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ON THE RAMANUJAN-NAGELL TYPE DIOPHANTINE

EQUATION x2 + Akn = B

Zhongfeng Zhang and Alain Togbé

Zhaoqing University, China and Purdue University Northwest, USA

Abstract. In this paper, we prove that the Ramanujan-Nagell type
Diophantine equation x2+Akn = B has at most three nonnegative integer
solutions (x, n) for A = 1, 2, 4, k an odd prime and B a positive integer.
Therefore, we partially confirm two conjectures of Ulas from [23].

1. Introduction

It is well-known that the Diophantine equation

(1.1) x2 + 7 = 2n+2

is called the Ramanujan-Nagell equation. In 1960, Nagell ([18]) proved that
the only integer solutions to Diophantine equation (1.1) are

(x, n) = (1, 1), (3, 2), (5, 3), (11, 5), (181, 13).

A generalized Ramanujan-Nagell equation is the Diophantine equation

(1.2) x2 +D = kn in integers x ≥ 1, n ≥ 1.

This Diophantine equation has a very rich literature. For examples, one can
see [1]–[18], [22]–[24]. One aspect of the study of equation (1.2) is to determine
the integer solutions (x, k, n). Diophantine equation (1.2) was studied for fixed
values of D or when D =

∏

i p
ai

i with fixed prime numbers pi.
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Recently, many mathematicians have been interested in a more general-
ized Ramanujan-Nagell type equation of the form

(1.3) x2 = Akn +B, k ∈ Z≥2, A,B ∈ Z \ {0}.
In 1996, Stiller ([20]) considered the equation

x2 + 119 = 15 · 2n

and proved that this equation has exactly 6 solutions. His result motivated
Ulas ([23]) to consider finding examples. He proved that for each k ∈ Z \
{−1, 0, 1} there are infinitely many pairs of integers A,B such that gcd(A,B)
is square-free and Diophantine equation (1.3) has at least four solutions in
non-negative integers. He was also able to solve some equations of the type
(1.3) having five or more solutions. Besides proving many results, he set many
conjectures. In [24], we completely proved his Conjectures 4.2 and 4.3.

In this paper, we consider following conjectures:

Conjecture 1.1 ([23, Conjecture 4.4]). The Diophantine equation

(1.4) x2 + kn = B

has at most three nonnegative integers (x, n), for any given integers k ≥ 2
and B ≥ 1.

and

Conjecture 1.2 ([23, Conjecture 4.5]). The Diophantine equation

(1.5) x2 +Akn = B

has at most four nonnegative integers (x, n), for any given integers k ≥ 2,
A ≥ 1, and B ≥ 1.

Meng Bai and the first author in [4] confirmed Conjecture 1.1 for k = 2,
i.e. they proved that for any positive integer B, the Diophantine equation

x2 + 2n = B

has at most 3 solutions (x, n) in nonnegative integers. The aim of this paper
is not only to extend their result but also to partially confirm the above
conjectures by proving the following result.

Theorem 1.3. Let p be an odd prime, B a positive integer and A = 1, 2, 4.
Then the Diophantine equation

(1.6) x2 +Apn = B

has at most two nonnegative integer solutions (x, n) in the following three
situations:

(i) p ≡ 3 (mod 4), A = 1, 4;
(ii) p ≡ 5, 7 (mod 8), A = 2;
(iii) p2 ∤ B;



ON THE RAMANUJAN-NAGELL TYPE DIOPHANTINE EQUATION 45

and at most three nonnegative integer solutions (x, n) in the following two
situations:

(iv) p ≡ 1 (mod 4), A = 1, 4, p2|B;
(v) p ≡ 1, 3 (mod 8), A = 2, p2|B.

The organization of this paper is as follows. In Section 2, not only will
we recall a result related to the solutions of a Pell equation, but also we will
derive from it a lemma useful for the proof of Theorem 1.3 in Section 3.

2. Preliminaries

Let p be a prime and n an integer. We denote by vp(n) the p-adic valuation
of n. First, we recall a well-known result on Pell equations. For example, one
can refer to [17, Theorem 106 and Theorem 108a].

Lemma 2.1. Let D ≥ 3 be a nonsquare integer and suppose that the Pell
equation

(2.1) x2 −Dy2 = −2t, t = 0, 1, 2

has an integer solution. Let εt be the fundamental solution of equation (2.1),
then all integer solutions of (2.1) can be written as

x+ y
√
D = ±ε2k+1

t

2tk
, k ∈ Z.

Now, we will prove the following result.

Lemma 2.2. Let D be a positive integer and p an odd prime, then the
Diophantine equation

(2.2) x2 −Dp2n = −2t, t = 0, 1, 2

has at most one positive integer solution (x, n).

