GLASNIK MATEMATICKI
Vol. 53(73)(2018), 73 — 95
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ABSTRACT. A classical result of Herstein asserts that any Jordan
derivation on a prime ring of characteristic different from two is a deriva-
tion. It is our aim in this paper to prove the following result, which is in
the spirit of Herstein’s theorem. Let n > 3 be some fixed integer, let R be
a prime ring with char(R) > 4n — 8 and let D : R — R be an additive
mapping satisfying either the relation D(z") = D(z" )z + 2"~ 1D(z) or
the relation D(z") = D(z)z" ! + zD(z"~1!) for all z € R. In both cases
D is a derivation.

This research has been motivated by the recent work of Vukman [15].
Throughout, R will represent an associative ring with center Z(R). As usual
we write [z,y] for xy — yz. Given an integer n > 2, a ring R is said to
be n-torsion free, if for x € R, nz = 0 implies x = 0. Recall that a ring
R is prime if for a,b € R, aRb = (0) implies that either a = 0 or b = 0
and is semiprime in case aRa = (0) implies a = 0. We denote by char(R)
the characteristics of a prime ring R. An additive mapping D : R — R,
where R is an arbitrary ring, is called a derivation if D(xy) = D(z)y +2D(y)
holds for all pairs ,y € R and is called a Jordan derivation in case D(z?) =
D(z)x + zD(x) is fulfilled for all x € R. A derivation D is inner in case
there exists a € R, such that D(z) = [z,a] holds for all z € R. Every
derivation is a Jordan derivation. The converse is in general not true. A
classical result of Herstein ([12]) asserts that any Jordan derivation on a 2-
torsion free prime ring is a derivation. A brief proof of Herstein’s result can
be found in [7]. Cusack ([10]) generalized Herstein theorem to 2-torsion free
semiprime rings (see also [3] for an alternative proof). Let us point out that
Beidar, Bresar, Chebotar and Martindale ([1]) have considerably generalized
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Herstein theorem. A generalization of Herstein theorem can be found also in
[8]-

Motivated by the work of Bresar [4] and Vukman [15] has recently proved
the following result.

THEOREM 1. Let R be a 2-torsion free semiprime ring and let D : R — R
be an additive mapping. Suppose that either

1) D(ayz) = D(wy)e + eyD(x)
(2) D(aya) = D(w)ya + xD(yz)

holds for all pairs x,y € R. In both cases D is a derivation.

Putting y = "2 in (1) and (2) we obtain

(3) D(2™) = D(2" Y)x + 2" ' D(x)
and
(4) D(z™) = D(x)z" ' + zD(z"1).

It is our aim in this paper to prove the following result, which is related
to the equations above.

THEOREM 2. Let n > 3 be some fixed integer, let R be a prime ring with
char(R) > 4n—8 and let D : R — R be an additive mapping satisfying either
the relation

(5) D(2™) = D(2" Y)x + 2" ' D(x)
or the relation

(6) D(a") = D(@)s"~* +2D(a"")
for all x € R. In both cases D is a derivation.

In case n = 3 Theorem 2 reduces to the result recently proved by M.
Fosner and Persin ([11]).

Theorem 2 is obtained as an application of the theory of functional iden-
tities (Beidar-Bresar-Chebotar theory). In particular, we shall use some ideas
from the paper of Beidar and Fong [2] where bijective additive mappings
preserving a fixed polynomial are characterized. The theory of functional
identities considers set-theoretic mappings on rings that satisfy some iden-
tical relations. When treating such relations one usually concludes that the
form of the mappings involved can be described, unless the ring is very special.
We refer the reader to [5] for an introductory account on functional identities
and to [6] for full treatment of this theory. For the proof of Theorem 2 we
need Theorem 3 which might be of independent interest.
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Let R be an algebra over a commutative ring ¢ and let
(7) (w1, 20,3, ..., Ty) = Z Tr(1)Tr(2)Tr(3) " Tr(n)
TESn

be a fixed multilinear polynomial in noncommuting indeterminates x; over
¢. Here S, stands for the symmetric group of order n. Let £ be a subset

of R closed under p, i.e. p(Z,) € L for all z1,29,23,...,2, € L, where
ZTp = (21,2, 23,...,T,). We shall consider a mapping D : £ — R satisfying
D(p(fn)) = Z D(Iw(l)fﬂw@) e 'Iw(nq))fﬂw(n)

