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Abstract. We study the combinatorial description of the LDU-
decomposition of totally positive matrices. We give a description of the
lower triangular L, the diagonal D, and the upper triangular U matrices of
the LDU-decomposition of totally positive matrices in terms of the com-
binatorial structure of essential planar networks described by Fomin and
Zelevinsky [5]. Similarly, we find a combinatorial description of the inverses
of these matrices. In addition, we provide recursive formulae for computing
the L, D, and U matrices of a totally positive matrix.

1. Introduction

The study of the class of totally positive matrices was initiated in the
1930s by F. R. Gantmacher and M. G. Krein ([6]). Also, an extensive study of
totally positive matrices is covered in S. Karlin ([10]) and Fallat and Johnson
([4]). Totally positive matrices are a class of matrices that is worth investi-
gating not only because of its mathematical beauty, but also because of their
myriad of applications. More specifically, they arise in many applications, to
name a few, statistics, approximation theory, operator theory, combinatorics,
and planar resistor network ([5, 8, 10]).

A matrix is said to be totally positive (totally nonnegative) if all its mi-
nors are positive (nonnegative). In this note, we focus our attention on totally
positive matrices, but the results can be extended to nonsingular totally non-
negative matrices. Factorizations of totally positive and totally nonnegative,
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and totally nonpositive matrices have been examined in [3,4,9] and [2], respec-
tively, to minimize the computation of minors while testing for total positivity.
More importantly, in [3, Lemma 5.1] and [7, Theorem 1] it was proved that

Theorem 1.1. If a square matrix A has nonzero principal minors, then

A has a unique LU factorization such that L has a unit diagonal.

Since totally positive matrices have nonzero principal minors, the above
Theorem provides a unique LU factorization for totally positive matrices
where L is unit lower triangular. The Theorem also applies to invertible
totally nonnegative matrices due to [1, Corollary 3.8]. In turn, this Theorem
leads to a unique LDU factorization where both L and U are lower and upper
triangular matrices, respectively with unit diagonals and D a diagonal matrix
([7, Theorem 2]).

In [5], the authors define an essential planar network, Γ0 to be a directed
(from left to right) planar network whose edges can either be slanted or hori-
zontal in the middle of the network ([5, Figure 2]). All planar networks with n
sources and n sinks are numbered bottom-to-top by 1, 2, . . . , n, in [5]; whereas
in this note, all planar networks are numbered bottom-to-top by 0, 1, . . . , n−1;
by the same token, all n× n matrices discussed here have rows and columns
numbered from 0 to n − 1. In section 2, we give a detailed description of
the planar network used in this work in light of the Definition of Fomin and
Zelevinsky. This note adds to the combinatorial approach developed in [5] to
study the parametrization of totally positive matrices.

It has been proved in [5, Theorem 5] that n× n totally positive matrices
are parametrized by n2 positive parameters. More specifically, the parameters
are the weights of an essential planar network and the entries of a totally
positive matrix are recovered from these weights. In this note, we use these
n2 parameters to explicitly describe the entries of the matrices L, D, and U .
Furthermore, we introduce recursive formulae for the L, D, and U factors.
Using these formulae, we compute the entries of an n × n matrix given an
(n − 1) × (n − 1) matrix. More specifically, given LDU -factorization of an
(n − 1)× (n − 1) totally positive matrix, we are able to compute the entries
of the L, D and U of an n × n matrix. Also, we use the n2 parameters to
parametrize the inverse of a totally positive matrix.

In section 3, we obtain recursive formulae for computing the (n+1)×(n+1)
lower, Ln, and upper triangular, Un, matrices described in section 2. We then
provide closed-form formulae for the lower and upper triangular matrices in
light of their corresponding planar subnetworks.

In section 4, we provide a combinatorial description for computing the
inverses of Ln, Dn, and Un; and hence the inverse of a totally positive matrix.
In addition, we obtain closed-form formulae for computing the entries of L−1

n ,
D−1

n and U−1
n .
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Finally, we present a numerical example in which we demonstrate the
computation of the inverse of a totally positive matrix via concatenations of
planar subnetworks. In addition, we provide a second example to recover the
entries of a 4 × 4 totally positive upper triangular matrix via the recursive
formula introduced in section 3. Throughout this note, N denotes the set of
natural numbers, and N0 the set of nonnegative integers.

2. LDU-decomposition of a Totally Positive Matrix

In this section, we revisit Theorem 1.1 to set the stage for our results.
More precisely, we use the fact that a totally positive matrix A has a unique
LDU-decomposition to describe three different subgraphs, representing the L,
D, and U matrices, respectively in terms of lattice paths to prove the main
result of this section. More specifically, in our setting, we consider lattice
paths of length 2n+1 on the first quadrant N0×N0 which starts at (0, i) and
ends at (2n+1, j) to represent a path from source i to sink j on the essential
planar network described in [5]. The only allowed steps are rise unit steps,
horizontal unit steps, and fall unit steps. Throughout this note, the terms
“edge” and “step” are used interchangeably.

We define a planar network of order n to be an acyclic, planar directed
graph. The vertices of this graph are points (x, y) ∈ N0 × N0 such that x =
0, 1, . . . , 2n+ 1 and y = 0, 1, . . . , n. The edges of this network are explained
through subnetworks defined below. We assume that each network has (n+
1)−sources and (n+1)−sinks and all edges are directed from left to right,
where each edge π is assigned a scalar weight ω(π). In addition, the weight
of a path p from source i to sink j is defined as the product of the weights of
its edges, namely ω(p) =

∏

π∈p ω(π). The weight matrix of a planar network

is the matrix whose (i, j)−entry is the sum of the weights of the paths from
source i to sink j.