Proof. It is obvious when D is a square. So, we assume that D is
not a square. Moreover, we suppose that (a, n1) and (b, n2) are two distinct
positive integer solutions of (2.2), with n2 > n1 ≥ 1. Let D1 = Dp2n1 ,
m = n2 − n1 ≥ 1, and let us consider the Pell equation

(2.3) x2 −D1y
2 = −2t, t = 0, 1, 2.

It is easy to see that a+
√
D1 is the fundamental solution of (2.3). By Lemma

2.1, there exists an integer k ≥ 1 such that

b+ pm
√

D1 =
(a+

√
D1)

2k+1

2tk
.

Then, we have

pm =
(a+

√
D1)

2k+1 − (a−
√
D1)

2k+1

2tk+1
√
D1

= 2−tk

k
∑

r=0

C2r+1
2k+1a

2k−2rDr
1.
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This implies that

(2.4) 2tkpm =

k
∑

r=0

C2r+1
2k+1a

2k−2rDr
1.

We will prove that

(2.5) vp(C
1
2k+1a

2k) < vp(C
2r+1
2k+1a

2k−2rDr
1), r = 1, 2, ..., k.

As a2 = D1 − 2t and D1 = Dp2n1 , we obtain p ∤ a, then

vp(C
1
2k+1a

2k) = vp(2k + 1)

and
vp(C

2r+1
2k+1a

2k−2rDr
1) = vp(C

2r+1
2k+1D

r
1) = vp(C

2r+1
2k+1) + rvp(D1).

Notice that

C2r+1
2k+1 =

2k + 1

2r + 1
C2r

2k .

Thus, one has
vp(C

2r+1
2k+1) ≥ vp(2k + 1)− vp(2r + 1).

Then, we obtain the inequality (2.5) from

rvp(D1)− vp(2r + 1) ≥ 2n1r − vp(2r + 1) ≥ 2r − vp(2r + 1) > 0.

Therefore, using (2.4) and (2.5), we get pm|C1
2k+1a

2k, i.e. pm|2k + 1. So, we
have pm ≤ 2k + 1. On the other hand, from (2.4) and k ≥ 1, we deduce that

2tkpm > C1
2k+1a

2k = (2k + 1)a2k,

i.e. 2tk > a2k, which yields a2 < 2t ≤ 4. This contradicts the fact that

a2 = D1 − 2t = p2n1D − 2t ≥ p2 − 4 ≥ 32 − 4 = 5.

Therefore, it completes the proof of Lemma 2.2.

3. Proof of Theorem 1.3

If B < Ap2, then n ≤ 1 and therefore equation (1.6) has at most two
nonnegative integer solutions (x, n). Thus, for the remainder of the proof, we
assume that B ≥ Ap2 and we consider two cases: p2 ∤ B and p2 | B.

Case 1: p2 ∤ B. Here, we will study the following two claims. Notice
that the restriction p2 ∤ B is necessary for the proof of Claim 2 but not for
the proof of Claim 1. And from the following discussion, we also know that
there is at most two nonnegative integer solutions for A = 3 in this case.

Claim 1: There is at most one nonnegative integer solution (x, n) satis-
fying Apn < 4

√
B −A+A− 4.

Assume that (x1, n1) and (x2, n2) are two distinct integer solutions of
equation (1.6) satisfying

x1 > x2 ≥ 0, Apn1 < Apn2 < 4
√
B −A+A− 4.
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Then, we get

x2
1 − x2

2 = A(pn2 − pn1).

Since p is an odd prime, we have Apn1 ≡ Apn2 (mod 2), then x2
1 ≡ x2

2

(mod 2), i.e. 2|(x1 ± x2). As

pn2 − pn1 ≤ pn2 − 1

and

x2
1 − x2

2 = (x1 + x2)(x1 − x2) ≥ 2(x1 + x2) ≥ 2(x2 + 2 + x2) = 4x2 + 4,

we get Apn2 − (A+ 4) ≥ 4x2, i.e.

A2p2n2 − 2A(A+ 4)pn2 + (A+ 4)2 ≥ 16x2
2 = 16(B −Apn2).

Therefore, we obtain

A2p2n2 − 2A(A− 4)pn2 + (A− 4)2 + 16A ≥ 16B,

i.e.

(Apn2 − (A− 4))2 ≥ 16(B −A),

which yields Apn2 ≥ 4
√
B −A+A− 4. This leads to a contradiction.

Claim 2: There is at most one nonnegative integer solution (x, n) satis-
fying Apn ≥ 4

√
B −A+A− 4.

From Apn ≥ 4
√
B −A + A − 4 and B ≥ Ap2, when A = 1, 2, 4 we have

n ≥ 2. Moreover, since p2 ∤ B, we see that p ∤ x. Assume that (x1, n1) and
(x2, n2) are two distinct integer solutions of equation (1.6) satisfying

x1 > x2 ≥ 0, Apn2 > Apn1 ≥ 4
√
B −A+A− 4.