TESy
(3)

+ Z Tr)Tr(2)  Ta(n—1)D(Trn))

TESK

for all 1, x2,x3,...,x, € L. Let us mention that the idea of considering the

expression [p(Z,),p(Jn)] in its proof is taken from [2].

THEOREM 3. Let L be a 2n-free Lie subring of R closed under p. If
D : L — R is an additive mapping satisfying (8), then D is a derivation.
ProOF. For any a € R and Z,, € L™ we have
) [p(Zn),a] =p([z1,a] ,x2, 23, ..., 2n) + p(x1, [T2,0] , 23, ..., Tp) + -+
+p(x1,22,. .., [Xn_1,a] ,2n) + p(@1, T2, ..., Tn_1, [Tn,a]),

and therefore

D [P(fn), a] = Z D [1'77(1)1'77(2) o Tr(n—1) a] T (n)
TESn

+ Y D@ry@e(z) - Tn(n-1) [Trn)» ]
TESy

+ Z [Tr(1)Tr2) * Tr(n-1)s @] D(@r(n))
TES,

+ ) Ta)Tr(@) Tr(n-1) D [Tr(ny, 0] -
TESH

In particular

D [p('fn)vp(gn)] = Z D [Iw(l)xw@) e '$7r(n71)7p(gn)] Tr(n)

TESy
+ Y D(@r)Tr(2) * Tr(n-1)) [Tr(n)> P(Tn)]
(10) TESy
+ Z [Zr(1)Tr(2)  ** Tr(n—1)> P(Fn)] D(Tr(n))
TESy

+ Z Tr(1)Tr(2)  Trn-1)D [Tr(n), P(Fn)] -
TESK
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Using

D [2r(1)Tr(2) -

= D[2)Ta(e) -

Tr(n—1) Yo (1)Yo(2) "

MARCEN AND J. VUKMAN

Tr(n-1),P(Fn)] = =D [p(in); Tr1)Tr(2) - -

mw(n—l)]

Yo(n— 1)} Yo(n)

gESy
+ Z (Yo () ¥o(2) " Yo(n-1)) [Tr(1)Tr(2) *** Tr(n-1)> Yo(n))]
(11) gESy
+ Z [Tr()Zr(2) * Tr(n—1)> Yo () Yo (2) - Yo(n—1)] DWo(n))
gESy
+ Z Yo1)Yo(2) - ya(nfl)D I:xﬂ‘(l)xﬂ‘(Q) ©Tr(n—-1)s ya(n)}
gESy
and
D [mw(n)ap(gn)} =-D [p(gn)amﬂ'(n)}
= Z D [Zr(n)s Yo(1)Yo(2) " * Yo(n—1)) Yo(n)
oceSy,
+ Z D(Yo(1)Yo2) " Yo (n—1)) [Tr(n)> Yo (n)]
(12) gESy

+ Z [Tr(n) Yo () Yo(2) -

o€Sn

+ Z Yo(1)Yo(2)

oeS,
n (10) we have
(13)
D [p(Zn), p(4n)]
= Z Z xw(l Tr(2) -
TES, 0ES,
+ Z Z ycr MYs(2)
TES, 0ES,
+ D > [Eayzae)
TES, 0ES,

+ Z Z Yo(1)Yo(2) """ Yo(n—

TESy 0ESy

2 2.0

TESy 0ES),

xw(l Tr(2

Lrn—1)Yo(1)Yo(2) "
CYon-1)) [Tr(1)Tr2)