In our setting, we consider three planar subnetworks, which we call the
L−type, the D−type and the U -type subnetworks. In this note, we do not
distinguish between the terms “subnetworks” and “subgraphs.”

The L−type subgraph of order n is a planar network consisting of fall
steps and horizontal steps.

Definition 2.1. For every m,n ∈ N define an Lm
n -path to be any sequence

of n + 1 points, (x
k
, y

k
) ∈ N0 × N0 for k = 0, 1, 2, . . . , n with the following

conditions:

1. x
k
= m+ k for all k.

2. y
k
∈ {0, 1, 2, . . . , n} for all k.

3. y
k+1

∈ {y
k
, y

k
− 1} for all k < n.

4. If y
k+1

= y
k
− 1, then y

k
≥ n− k.

Also, define PLn

i,j to be the set of all L0
n-paths with y0 = i and yn = j.
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In addition, the following Definition connects the (n+ 1)× (n+ 1) lower
triangular matrix to Definition 2.1.

Definition 2.2. For every n ∈ N define Ln to be the (n+1)×(n+1)
matrix such that

Ln[i, j] =
∑

p∈PLn
i,j

ω
Ln

(p)

for all 0 ≤ i, j ≤ n, where the weights of the edges are defined as follows,

• For j 6= 0, ω
Ln

([(m+ k, j), (m+ k + 1, j − 1)]) = tj,k+j−n,

• ω
Ln

([(m+ k, j), (m+ k + 1, j)]) = 1,

for all j, k = 0, 1, . . . , n.

Figure 1a shows an example of an L0
5-path. It consists of only horizontal

and fall steps. Figure 1b shows another path which is not an L0
5-path because

the fall step from (0, 4) to (1, 3) is not admissible by the last condition in
Definition 2.1.

1 2 3 4 5

1

2

3

4

(a) An example of a path which is an
L

0
5-path

1 2 3 4 5

1

2

3

4

(b) An example of a path which is
not an L

0
5-path

Figure 1. Examples of lattice paths to illustrate Definition 2.1

The following Lemma and Corollary are a consequence of Definition 2.1.

Lemma 2.3. If [(x
k
, y

k
)]k=0,...,n is an Lm

n -path, then y
k
≤ yl whenever

k > l.

The proof of the Lemma follows directly from the fact that y
k+1

≤ y
k

for all k < n. The next Corollary shows that the matrix whose entries are
defined in Definition 2.2 is unit lower triangular. The proof follows if we note
that Lemma 2.3 implies that no path exists from source i to sink j if i < j,
and exactly one path of weight 1 if i = j.

Corollary 2.4. For all n ∈ N, the weight matrix of any L-type subnet-

work of order n is unit lower triangular.
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0 0

t1,0

t2,0
2 2

1 1

t2,1

(a) L-type subnetwork of order 2
with weighting function ω

Ln





1 0 0
t1,0 1 0

t2,0t1,0 t2,0 + t2,1 1





(b) The weight matrix L2

Figure 2. Description of L2

Figure 2 illustrates an L-type subnetwork of order 2 with weights defined
as in Definition 2.2 and Figure 2b is the weight matrix associated to it.

Similarly, we define another subgraph of order n, namely the D−type
path. This path consists of horizontal steps only.

Definition 2.5. For every m,n ∈ N, define a Dm
n -path to be any sequence

of the form [(m, j), (m+ 1, j)] for some j = 0, 1, . . . , n.

Also, define PDn

i,j to be the set of all D0
n-paths with y0 = i and y1 = j.

In analogy to the L-type path, we can associate a matrix D to a D−path.

Definition 2.6. For every n ∈ N, define Dn to be the (n+1)×(n+1)
matrix such that

Dn[i, j] =
∑

p∈PDn
i,j

ω
Dn

(p)

for all 0 ≤ i ≤ n; where ω
Dn

[(m, i), (m+ 1, i)] = ti,i.

Lemma 2.7. For all n ∈ N, Dn is a diagonal matrix with diagonal ele-

ments Dn[i, i] = ti,i. More specifically,

Dn =











t0,0 0 · · · 0
0 t1,1 · · · 0
...

. . .
...

0 0 · · · tn,n











.

Proof. If i 6= j, then Dn[i, j] = 0 from Definition 2.6; thus Dn is a

diagonal matrix. Now, for i = j, the set PDn

i,i = {[(0, i), (1, i)]}. It follows

that Dn[i, i] = ti,i.

Finally, we define the U -type subnetwork in which only rise and horizontal
steps are allowed.

Definition 2.8. For every m,n ∈ N, define a Um
n -path to be any sequence

of n + 1 points (x
k
, y

k
) ∈ N0 × N0 for k = 0, 1, 2, . . . , n with the following

conditions:

1. x
k
= m+ k for all k.
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2. y
k
∈ {0, 1, 2, . . . , n} for all k.

3. y
k+1

∈ {y
k
, y

k
+ 1} for all k < n.

4. If y
k+1

= y
k
+ 1, then y

k
≥ k.

Also, define PUn

i,j to be the set of all U0
n-paths with y0 = i and yn = j.

Then, we assign a matrix Un to the U -type subnetwork of order n.

