the corresponding strong Eulerian triples contain the number 0, and all
other elements are squares. MacLeod ([23]) found examples of rational Euler-
ian triples and quadruples which all elements are squares. However, in our
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situation there is an additional requirement that each element increased by 2
is also a square.

The main result of this paper, which will be proved in Section 2, is the
following theorem.

Theorem 1.1. There exist infinitely many strong Eulerian triples.

A more precise formulation of our result is the following.

Proposition 1.2. Let {1, b} be a strong rational D(−1)-pair. Then there

exist infinitely many strong rational D(−1)-triples of the form {1, b, c}.

2. Constructions of infinite families of triples

Example 2.1. We start by searching experimentally for strong rational
D(−1)-triples with elements with relatively small numerators and denomi-
nators (smaller than 2.5 · 107). We found seven examples with all elements
different from 1:

{493/468, 1313/1088, 33137/32912},

{1517/1508, 42601/11849, 909745/757393},
{125/117, 689/400, 14353373/13130325},

{354005/22707, 193397/183315, 2084693/2074035},
{2833349/218660, 3484973/2619045, 3056365/3047653},

{2257/1105, 2873/2745, 3859145/862784},
{2257/1105, 115825/8177, 14307761/10303760},

and 23 examples containing the number 1:

{1, 5/4, 14645/484}, {1, 689/400, 1025/64},

{1, 689/400, 969425/861184}, {1, 689/400, 9047825/4857616},

{1, 2501/100, 59189/12100}, {1, 2501/100, 3219749/2102500},

{1, 6625/1296, 3254641/435600}, {1, 19825/17424, 46561/32400},

{1, 19825/17424, 50689/3600}, {1, 17009/6400, 8530481/4494400},

{1, 26245/324, 26361205/18301284}, {1, 28625/2704, 27060449/25603600},

{1, 60229/44100, 65125/39204}, {1, 65125/39204, 2829205/30276},

{1, 168305/94864, 262145/1024}, {1, 926021/96100, 13236725/7365796},

{1, 1692821/902500, 1932725/662596}, {1, 2993525/2896804, 6519845/6461764},

{1, 3603685/2965284, 5791045/777924}, {1, 4324625/1478656, 4919681/883600},

{1, 12376325/12096484, 12844709/11628100},

{1, 19193525/18887716, 22980245/15100996},

{1, 12231605/2353156, 13689845/894916}.
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Example 2.1 suggests that there might exist infinitely many strong ratio-
nal D(−1)-triples containing the number 1. We will show that this is indeed
true.

Example 2.2. Let us take a closer look at strong rational D(−1)-triples
of the form {1, 689/400, c}. We get the following values for c with numerators
and denominators less than 1021:

1025/64, 969425/861184, 9047825/4857616, 352915361/30030400,

109066004561/106119577600, 284429759489/271837104400,

1322025501425/1301315125504, 2253725966225/876912382096,

9055090973825/809791213456, 30776081662625/29873264334736,

41085820444721/37500436537600, 38029186636625/23706420917776,

710390547822449/245964644227600, 206973503563719329/2738904077011600,

180130335826717601/7772841524238400,

1383595259111988401/1191448219611040000,

349568886374130209/40505499045648400,

842490595967154166625/184668498086700979264.

Example 2.2 clearly indicates that we may expect that there exist infin-
itely many strong rational D(−1)-triples of the form {1, 689/400, c}. It is
not so clear what to expect for triples of the form {1, 5/4, c} or {1, 65/16, c}.
However, as stated in Proposition 1.2, we will show that there exist infinitely
many strong rational D(−1)-triples of each of these forms.

So, let {a, b, c} be a strong rational D(−1)-triple with a = 1. Thus b− 1,
c − 1, b2 − 1, c2 − 1 and bc − 1 are perfect squares. From the first and
third condition we get b − 1 = α2, b + 1 = β2 for rationals α, β. By taking

β2 − 2 = α2 = (β − 2u)2, we get β = 2u2+1
2u

and

(2.1) b =
4u4 + 1

4u2

for a non-zero rational u. (If a 6= 1, instead of the genus 0 curve α2 +2 = β2,
we would have a genus 1 curve α4 + 2α2 + 1− a2 = γ2.) Analogously we get

(2.2) c =
4v4 + 1

4v2

for a non-zero rational v.
The only remaining condition is that bc − 1 should be a perfect square.

By inserting (2.1) and (2.2) in bc− 1 = , we get

(2.3) (16u4 + 4)v4 − 16u2v2 + 4u4 + 1 = z2.