-Iﬂ(n,

ya(nfl)]

o ya(nfl)D [xw(n) ) ya(n)}

1) Yo()Yo(2) " - ya(nfl)}

0D [Tx)Tr(2) -

(1)) [Tr(n)s Yo(1)Yo(2) -

D(Yo (n)

I,T(n,

ya(nfl)] Yo(n)Tr(n)
1) ya(n)] L (n)
D(ycr(n))xﬂ'(n)

“Lr(n—1)s ya(n)] Lr(n)

ya(nfl)yo'(n)]
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+ 30> [T -

TES, 0€ESh

+ Z Z Tr(1)Tr(2) "

TESy 0ESy

+ Z Z Tr(1)Tm(2) "

TESy 0ES,

+ Z Z Tr(1)Tm(2) "

TESy 0ESy

+ Z Z Zr(1)Tm(2) "

TESy 0ESy

Tr(n—1)s Yo (1)Yo(2) " Yo(n-1)Yo(n)] D(@x(n))
Tr(n-1)D [Tr(n): Yo(1)Vo(2) ** Yo (n-1)] Yo(n)

Trxn-1)DWo()Yo@) "+ Yon-1)) [Tr(n): Yo ()]
Tr(n—1) [Tr(n)s Yo()Yo(2) " Yo(n-1)] DYo(n))

Tr(n-1)Yo()Yo@) **  Yon-1)D [Tr(n) Yo(n)] -

If we replace the roles of m and o we get

(14)
D [p(zn), p(Fn)]

=2 Y Dl

mES, o€y

+ Z Z xw(l Tr(2) -

mES, 0ESh

+ 0> [T

mESy o€y

+ Z Z Tr(1)Tn(2)

mES, o€y

+ Z Z ycr W)Yo (2)

wES, 0ES,

+ Y BT

TESy 0ES

+ Z Z Yo)Ye(2) "

TESy 0ES

+ Z Z Yo)Yo(2) "

TESy 0ES

+ Z Z Yo)Yo(2) "

TESy 0ES

+ Z Z Yo)Yo(2) "

mES, o€y

CTr(n—1)) Yo(1)Yo(2) " - ya(nfl)} Lr(n)Yo(n)

L (n-1)) [Tr(n)s Yo (1)Yo(2) " Yo (n-1)] Yo(n)
Tr(n-1): Yo ()o@ Yo(n-1)] D(@r(m) o)
Ta(n-1)D [Ta(n), Yo (1)Yo(2) " Yo(n—1)] Yo (n)

Yo(n-1)) [Tx(1)Tr(2) " Tr(n—1)Tn(n)s Yo (n)]
Trr(n—1)Tr(n): Yo (1) Yo (2) Yo (n—1))] DWa(n))
Yorn-1)D [Tr)Tr(2)*** Tr(n=1)s Yo (m)] Tr(n)
Yo(n—1)D(@r(1)Tr(2) *** Tr(n—1)) [Tr(n) Yo(n)]
Yo(n—1) [Tr(1)n(2) " Tr(n—1)s Yo (n)] D(@r(n))

Yo(n—1)Ta()Tr(2) * ** Tr(n-1)D [Tr(n)s Yo(n)] -

7
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It follows from both (13) and (14) that

0= Z Z (D [Tr(1)Tr(2) ** Tr(n—1)s Yo (1)Yo(2) * * - Yo(n—1))

TESy, 0ES,

+ D(Yo(1)Yo(2) " " Yo(n—1))Tr(1)Tr(2) """ Tr(n—1)

— D(Zr()Tr2) Tr(n—1))Yo(1)Yo(2) " Yo (n—1)

— Za()Tr(2) " Tr(n-1)D(Yo1)Yo(2) " Yo(n-1))

+ Yo (1)Yo(2) " Yo(n-1) D (T (1)Tr(2) " Tr(n—1)))Yo(n) Tr(n)