Definition 2.9. For every n ∈ N, define Un to be the (n+1)×(n+1)
matrix such that

Un[i, j] =
∑

p∈PUn
i,j

ω
Un

(p)

for all 0 ≤ i, j ≤ n, where the weight of the edges are defined as follows:

• For j 6= 0, ω
Un

([(m+ k, j), (m+ k + 1, j + 1)]) = tj−k,j+1,

• ω
Un

([(m+ k, j), (m+ k + 1, j)]) = 1,

for all j, k = 0, 1, . . . , n.

Figure 3 shows an example of a U0
6 -path. It consists of only horizontal

and rise steps.

1 2 3 4 5 6

1

2

3

4

5

Figure 3. A U0
6 -path

The proofs of the following Lemma and Corollary are similar to Lemma 2.3
and Corollary 2.4.

Lemma 2.10. If [(x
k
, y

k
)]k=0,...,n is a Um

n -path, then y
k
≥ yl whenever

k > l.

Corollary 2.11. For all n ∈ N, the weight matrix of a U -type subnet-

work of order n is unit upper triangular.

In our context, we define an essential planar network of order n to be the
(ordered) concatenation of an L-type, a D-type and a U -type subnetworks
of order n. Equivalently, a path in our network is the concatenation of an
L0
n, a Dn

n and a Un+1
n paths, respectively. From this Definition it is clear
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that our network is an acyclic directed (from left to right) planar graph. The
restrictions on the fall and rise steps given in Definitions 2.2 and 2.9 guarantee
that our slanted edges match the essential edges of the planar network defined
in [5]. This implies that our Definition of the essential planar network is
equivalent to the Definition of Fomin and Zelevinsky.

In this section, we constructed an Ln lower triangular matrix obtained
from an L-type subnetwork of order n, and similarly, the D−type and U -type
subnetworks were used to recover the entries of a diagonal matrix Dn and an
upper triangular matrix Un, respectively. In addition, we use the fact that
the concatenation of these networks is equivalent to computing the product
of their corresponding weight matrices ([4,5]) to obtain the main Theorem of
this section.

Theorem 2.12. The LDU decomposition of a totally positive matrix A
can be recovered by decomposing the essential planar network associated with

A into an L−type, a D−type and a U -type subnetworks, respectively.

The proof of this Theorem follows directly from [5, Theorem 5], Corollar-
ies 2.4, 2.11, Lemma 2.7 and the fact that the weight matrix corresponding
to the concatenated planar networks is the product of the weight matrices of
the original network ([4, 5]).

Figure 4 illustrates an example of an essential planar network of order 2
obtained by concatenating three essential planar subnetworks of order 2.

0 0

t1,0

t2,0
2 2

1 1

t2,1

(a) L-type subnetwork of
order 2

0
t0,0

0

1
t1,1

1

2
t2,2

2

(b) D-type subnetwork of
order 2

00

t0,1

t0,2
22

11

t1,2

(c) U -type subnetwork of
order 2

0
t0,0

0

1
t1,1

1

2
t2,2

2
t2,0

t1,0 t0,1

t0,2t2,1 t1,2

(d) Essential planar network of order 2

Figure 4. Concatenation of essential planar subnetworks
of order 2 to produce the essential planar network of order 2
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3. Formulae for Ln and Un

In this section we describe how we can compute the entries of the lower
triangular matrix Ln and the upper triangular matrix Un presented in the
previous section. We begin with a recursive formula for Ln. To clarify the
notation, In is the n× n identity matrix, 0n is the column vector of n zeros,
and L−1

n is the inverse of Ln, whose existence and complete description is
presented in the following section.

Proposition 3.1. If Ln is defined as in Definition 2.2, then Ln+1 can

be computed recursively in the following way,

• L0 = (1),

• Ln+1 = FLn
(Ln⊕1), where FLn

=

(

In+1 0n+1

−L−1
n+1[n+ 1, j]0≤j≤n 1

)

.

Proof. We use induction to prove the Proposition. The base case is
trivial. We consider the inductive step, Ln+1 = FLn

(Ln ⊕ 1). We begin by
expanding the product FLn

(Ln ⊕ 1) as follows:

FLn
(Ln ⊕ 1) =

(

In+1 0n+1

−L−1
n+1[n+ 1, j]0≤j≤n 1

)(

Ln 0n+1

0
⊺

n+1 1

)

=

(

Ln 0n+1

−L−1
n+1[n+ 1, j]0≤j≤nLn 1

)

.

First, we show that Ln+1[i, j]0≤i,j≤n = Ln. This can be best described

combinatorially, where a path p ∈ P
Ln+1

i,j (i ≤ n) is equivalent to a hori-

zontal step [(0, i), (1, i)] followed by an L1
n−path p′. Notice that a fall step

[(0, i), (1, i− 1)] is not allowed since i < n+ 1 (see Definition 2.1). It follows
that ω

Ln+1
(p) = ω

Ln
(p′), and our description clearly shows a bijection. So,

indeed Ln+1[i, j] = Ln[i, j] for i, j ∈ {0, . . . , n}.
The rightmost column is trivial since Ln+1 is unit lower triangular by

Corollary 2.4. Finally, we need to show that

Ln+1[n+ 1, j]0≤j≤n = −L−1
n+1[n+ 1, j]0≤j≤nLn.

We begin by the simple fact that

L−1
n+1Ln+1 = In+1.