This curve is a quartic in v with a rational point [u, 4u4 − 1]. Thus it can be
in the standard way transformed into an elliptic curve:

(2.4) Y 2 = X(X + 32u4 + 8)(X + 16u4 − 16u2 + 4).
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There is a point

P = [−4(4u4 + 1), 16u(4u4 + 1)]

on (2.4), which comes from the point [u,−4u4 + 1] on (2.3). For all non-zero
rationals u, the point P is of infinite order on the specialized curve (2.4) over
Q (by Mazur’s theorem ([24]), if suffices to check that mP 6= O for m ≤ 12).
Now we consider multiples mP , m ≥ 2, of P on (2.4), transfer them back
to the quartic (2.3), and compute the components b, c of the corresponding
strong rational D(−1)-triple. Since the point P is of infinite order, for fixed u,
i.e. fixed b, in that way we get infinitely many strong rational D(−1)-triples
of the form {1, b, c}, thus proving Proposition 1.2 and Theorem 1.1.

The point P gives [u,−4u4+1], and thus does not provide a triple, since
in this case we get v = u and b = c. The point 2P gives

[−u(4u4 − 3)/(12u4 − 1), (64u12 + 272u8 − 68u4 − 1)/(12u4 − 1)2]

and the strong rational D(−1)-triple

{1, (4u4 + 1)/(4u2),

(4u4+1)(256u16+4352u12−1952u8+272u4+1)/(4u2(4u4−3)2(12u4−1)2)},
while 3P gives

[u(64u12 − 656u8 + 108u4 + 5)/(320u12 + 432u8 − 164u4 + 1),

− (16384u28 + 741376u24 − 760832u20 + 812288u16 − 203072u12 + 11888u8

− 724u4 − 1)/(320u12 + 432u8 − 164u4 + 1)2)]

and the strong rational D(−1)-triple

{1, (4u4 + 1)/(4u2),

(4u4 + 1)(256u16 + 4352u12 − 195u8 + 272u4 + 1)×
(65536u32 + 6422528u28 − 13516800u24 + 49995776u20 − 23443968u16

+ 3124736u12 − 52800u8 + 1568u4 + 1)

/(4u2(64u12 − 656u8 + 108u4 + 5)2(320u12 + 432u8 − 164u4 + 1)2)}.
By inserting u = 1, we get the triples

{1, 5/4, 14645/484} and {1, 5/4, 330926870165/318391604644}
(the first triple already appeared in Example 2.1, while the second triple is
outside of the range covered by Example 2.1).

It is clear that further multiples 4P, 5P, . . . would provide more compli-
cated formulas for triples. To get new relatively simple formulas for triples,
we may try to find subfamilies of the elliptic curve (2.4) with rank ≥ 2. For
that purpose, we may use the method explained e.g. in [15].

We search for an additional point on the 2-isogenous curve

(2.5) y2 = x(x2−24x+32xu2−96xu4+16+128u2+384u4+512u6+256u8)
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by considering divisors of 16+128u2+384u4+512u6+256u8 = 16(2u2+1)4.
Imposing x = 8(2u2 + 1) to be the x-coordinate of a point on (2.5) leads to
the condition that 4u2 − 14 is a square, which gives u = (14+w2)/(4w) for a
rational w. Thus

b = (w8 + 56w6 + 1240w4 + 10976w2 + 38416)/(16w2(14 + w2)2).

By transferring the additional point of infinite order of the original quartic
(2.3), we get

v = (w6 + 18w4 − 100w2 − 392)/(4w(3w4 + 28w2 + 140))

and

c = (w8 + 40w6 + 4888w4 + 7840w2 + 38416)

× (w8 − 4w7 + 24w6 − 40w5 + 152w4 + 16w3 + 608w2 + 672w + 784)

× (w8 + 4w7 + 24w6 + 40w5 + 152w4 − 16w3 + 608w2 − 672w + 784)

/(16w2(w6 + 18w4 − 100w2 − 392)2(3w4 + 28w2 + 140)2).

By inserting w = 1, we get the triple

{1, 50689/3600, 104776974625/104672955024}

(this triple is outside of the range covered by Example 2.1).

3. The generic rank and generators of the families of elliptic

curves

In Section 2 we used families of elliptic curves with rank ≥ 1 over Q(u),
resp. rank ≥ 2 over Q(w), and known independent points of infinite order to
construct families of strong rational D(−1)-triples. It is natural to ask what
is the exact generic rank of these two families and whether the known points
are in fact generators of the corresponding Mordell-Weil groups. The recent
algorithm of Gusić and Tadić from [21] (see also [20, 26] for other variants of
the algorithm, and [16,12] for several applications of the algorithm) allows us
to answer these questions.

First we prove that the elliptic curve given in (2.4) has rank one over
Q(u) and the free generator is the point P = [−4(4u4 + 1), 16u(4u4 +1)]. By
the algorithm from [21] we have:

• The specialization at u0 = 6 is injective by [21, Theorem 1.1].
• The coefficients of the specialized curve are [0, 61644, 0, 836402720, 0].
• By mwrank [2], the specialized curve has rank equal to 1 and its free
generator is the point G1 = [−20740, 497760].