+ 30D @)@ Ta- ) P Wo(1)Yo(2) - Yo(n-1))
TESy, 0ES,

=D [Zr(1)Tr(2) ** Tr(n-1)> Yo ()Y (2) - * Yor(n—1)]

+ D(2r1)Tr(2) * Tr(n-1))Yo () Yo (2) " Yo(n—1)

— D(Yo1)¥Yo(2) " * Yo(n—1))Tr(1)Tr(2) " Tr(n—1)

~Yo()Vo(2) Yo (n-1) D (@r(1)Tr(2) " Tr(n=1)))Tx(n) Yo (n)

+ Z Z xﬂ'(l)zﬂ'(2) te 1'71'(71—1) (ya(l)ya(Q) te ya(n—l)D(ya(n))xw(n)
TES, 0ES,

~ Yo()Yo(2) " Yo(n—1)Tr(n) D WYo(n))

F Yoo 2) - Yon-1) D [Tr(n)> Yo(n)]

+ Ys(1)Yo(2) = Yo (n-1)Yo () D (Zr(n))

Yo (1)Yo(2) " Yotn—1) D(Tx(n))Yo(n))

+ Z Z Yo)Yo(2) " ya(n—l)(xw(l)xw(Q) o xw(n—l)D(zﬂ'(n))ya(n)
TES, 0ES,

— T ) Tr(2) " La(n-1)D Yo (n))Tr(n)

= Ta()Tr(2) " Tr(n—1)Yo(n) D(Tr(n))

— Tr(1)Tr(2) Tr(n—1)D [Tr(n)> Yo(n)]

+ Zr(1)Zr(2)  Tr(n—1)Tr(n) D Yo(n)))

for all z1,29,...,Zn,Y1,Y2,...,Yn € L. Now using the theory of functional
identities we apply the definition of n-freeness of £ so that there exist mappins
prj: L = R, j=1,....,(n+1)and A\ : LT — C(L) such that the last
equation can be rewritte as:

(16)

Z Z Yo (1)Yo2) " Yo (n—1) P Yo (n) ) Tr(n)
TE€ES, 0€Sn

—Yo(1)Yo(2) Yo (n—1)Lr(n) D Yo(n))
+ Yo (1) Yo 2) * Yo (n-1)D [Tr(n)s Yo(m)]
+ Yo(1)Yo(2) Yo (n—1)Yo(n) D(Tr(n))
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Yo (1)Yo(2) " Yo(tn-1)D(Tr(n))Yo(n))
n+1

= Zpl,j (5531-4-1)%‘ + M (Zng1)
j=1

for all Z,41 € L™, After a finite number of steps using the same arguments
as above we arrive at

D(z)y — D(y)z — yD(x) — D([z, y]) + 2D (y) = f(z)y + g(y)= + p(z, y)
for all z,y € L, where f,g: L — R and pu: £?> — C(L). Hence
D([z,y]) = D(z)y — D(y)x — yD(z) + 2D(y)
— f(@)y —g(y)z — p(z,y).
If we replace the roles of denotations x and y in (17) and compare so obtained

identities we arrive at 0 = — f(z)y — g(y)x — p(z,y) — f(y)x — g(x)y — p(y, ).
Now we have — f(x) = g(z) for all z € L. We also obtain u(x,y) + u(y,z) =0
and u(z,x) = 0 for all x,y € L. Setting x? instead of x and x = y in (17) it
follows

(17)

0= D(2*)x — D(x)z* — xD(2?) + 22 D(x)

— f@®)a + f(x)a® — p(a®, x)
for all x € L. After a complete linearization of this identity we arrive at
(19)  —D(zy) — D(yz) + xD(y) + yD(x) = h(x)y + k(y)z + An(z,y)
and also
D(zy) + D(yz) — D(z)y — D(y)z — f(zy) — flyz) + f(2)y + f(y)z

= zl(y) +ym(x) + Xz, y)

for all x,y € £, where h, k,l,m : L — Rand A\, \; : L2 — C(L). If we replace
the roles of denotations z and y in (19) and compare so obtained identities
we arrive at 0 = h(z)y + k(y)z + An(z,y) — h(y)z — k(z)y — An(y, x). Now
we have h(z) = k(z) for all x € L. We also obtain Ay (x,y) = Ap(y, z) for all
z,y € L. Equation (19) can now be rewritten as
(21)  =D(zy) — D(yz) + xD(y) + yD(x) = h(z)y + h(y)z + An(z,y).