Now, we rewrite it in block matrix notation, where L−1
n+1[i, j]0≤i,j≤n = L−1

n

to guarantee the product is the identity matrix.
(

L−1
n 0n+1

L−1
n+1[n+ 1, j]0≤j≤n 1

)(

Ln 0n+1

Ln+1[n+ 1, j]0≤j≤n 1

)

=

(

In+1 0n+1

0
⊺

n+1 1

)

.
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Then, consider the product of the second row with the first column which
produce the following equation

L−1
n+1[n+ 1, j]0≤j≤nLn + Ln+1[n+ 1, j]0≤j≤n = 0

⊺

n+1

which, if rearranged, will show that

Ln+1[n+ 1, j]0≤j≤n = −L−1
n+1[n+ 1, j]0≤j≤nLn.

In a similar fashion, we define a recursive formula for Un as follows:

Proposition 3.2. If Un is defined as in Definition 2.9, then it follows

the following recursion

• U0 = (1),

• Un+1 = (Un ⊕ 1)FUn
, where FUn

=

(

In+1 −U−1
n+1[i, n+ 1]0≤i≤n

0
⊺

n+1 1

)

.

Since the proof follows the same ideas as Proposition 3.1, it will be omit-
ted.

The following Lemma sets the stage for the main result of this section.
More specifically, we provide a closed-form formula to compute the entries of
Ln ane Un, respectively.

Lemma 3.3. For all n ∈ N and 0 ≤ i, j ≤ n, let p ∈ PLn

i,j and π1, π2 ∈ p

such that ω
Ln

(π1) = ty1,s1 and ω
Ln

(π2) = ty2,s2 where ω
Ln

is defined as in

Definition 2.2. If y1 < y2, then s1 ≥ s2.

Proof. From Definition 2.2, we conclude that there are x1, x2 ∈
{0, . . . , n − 1} such that π1 = [(m + x1, y1), (m + x1 + 1, y1 − 1)] and
π2 = [(m + x2, y2), (m + x2 + 1, y2 − 1)]. It follows from the same Def-
inition that s1 = x1 + y1 − n and s2 = x2 + y2 − n. Consequently,
s1 − s2 = (x1 − x2) + (y1 − y2). Given that y1 < y2 and from Lemma 2.3,
x1 > x2, which means x1 − x2 > 0 and y1 − y2 < 0. Nevertheless, we know
that each step x increases by 1 while y decreases by 1 or remains the same.
It is obvious then that x1 − x2 ≥ −(y1 − y2). In other words, s1 − s2 ≥ 0.

In the following Theorem, we define QI
i,j , for i > j, to be the set of

increasing sequences of length i − j. Let α be a sequence in QI
i,j, then 0 ≤

αr ≤ i−r, where αr is the r-th element of the sequence α. For i < j,we define
QI

i,i = {ε}, and QI
i,j = φ where ε is the empty sequence.

Theorem 3.4. If Ln is defined as in Definition 2.2, then

(3.1) Ln[i, j] =
∑

α∈QI
i,j

i−1
∏

r=j

tr+1,αi−r
.
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Proof. If i < j, then QI
i,j = φ. Thus, the sum is empty and Ln[i, j] = 0.

If i = j, the sum is over the empty sequence ε only. It follows that

Ln[i, j] =

i−1
∏

r=j

tr+1,εi−r
= 1

since it is an empty product. These two results agree with Corollary 2.4.
Finally, we need to show that (3.1) holds for the case i > j. The proof relies

on constructing a bijection between QI
i,j and PLn

i,j such that if α 7→ p, then

ω
Ln

(p) =
∏i−1

r=j tr+1,αi−r
. Define f(α) = [(k, y

k
)]0≤k≤n such that

y
k
=















i, if 0 ≤ k ≤ α1 + n− i
i− r, if αr + n− (i− r) ≤ k ≤ αr+1 + n− (i− r)

for r ∈ {1, . . . , i− j − 1}
j, if αi−j + n− j ≤ k ≤ n

.

First, we show f is well defined. By Definition of QI
i,j , we know that 0 ≤ α1 ≤

i−1 and αr ≤ αr+1 ≤ i−(r+1). It follows that 0 ≤ n− i ≤ α1+n− i ≤ n−1
and αr +n− (i− r) ≤ αr+1+n− (i− r) ≤ n− 1 for r ∈ {1, . . . , i− j− 1}. By
letting r = i − j − 1, we get αi−j + n− j ≤ n. Combining these inequalities
yields

0 ≤ α1 + n− i < α1 + n− (i− 1) ≤ α2 + n− (i− 1)

< α2 + n− (i − 2) · · · ≤ αi−j + n− (j + 1) < αi−j + n− j ≤ n,

which shows that by fixing k there is a unique y
k
. It also proves that y0 = i,

yn = j, and if k1 < k2, then y
k1

≥ y
k2
. It is easy to see from these that if

y
k
= s for s ∈ {j+1, . . . , i}, then y

k+1
∈ {s, s− 1}. It remains to show that if

y
k+1

= y
k
−1, then y

k
≥ n−k. Assume y

k+1
= s for s ∈ {j, . . . , i−1}. From the

Definition, we know that k+1 = αi−s+n−s. Therefore, n−k = αi−s+s+1.
However, y

k
= s + 1 and αi−s ≥ 0. As a consequence, y

k
≥ n− k. Now, we

can conclude that f(α) ∈ PLn

i,j .