Then, we get

x2
1 − x2

2 = Apn2 −Apn1 = Apn1(pn2−n1 − 1).

Similarly to Claim 1, we see that 2|(x1 ± x2). Since p is an odd prime and
p ∤ x1x2, we have 2pn1 |x1 + x2 or 2pn1 |x1 − x2, so we get

2x1 − 2 ≥ x1 + x2 ≥ 2pn1 .

This implies that

B −Apn1 = x2
1 ≥ (pn1 + 1)2 = p2n1 + 2pn1 + 1.

Thus, we deduce that

B +A+
A2

4
≥

(

pn1 + 1 +
A

2

)2

,

which yields

Apn1 ≤ A

√

B +A+
A2

4
−A

(

1 +
A

2

)

.
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Therefore, we have

A

√

B +A+
A2

4
−A

(

1 +
A

2

)

≥ 4
√
B −A+A− 4.

This gives

A

√

B +A+
A2

4
− 4

√
B −A ≥ A2

2
+ 2A− 4.

A direct calculation shows that this is impossible for A = 1, 2, 4 and B ≥ Ap2.
This justifies Claim 2 and also completes the proof of Theorem 1.3 (iii).

Case 2: p2|B
In this case, we have n = 0 or n ≥ 2. We will prove Theorem 1.3 by

induction on B.

• For Theorem 1.3 (i) and (ii), one can easily see that
(

−A
p

)

= −1 (the

Legendre symbol) and then n 6= 0. This means that n ≥ 2 and p|x. Let
x = pz, m = n− 2, B0 = B/p2. Thus, we get the equation

z2 +Apm = B0,

with B0 < B. By induction and Case 1, we see that the above equation has
at most two nonnegative integer solutions (z,m). Therefore, equation (1.6)
has at most two nonnegative integer solutions (x, n). This closes the case of
Theorem 1.3 (i) and (ii).

• For Theorem 1.3 (iv) and (v), we will use Lemma 2.2 to prove that
equation (1.6) has at most three nonnegative integer solutions (x, n).

Assume that p2k|B and p2(k+1) ∤ B. Let B = p2kB0. We will prove that
there is at most one nonnegative integer solution (x, n) satisfying n < 2k and
at most two nonnegative integer solutions (x, n) satisfying n ≥ 2k.

If (x, n) is a nonnegative integer solution of (1.6) with n < 2k, then from
x2 + Apn = B = p2kB0, we deduce that 2|n. Put n = 2m. Then, pm|x. Put
x = pmz. Thus, we have

z2 +A = B0p
2(k−m),

with k −m = l ≥ 1, i.e.

z2 −B0p
2l = −A.

As A = 1, 2, 4, then by Lemma 2.2 the above equation has most one posi-
tive integer solution (z, l). This means that equation (1.6) has at most one
nonnegative integer solution (x, n) satisfying n < 2k.

If n ≥ 2k, then pk|x. Put x = pkz, u = n − 2k, B = p2kB0. Then,
equation (1.6) becomes

z2 +Apu = B0,

with p2 ∤ B0. By Case 1, this equation has at most two nonnegative inte-
ger solution (z, u), i.e. equation (1.6) has at most two nonnegative integer
solutions (x, n) satisfying n ≥ 2k.
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This completes the proof of Theorem 1.3.
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[15] V. A. Lebesgue, Sur l’impossibilité en nombres entiers de l’équation xm = y2 + 1

Nouv. Annal. des Math. 9 (1850), 178–181.
[16] M. Mignotte and B. M. M. de Weger, On the Diophantine equations x2 +74 = y5 and

x2 + 86 = y5, Glasgow Math. J. 38 (1996), 77–85.
[17] T. Nagell, Introduction to number theory, Almqvist & Wiksell, Stockholm, 1951.
[18] T. Nagell, The Diophantine Equation x2 + 7 = 2n, Ark. Math. 4 (191), 185–187.
[19] N. Saradha and A. Srinivasan, Generalized Lebesgue-Ramanujan-Nagell equations, in:

Diophantine equations, Tata Inst. Fund. Res., Mumbai, 2008, 207–223.
[20] J. Stiller, The Diophantine equation x2+119 = 15 ·2n has exactly six solutions, Rocky

Mountain J. Math. 26 (1996), 295–298.
[21] N. Tzanakis, On the Diophantine equation y2−D = 2k, J. Number Theory 17 (1983),

144–164.
[22] N. Tzanakis and J. Wolfskill, On the diophantine equation y2 = 4qn + 4q + 1, J.

Number Theory 23 (1986), 219–237.



50 Z. ZHANG AND A. TOGBÉ
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Department of Mathematics, Statistics and Computer Science
Purdue University Northwest
1401 S. U.S. 421 Westville, IN 46391
USA
E-mail : atogbe@pnw.edu

Received : 14.11.2017.
Revised : 12.12.2017.