Similar if we replace the roles of denotations z and y in (20) and compare
so obtained identities we arrive at 0 = zl(y) + ym(x) + Ni(x,y) — yl(z) —
xm(y) — Ai(y, z). Now we have l[(z) = m(z) for all x € L. We also obtain
Ai(z,y) = N(y, x) for all z,y € L. Equation (20) can now be rewritten as

D(zy) + D(yx) — D(x)y — D(y)z — f(zy) — f(yx) + f(2)y + f(y)z
= al(y) + yl(z) + Mi(z,y).

If y=x in (21) and (22) we obtain

(23) 2D(x?) = 22D(z) — 2h(x)x — My (x, 2)

(18)

(20)

(22)
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and also
(24) 2D(2?) = 2D(x)x + 2f(2?) — 2f (x)x + 22l(z) + \i(z, 2).
Putting (24) into (18) leads to
0 = zl(x)z — zD(x)x — o f(2?) + 2 f(v)z
—2%1(x) + 22D (x) — p(a?, z).
After complete linearization of the last equation we get

0= e@l@n@)n(E) — Tr()D(@r(2))Tx(3)
TESy

= T ) f(Tr2)Tr(3)) + Tr)) [ (Tr2))Tr(3)
— Tr ()Tl (Tr(3)) T Tr(1)Tr(2) D(Tr(3)) = 1(Tr(1)Tr(2) s Tr(3))-
Using the theory of functional identities we obtain
0=1I(z)y +U(y)z — D(x)y — D(y)x — f(zy) — f(yx)
+ f@)y + f(y)z — 2l(y) — yl(z) + =D(y) + yD(x)
and p(2?%,x) = 0. Setting y = x into the last equation we get

(25) f(@?) =l(z)z — D(z)x + f(x)z — zl(x) + xD(x).
Now putting last equation into (24) we obtain
(26) 2D(x?) = 22D(z) + 2l(z)z + N\ (2, 7).

Comparing (23) and (26) we obtain 0 = —h(z)x — l(z)x — Ap(x, x) — N (z, z).
This yields —h(x) = l(x) and —Ap(z, 2) = N(z, ).

From (21) we get D(yx) = —D(zy) + «D(y) + yD(x) — h(z)y — h(y)x —
An(z,y). Using this relation in (17) we get

2D(xy) = D(x)y = D(y)z +22D(y) — f(x)y + f(y)x
— h(@)y = h(y)z — p(w,y) = An(,y).
Setting #™ instead of # and y = 22 into (17) we get
0= D(z")x? — D(z*)2™ — 2?D(2™) + 2" D(z?)
— f(a™)a? + f(a®)a" — p(a", 2?).
Putting (5) into the last equation leads to
0= D(x" Y + 2" ' D(x)2* — D(z*)a™ — 22D(x" 1)z
— 2" D(z) + 2" D(a?) — f(a")a® + f(a®)a" — p(z", 2?).
Now putting (23) into (27) we obtain
0=2D(z" 1a® + 22" ' D(x)z? — 2xD(x)z" + 2h(x)z"
+ Mz, 2)2"™ — 222D (2" Y — 22" D(z) + 22" D(2)
— 22" h(x)x — 2"\ (2, ) — 2f (2™)2® + 2f (2*)a™ — 2u(z", x?).

(27)
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Last equation can now be rewritten as

0 =2D(z" 1)a® + 22" ' D(x)2z? — 2oD(x)z" + 2h(z)z"

—222D(z" Y — 22" h(x)x — 2f ()2 + 2f ()" — 2u(z™, 22).