To show that f is surjective, assume p ∈ PLn

i,j and p = [(k, y
k
)]. Define

K to be the set of indices k at which there is a fall step. More precisely,
K = {k : k < n and y

k+1
= y

k
− 1}. Clearly, K has i − j elements, so call

them k1, . . . , ki−j in ascending order. Now, define β such that,

(3.2) βr = kr + i− r + 1− n.

kr is strictly increasing, so kr−r is increasing. It follows that βr is increasing.
Since kr < n, kr + 1− n ≤ 0, and, consequently, βr ≤ i− r. Finally, we know
from condition (iii) in Definition 2.1 that kr ≥ n− y

kr
. Also, by Definition,

y
k1

= i and y
kr+1

= y
kr

− 1, which imply that y
kr

= i− (r − 1). This implies

that kr ≥ n − i + r − 1, which implies directly that βr ≥ 0. To sum up the
results, we showed that β is increasing and 0 ≤ βr ≤ i−r. Therefore, β ∈ QI

i,j

and f(β) is p.
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To show that f is injective, assume two distinct sequences α, β ∈ QI
i,j.

Define D to be the set of indices at which they differ. More precisely, D =
{1 ≤ r ≤ i − j : αr 6= βr} which is clearly non-empty. Take ro to be the
minimum of D, and assume f(α) = [(k, yα

k
)] and f(β) = [(k, yβ

k
)]. Since

αro 6= βro , assume, without loss of generality, that αro < βro . Let kc be
αro + n − (i − ro), so kc < βro + n − (i − ro). Therefore, yαkc

= i − ro while

yβkc
= i− ro − 1. Consequently, f(α) 6= f(β), and hence the injectivity of f .

Therefore, f is a bijection between QI
i,j and PLn

i,j . It remains to show that

ω
Ln

(f(α)) =

i−1
∏

r=j

tr+1,αi−r
.

Once more, consider the set K = {k : k < n and y
k+1

= y
k
− 1}. Let πk be

the edge [(k, y
k
), (k + 1, y

k+1
)] in f(α), for a fixed 0 ≤ k < n. It is clear from

Definition 2.2 that

ω
Ln

(πk) =

{

ty
k
,k+y

k
−n, if k ∈ K

1, if k /∈ K
,

since ω
Ln

(f(α)) =
∏n−1

k=0 ωLn
(πk), we deduce that

ω
Ln

(f(α)) =
∏

k∈K

ty
k
,k+y

k
−n.

Using the order described on K, we rewrite the last formula as

ω
Ln

(f(α)) =

i−j
∏

r=1

ty
kr

,kr+y
kr

−n.

However, we have already proved that y
kr

= i − (r − 1). Therefore, if we
substitute the value of y

kr
and apply the transformation s = i − r, we reach

the formula ω
Ln

(f(α)) =
∏i−1

s=j ts+1,ki−s+s+1−n. Using (3.2), we know that

αi−s = ki−s + i− ((i− s)− 1)−n = ki−s + s+1−n. Thus, substituting back
in the last formula and replacing s with r, we conclude that ω

Ln
(f(α)) =

∏i−1

r=j tr+1,αi−r
. Now, we use Definition 2.2, to write

Ln =
∑

p∈PLn
i,j

ω
Ln

(p) =
∑

α∈QI
i,j

i−1
∏

r=j

tr+1,αi−r
.

As the case of Ln, there is a closed-form formula for the entries of the
matrix Un in terms of the ti,j parameters. This is highlighted in the following
Theorem.
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Theorem 3.5. If Un is defined as in Definition 2.9, then

(3.3) Un[i, j] =
∑

α∈QI
j,i

j−1
∏

r=i

tαj−r ,r+1.

Proof. If we let

y
k
=







j, if j − α1 ≤ k ≤ n
j − r, if j − r − αr+1 ≤ k ≤ j − r − αr for r ∈ {1, . . . , j − i− 1}
i, if 0 ≤ k ≤ i − αj−i

then a similar argument to the one in the proof of Theorem 3.4 is used.

4. The Inverse of a Totally Positive Matrix

The Definition of totally positive matrices introduced in Section 1 ensures
that this class of matrices is invertible. In Section 2, we used the fact that
every totally positive matrix has a unique LDU-decomposition and provided
a combinatorial description of the Ln, Dn, and Un. If the inverses of the Ln,
Dn and Un factors are known to be L−1

n , D−1
n and U−1

n , respectively, then
the inverse of the totally positive matrix can be computed as the product
U−1
n D−1

n L−1
n . Also, since the product of the Ln, Dn and Un factors yields a

matrix that is invertible, then each of the factors is also invertible. In this
section, we provide a combinatorial description of the inverse of each of these
factors, similar to the one described in Section 2.

A new weight matrix, which we call L−1
n , is recovered from an L-type

subnetwork whose weights are defined as follows:

Definition 4.1. For all n ∈ N0, define ω
L
−1
n

such that:

• for j 6= 0, ω
L
−1
n

([(m+ k, j), (m+ k + 1, j − 1)]) = −tj,n−k−1,

• ω
L
−1
n

([(m+ k, j), (m+ k + 1, j)]) = 1

for all 0 ≤ k, j ≤ n.

It follows from Corollary 2.4 that L−1
n is unit lower triangular. In this

section, a formula for the entries of L−1
n is obtained and we use it to show

that L−1
n is indeed the inverse of Ln.

Lemma 4.2. For all n ∈ N and 0 ≤ i, j ≤ n, let p ∈ PLn

i,j and π1, π2 ∈ p

such that ω
L
−1
n

(π1) = −ty1,s1 and ω
L
−1
n

(π2) = −ty2,s2 where ω
L
−1
n

is defined

as in Definition 4.1. If y1 < y2, then s1 < s2.