• We have that the specialization of the point P at u0 = 6 satisfies
P (6) = G1.
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Now it is obvious that the elliptic curve has rank 1 and the point P is the free
generator of the elliptic curve (2.4) over Q(u).

Now we consider the elliptic curve obtained from (2.4) by the substitution
u = (14 + w2)/(4w). After removing the denominators, we get the elliptic
curve C over Q(w) given by the equation

Y 2 = X3 + (3w8 + 152w6 + 3272w4 + 29792w2 + 115248)X2

+ 2(w8 + 56w6 + 1240w4 + 10976w2 + 38416)(w4 + 20w2 + 196)2X.

We claim that C has rank equal to 2 over Q(w) and that the points with first
coordinates

x(P ) = −(w8 + 56w6 + 1240w4 + 10976w2 + 38416),

x(Q) = (w2 − 14)2(w4 + 20w2 + 196)2/(64w2)

are its free generators. We again apply the algorithm from [21].

• We use the specialization at w0 = 6 which is injective by [21, Theorem
1.1].

• The specialized curve over Q is [0, 17558832, 0, 61973480694272, 0].
• By mwrank ([2]), the rank of this specialized curve over Q is equal to
2 and its free generators are

G1 = [2880000, 18655065600], G2 = [37002889/36, 1971840224123/216].

• We have that for the specialization of the points P,Q at w0 = 6 it
holds P (6) = G1 + T , Q(6) = G2, where T is a torsion point on the
specialized curve.

Thus we get that the elliptic curve C has rank 2 and that the points P and
Q are free generators of C over Q(w).

4. Concluding remarks

Remark 4.1. We may ask how large can the rank be over Q of a special-
ization for u ∈ Q of the elliptic curve (2.4). Since for u = (14 +w2)/(4w) the
rank over Q(w) is equal to 2, by Silverman’s specialization theorem ([25, The-
orem 11.4]), we conclude that there are infinitely many rationals u for which
the rank of (2.4) is ≥ 2. By using standard methods for searching for curves
of relatively large rank in parametric families of elliptic curves (see e.g. [7]),
we are able to find curves with rank equal to 3 (e.g. for u = 2/5, u = 4), 4
(e.g. for u = 50/11, u = 12/65), 5 (e.g. for u = 12/65, u = 16/83) and 6
(for u = 86/743, u = 3570/1051, u = 1642/3539). Note that u = 2/5 gives
b = 689/400. The fact that for this specialization the specialized curve has
rank 3, with generators with relatively small height, explains the observation
from Example 2.2 that there are unusually many strong rationalD(−1)-triples
of the form {1, 689/400, c} for c’s with small numerators and denominators
(see the arguments given in [1, Section 4]).
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Remark 4.2. The results of this paper motivate following open questions:

1) Are there infinitely many strong rational D(−1)-triples that do not
contain the number 1?

2) Is there any strong rational D(−1)-quadruple?

Note that the triple (a, b, c) = (125/117, 689/400, 14353373/13130325) from
Example 2.1 has an additional property that b− 1 is also a square. Further-
more, 26(a − 1) and 26(c − 1) are also squares. Hence, although we do not
know any strong D(−1)-quadruple over Q, we get the set

{1, 125/117, 689/400, 14353373/13130325}

which is a strong D(−1)-quadruple over the quadratic field Q(
√
26).

Remark 4.3. Let a 6= ±1 be a rational such that a2 − 1 is a square, i.e.
a = (t2 + 1)/(2t) for a rational t 6= 0,±1. It can be extended to infinitely
many strong rational D(−1)-pairs. Indeed, as we have already mentioned,
by following the construction in the case a = 1, we now get the condition
α4 + 2α2 + 1− a2 = γ2. This quartic is birationally equivalent to the elliptic
curve

(4.6) Y 2 = (X + 2t2)(X2 + t6 − 2t4 + t2),

for which we can show, by taking the specialization t0 = 11 in [21, Theorem
1.3], that it has the rank over Q(t) equal to 1, with the free generator R =
[−t2 + 1, t4 − 1] (and by Mazur’s theorem ([24]), we find that R is of infinite
order for all rationals t 6= 0,±1). One explicit extension {a, b} is by b = (t4 +
18t2+1)/(8t(t2+1)). We have noted that the elements of the known examples
of strong rational D(−1)-triples that do not contain the number 1 induce the
elliptic curves with relatively large rank. In particular, for a = 42601/11849
and a = 14353373/13130325 the rank is equal to 5. We have performed an
additional search for strong rational D(−1)-triples that do not contain the
number 1 by considering elliptic curves in the family (4.6) with rank ≥ 3,
and checking small linear combinations of their generators. In that way, we
found one new example of a strong rational D(−1)-triple (corresponding to
t = 17/481):

{115825/8177, 408988121/327645760, 752442457/720825305},
which is outside of the range covered by Example 2.1.
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