Putting (25) into the last equation we get
0 =2D(z" 1a® + 22" ' D(x)2z? — 2zD(x)z" + 2h(x)z"
—222D(z" Y — 22" h(x)x — 2f ()2 — 2h(z)z" !

—2D(x)z" T + 2f (z)2" Tt 4 2zh(x)x" + 2zD(x)z" — 2u(z"™, 2?).

Last equation can now be rewritten as
0 =2D(z" 1)a® + 22" ' D(x)x?
(28) —222D(z" N — 22" h(x)x — 2f (2")x?
—2D(2)x" ™ £ 2f (z)2" Tt 4+ 2zh(x)x" — 2u(z”, 2?).
Setting y = 2"~ ! into (17) we get
0= D(z)z" ' — D(@" Yz — 2" 'D(z) + D(="1)

— f@)a" "+ fa" N — pla, 2.

Last equation can now be rewritten as

2D(x" Yz = 2D(z)x" "t — 22" "' D(z) + 22D(z" 1)

29 af@)en Tt + 21 Y — 20
n—1y\ __ I,nfl T — T I,nfl I,nfl T
) 22D(" ) = 2D(z" V)& — 2D(2)a" + 20" D(x)

+2f(x)z" "t = 2f (2" N + 2u(x, 2.
Putting (29) and (30) into (28) leads to
0 = 2D(x)z" ™! — 22" D(x)2® 4 2z D (2" 1)2?
—2f(x)z" Tt 2f (2" N — 2u(x, 2" )a? + 22" D(2)2?
—222D(z" Y — 22" h(x)x — 2f (z™)x?
—2D(2)x" ™ + 2f (x)2" Tt 4+ 2zh(x)x" — 2u(z”, 2?).
Last equation can now be rewritten as
0=2f(z" Na® — dp(x, 2" 1)2? + 2xD(x)z"
— 22" D(z)x — 2z f(x)z" + 2z f (2" H)a? — 22"h(x)z
—2f(x™)2? + 2zh(z)x™ — 2u(z", x?).

81
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After complete linearization of the last equation, using the theory of functional
identities and setting (1), Tr(2),-- -, Tr(nt2) = T, We obtain (™, 2?) =0
and

0=2f(z""Ha? —4p(x, 2" Y + 22D(z)a™ !

—22"D(x) — 2z f(x)z" " + 22 f (2" Ha — 22" h(x)
—2f(z™)x + 2zh(z)2z" 1 .

Now using theory of functional identities one more time after complete lin-
earization we get

Z —227(2)Tr(3) * Tr(n) D(Trn(n41)) = 2Tx(2)Tr(3) -+ T () M ( Ty 1)
TESy
n+1

= i@z + M(Tn).
i=2
Continuing with the same procedure as above we obtain
—2D(x) — 2h(z) = pxr + A\p(x)

for all x € L, where p € R and A\, (z) : £ — C(L). Using 2h(z) = —2D(z) —
pr — Ap(z) in (23) we get
(31) 2D(x?) = 2D(x)x + 2xD(x) + pr? + \y(z)x — M (2, 2).
Similar (24) can now be rewritten as
2D(x?) = 2D(x)z + 2f(2%) — 2f (2)x + 22D(z) + xpx + 2N () — i (70, 7).
Now comparing last two equations we get
(32) 2f(x?) = 2f (z)x + pa* — xpx.
Setting z* for x and y = z into (17) leads to
(33) 0 = 2D(z*)x — 2D(z)2* — 22D(z*) + 22* D(x)
—2f(axh)z + 2f (x)x* — 2u(zt, x).

Now putting 22 instead of x into (31) and (32) and using so obtained equations
into (33) we get

0 = 222pa® — xpa* — 23pa? — 2u(z?, ).