Proof. From Definition 4.1, we conclude that there are x1, x2 ∈
{0, . . . , n − 1} such that π1 = [(m + x1, y1), (m + x1 + 1, y1 − 1)] and
π2 = [(m + x2, y2), (m + x2 + 1, y2 − 1)]. It follows from the same Defini-
tion that s1 = n−x1−1 and s2 = n−x2−1. Consequently, s1−s2 = x2−x1.
Given that y1 < y2 and from Lemma 2.3, x1 > x2, which means x2 − x1 < 0.
Therefore, s1 − s2 < 0.
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In analogy to Theorem 3.4, we give a closed-form formula for L−1
n . To

prove this, define QSD
i,j , for i > j, to be the set of strictly decreasing sequences

of length i − j, and if α ∈ QSD
i,j , then 0 ≤ αr ≤ i − r, where αr is the

r-th element of the sequence α. Also, we extend the Definition such that
QSD

i,i = {ε} for i = j and QSD
i,j = φ, the empty set for i < j.

Theorem 4.3. If L−1
n is the weight matrix of the L-type subnetwork of

order n whose weights are defined as in Definition 4.1, then

(4.1) L−1
n [i, j] = (−1)i−j

∑

α∈QSD
i,j

i−1
∏

r=j

tr+1,αi−r
.

Proof. If we let

y
k
=







i, if 0 ≤ k ≤ n− α1 − 1
i− r, if n− αr ≤ k ≤ n− αr+1 − 1 for r ∈ {1, . . . , i− j − 1}
j, if n− αi−j ≤ k ≤ n

then a similar argument to the one in the proof of Theorem 3.4 is used.

We observe that L−1
n shares quite similar characteristics as the ones of

the lower triangular matrix Ln presented in Section 2. It is not surprising to
see that L−1

n , the way defined, is the inverse of Ln defined in Definition 2.2.

Theorem 4.4. If Ln and L−1
n are the weight matrices of the L-type sub-

network of order n whose weights are defined as in Definitions 2.2 and 4.1,

respectively, then LnL
−1
n = In+1, the (n+1)×(n+1) identity matrix.

Proof. From Corollary 2.4, we know that both Ln and L−1
n are unit

lower triangular, and thus, their product is unit lower triangular as well. It
remains to show that the dot product of row i of Ln with column j of L−1

n is
0, whenever i > j. To show that, we let An = LnL

−1
n and expand the product

as

An[i, j] =

n
∑

k=0

Ln[i, k]L
−1
n [k, j]

which can be simplified, using Theorems 3.4 and 4.3, as

An[i, j] =
i

∑

k=j

Tk

where

Tk = (−1)k−j
∑

α∈QI
i,k

∑

β∈QSD
k,j

∏

r∈{k...i−1}

tr,αi−r

∏

s∈{j...k−1}

ts,βk−s
.
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Here we observe that if k < j (or k > i), then L−1
n [k, j] = 0 (or Ln[i, k] =

0) by Lemma 2.4. Then, we define two more sums, T≤
k and T>

k as follows

T≤
k =

(4.2a)























(−1)k−j
∑

α∈QI
i,k

∑

β∈QSD
k,j

αi−k≤β1

∏

r∈{k...i−1} tr,αi−r

∏

s∈{j...k−1} ts,βk−s
,

if j < k < i

Tk, if k = i
0, if k = j

,

T>
k =

(4.2b)























(−1)k−j
∑

α∈QI
i,k

∑

β∈QSD
k,j

αi−k>β1

∏

r∈{k...i−1} tr,αi−r

∏

s∈{j...k−1} ts,βk−s
,

if j < k < i

0, if k = i
Tk, if k = j

.

Clearly, Tk = T≤
k +T>

k , where T≤
k and T>

k have no common terms. It follows

from (4.2a) that An[i, j] =
∑i

k=j(T
≤
k +T>

k ). Rearranging the terms, the sum
becomes

An[i, j] = T≤
j +

i−1
∑

k=j

(T>
k + T≤

k+1
) + T>

i .

From Definition (4.2), T≤
j = T>

i = 0. Thus, An[i, j] =
∑i−1

k=j(T
>
k + T≤

k+1
).

We will now show that T>
k = −T≤

k+1
for all j ≤ k < i so that An[i, j] = 0 as

desired.
Since αi−k > β1, define new sequences α′ and β′ such that α′

r = αr for
r = 1, . . . , i− k − 1, β′

1 = αi−k, and β′
r = βr−1 for r = 2, . . . , k + 1− j. Since

α is increasing, α′
i−k−1 ≤ β′

1. Therefore, T
>
k can be rewritten as

T>
k = (−1)k−j

∑

α′∈QI
i,k+1

∑

β′∈QSD
k+1,j

α′

i−k−1≤β′

1

∏

r∈{k+1,...,i−1}

tr,α′

i−r

∏

s∈{j...k}

ts,β′

k+1−s
,

which differs from T≤
k+1

by a factor of −1. Therefore, An = In+1.
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Then, similar to the case of L2, we can now present an example (in Figure 5)
of an L-type subnetwork of order 2 with weights defined as in Definition 4.1,
and the weight matrix of that network, namely L−1

2 .

0 0

−t1,0

−t2,1
2 2

1 1

−t2,0

(a) L-type subnetwork of
order 2 with weighting

function ω
L
−1
n





1 0 0
−t1,0 1 0
t2,1t1,0 −(t2,0 + t2,1) 1





(b) The weight matrix L
−1
2

Figure 5. Description of L−1
2

Similarly, we define the inverse of Dn. All the entries on the diagonal of
Dn are positive, so it is invertible. The inverse, namely D−1

n is the diagonal
matrix whose diagonal entries are the reciprocals of the diagonal elements of
Dn. Combinatorially, D−1

n can be recovered from a D-type subnetwork of
order n where the weights are defined as

ω
D

−1
n

([(0, i), (1, i)]) =
1

ti,i
,

for i = 0, . . . , n. In analogy to Lemma 2.7, the general form of D−1
n is

D−1
n =













1

t0,0
0 · · · 0

0 1

t1,1
· · · 0

...
. . .

...
0 0 · · · 1

tn,n













.

To find the inverse of Un, we will mimic the same approach employed to
define L−1

n . We define U−1
n to be the weight matrix of a U -type subnetwork

whose weights are given in the following Definition.

Definition 4.5. For all n ∈ N0, define ω
U

−1
n

such that:

• for j 6= 0, ω
U

−1
n

([(m+ k, j), (m+ k + 1, j − 1)]) = −tk,j,

• ω
U

−1
n

([(m+ k, j), (m+ k + 1, j)]) = 1,

for all 0 ≤ k, j ≤ n.

It follows from Corollary 2.11 that U−1
n is unit upper triangular. Conse-

quently, we obtain the following Theorem.
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Theorem 4.6. If U−1
n is the weight matrix of the U -type subnetwork of

order n whose weights are defined as in Definition 4.5, then

(4.3) U−1
n [i, j] = (−1)i−j

∑

α∈QSD
j,i

j−1
∏

r=i

tαj−r ,r+1.

Proof. If we let

y
k
=







j, if α1 + 1 ≤ k ≤ n
j − r, if αr+1 + 1 ≤ k ≤ αr for r ∈ {1, . . . , j − i− 1}
i, if 0 ≤ k ≤ αj−i

then a similar argument to the one in the proof of Theorem 3.4 is used.

Theorem 4.7. If Un and U−1
n are the weight matrices of the U -type

subnetwork of order n whose weights are defined as in Definitions 2.9 and 4.5,

respectively, then UnU
−1
n = In+1, the (n+1)×(n+1) identity matrix.

Expanding the product of UnU
−1
n as we did in the proof of Theorem 4.4,

proves this Theorem.

00

−t0,1

−t1,2
22

11

−t0,2

(a) U -type subnetwork of
order 2

0

1
t0,0

0

1

1
t1,1

1

2

1
t2,2

2

(b) D-type subnetwork of
order 2

0 0

−t1,0

−t2,1
2 2

1 1

−t2,0

(c) L-type subnetwork of
order 2

2

1
t2,2

2

1

1
t1,1

1

0

1
t0,0

0
−t0,1

−t1,2 −t2,1

−t1,0

−t0,2 −t2,0

(d) Planar network of order 2 for the inverse matrix

Figure 6. Concatenation of essential planar subnetworks
of order 2 to construct a network for the inverse of the

weight matrix of the essential planar network presented in
Figure 4

Figure 6 illustrates an example of a planar network of order 2, correspond-
ing to the inverse of a 3×3 totally positive matrix, obtained by concatenating
three essential planar subnetworks of order 2. The order of the networks is
reversed to account for the fact that (LDU)−1 = U−1D−1L−1. The network
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is flipped horizontally (sources and sinks are numbered top-to-bottom from 0
to 2) to be closer to the essential planar network for better readability.

It is worth noting that all the results of this paper can be easily extended
to invertible totally nonnegative matrices. This relies on a result due to
Ando [1, Corollary 3.8]. This is equivalent to stating that the weights of the
D−network, namely ti,i, cannot be 0 for all 0 ≤ i ≤ n; which guarantee the
invertibility and, by Theorem 1.1, the uniqueness of the LU -factorization with
L unit lower triangular. Therefore, it has a unique LDU -factorization with L
unit lower triangular, D diagonal and U unit upper triangular.

Remark 4.8. The algorithm for finding the LDU -decomposition is di-
vided into two parts. The first is extracting the n2 essential weights from
the original matrix. It turns out to be a reduced system of n2 equations and
has both time and space complexities of O(n2).This algorithm is described in
details in [5]. The second part is computing each entry of the matrices L, D
and U . Computation of the diagonal elements of D is straightforward and has
time complexity O(n). However, computing an off diagonal (i, j)−entry of L,
or U , requires the generation of increasing sequences in QI

i,j . The number of

these sequences for all (i, j)-entries is related to Fibonacci numbers which has
an exponential rate of growth.

Finding the inverse, however, is divided into three steps; extracting the
essential weights, calculating each entry of L−1, D−1 and U−1, and multi-
plying the three matrices together. The first step is already discussed. The
second is the same as discussed above for L, D and U , but this time strictly
decreasing sequences are considered and analogously, it has an exponential
rate of growth. The third step has time complexity O(n3).

Standard algorithms for finding the LU factorization and the inverse rely
on Gauss elimination and both have time complexity of O(n3). Hence, stan-
dard algorithms are more efficient from a computational point of view. How-
ever, this note mainly focuses on a combinatorial description of the L, D, and
U factors of a totally positive matrix, and provides a combinatorial descrip-
tion of its inverse. In other words, we parametrize the LDU factors and the
inverse by the same parameters of the totally positive matrix.

5. Numerical Examples

In this section, we illustrate the Theorems presented in the previous sec-
tions via numerical examples. In the first example, we compute the inverse
of A using the combinatorial description of the inverses of the L, D and U.
introduced in Section 4. Consider the 4× 4 matrix A such that

A =









3 6 18 306
3 8 26 454
6 22 77 1384
60 262 958 17593









.
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A direct computation of the minors verifies that A is a totally positive matrix.
Using the method described in [5], we obtain the following essential planar
network corresponding to A:

0
3

0

1
2

1

2
1

2

3
5

3

10

2

1 2

3

177

3 1

613 9

.

Using Theorem 2.12, we decompose this network into planar subnetworks
to recover the LDU factorization of A. The planar subnetworks and their
corresponding weight matrices L, D and U are

0 0

1

2

10
3 3

1 1

3

7

✷ ✷

13

0
3

0

1
2

1

2
1

2

3
5

3

00

2

3

17

33

11

1

6

��

9

Ln = Dn = Un =








1 0 0 0
1 1 0 0
2 5 1 0
20 71 30 1

















3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 5

















1 2 6 102
0 1 4 74
0 0 1 32
0 0 0 1









.

Using the combinatorial interpretation of the inverses presented in Section 4,
we can find the inverses of the L, D and U factors. The following is a combi-
natorial description of the inverses of the L, D and U factors.

0 0

−1

−3

−13

3 3

1 1

−2

−7

2 2

−10

0

1
3

0

1

1
2

1

2
1

2

3

1

5

3

00

−2

−1

−9

33

11

−3

−6

22

−17

L−1
n = D−1

n = U−1
n =









1 0 0 0
−1 1 0 0
3 −5 1 0

−39 79 −30 1

















1

3
0 0 0

0 1

2
0 0

0 0 1 0
0 0 0 1

5

















1 −2 2 −18
0 1 −4 54
0 0 1 −32
0 0 0 1









.
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Since (LnDnUn)
−1 = U−1

n D−1
n L−1

n , we reverse the order of the networks in
the following way:

00

−2

−1

−9

33

11

−3

−6

22

−17

0

1
3

0

1

1
2

1

2
1

2

3

1

5

3

0 0

−1

−3

−13

3 3

1 1

−2

−7

2 2

−10

U−1
n = D−1

n = L−1
n =









1 −2 2 −18
0 1 −4 54
0 0 1 −32
0 0 0 1

















1

3
0 0 0

0 1

2
0 0

0 0 1 0
0 0 0 1

5

















1 0 0 0
−1 1 0 0
3 −5 1 0

−39 79 −30 1









.

Finally, we concatenate all three subnetworks yields a planar network from
which we recover the entries of the A−1. For simplicity and conformity with
the structure of all planar networks described in this note, we flip the con-
catenated network vertically, that is, we number the sources and sinks from
top to bottom to obtain

3

1

5

3

2
1

2

1

1

2

1

0

1
3

0
−2

−1

−9 −13

−3

−1

−3

−6 −7

−2

−17 −10

A−1 =





















2216

15

−1477

5
110 −18

5

−4337

10

8737

10
−328 54

5

1263

5

−2553

5
193 −32

5

−39

5

79

5
−6 1

5





















.

We can see from this example that there is a deterministic method for ob-
taining the weights of the inverse network from the essential weighting of
the essential planar network. This method is best explained by the LDU
decomposition and inverses of the Ln, Dn, and Un factors.

In the second example, we compute the entries of the upper triangular
4× 4 matrix U3, using Proposition 3.2. The basis step is U0 = [1]. We know
that,

U−1
1 =

(

1 −t0,1
0 1

)

.
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Therefore, the 2× 2 FU1
matrix is given by

FU1
=

(

1 t0,1
0 1

)

.

Using the recursive formula introduced in Proposition 3.2, we obtain

U1 = (U0 ⊕ 1)FU1
=

(

1 t0,1
0 1

)

.

Repeating the same process, we get U−1
2 ,

U−1
2 =





1 −t0,1 t0,1t1,2
0 1 −(t0,2 + t1,2)
0 0 1



 .

Consequently, FU2
is the 3× 3 matrix given by

FU2
=





1 0 −t0,1t1,2
0 1 t0,2 + t1,2
0 0 1



 .

Hence,

U2 = (U1 ⊕ 1)FU2
=





1 t0,1 t0,1t0,2
0 1 t0,2 + t1,2
0 0 1



 .

Again, we know that U−1
3 is given by

U−1
3 =









1 −t0,1 t0,1t1,2 −t0,1t1,2t2,3
0 1 −(t0,2 + t1,2) t0,2(t1,3 + t2,3) + t1,2t2,3
0 0 1 −(t0,3 + t1,3 + t2,3)
0 0 0 1









which means FU3
is given by

FU3
=









1 0 0 t0,1t1,2t2,3
0 1 0 −t0,2(t1,3 + t2,3)− t1,2t2,3
0 0 1 t0,3 + t1,3 + t2,3
0 0 0 1









and finally

U3 = (U2 ⊕ 1)FU3
=









1 t0,1 t0,1t0,2 t0,1t0,2t0,3
0 1 t0,2 + t1,2 t1,2(t0,3 + t1,3) + t0,2t0,3
0 0 1 t0,3 + t1,3 + t2,3
0 0 0 1









.
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