After complete linearization of the last equation and using the theory of func-
tional identities leads to u(z*,z) = 0 and

0= 2xpx3 — px4 — x2px2.
Using the theory of functional identities one more time we get

0 = 2zpx — px? — 2%p.
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The last equation can now be rewritten as 0 = [[p, x], #]. Now using Posner’s
theorem [8] it follows that [p,z] = O for all z € R. From (32) we now get
f(x?) = f(z)x. Complete linearization of (31) gives us

2D(zy) + 2D(yx) = 2D(x)y + 2D(y)x + 22 D(y) + 2yD(x)
+pry + pyz + Ap(@)y + Ap(Y)r — An(z, ) = An(y, @).
Setting y = 2"~ ! in the last equation we get
4D(z") = 2D(z)z" " + 2D(z" Nz + 22D(z" 1)
(34) + 22" D(x) 4 2pz™ + Ap(x)z" " 4+ Ay (2" )z
— Mz, 2" = A (2™t ).
Now using relation D(z") = D(z" 1)z + 2" 1 D(x) in (34) leads to
0=—2D(z" Yz — 22" 'D(x) + 2D(z)x" ' +22D(z" 1)
+2pz"™ + Ap(@) 2™+ Ap (2" )z — My, 2" ) = Ap (2" 2).
Putting y = "1 into (17) and considering that f(z") = f(z)a""! we get
0=2D(z)2" ' —2D(z" Mz — 22" D(x) + 22D(z" ) — 2u(x, 2" ).
Comparing last two equations leads to
0= 2px" + Mp(x)2" ™ + (2" Nz
— Az, 2™ 1) = A (2" 2) + 2u(x, 2.
Complete linearization of the last equation leads to
0= 2PTr(1)Tr(2)Tr(3)  Tr(n) T Mp(Tr(1))Tr(2)Tn(3) * * Tr(m)
n€Sy,
+ A (@r ) Tr(2)Tr@) * Tr(n—1))Tr(n) ~ M (Tr (1), Tr(2)Tn(3) "+ ()
= M (Tr() Tr(2)Tn(3)  Trn—1)s Tr(n)) + 2UEn (1), Tr(2) Tr(3) ** Tr(m))-
Using the theory of functional identities leads to u(z, 2" 1) = Ap(x, 2" 1)
and
0= 2PTr(1)Tr()Tr(3) " Tn(n-1) + Ap(Tx(1))Tr(2)Tr(3) * Tr(n—1)
TESy,
+ A (T2 (1) Tn(2) Tr(3) * Trn(n-1))-
Furthermore leads to A,(z"~!) = 0 and
0= 2Tr()Tr@)Tn(a) "+ Frtn2) T Ap(Tn(1))Tr(2)Tr(3) *** Tr(n—2)-
TES,

After using theory of functional identities few more times we get

0 =2pz + Ap(x).
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We can now conclude that p = 0 and A,(x) = 0. Equation (31) can now be
rewritten as

(35) 2D(2%) = 2D(x)x + 2xD(x) — \p(x, 2).
Setting 2 instead of z in the above relation gives
2D(z*) = 2D(2?)x? + 222D (2?) — A\ (22, 2%)
and the last equation together with (35) can now be rewritten as
2D(z*) = 2D(z)2® + 22D ()2 + 22° D(z)x + 223 D(z)
— 222\, (z, ) — A (22, 2%).

After complete linearization of (35) and setting y = 2® we get

4D(2*) = 2D(x)x® + 2D(2)x + 22D (23) + 223 D(x) — 2\, (z, 2°).
Comparing the last two identities leads to
(36) 0= 2D(ac)x(3 + 4$D(ac)x(2 + 422 D(x)z + 223 D(x) (
—2D(2)x — 22D (23) — 42\ (2, 2) — 2\ (22, %) + 25 (2, 2°).

After complete linearization of (35) and setting y = z2

4D(z%) = 2D(z)x? + 2D(a?)x + 2oD(x?) + 222 D(x) — 2\, (z, 2).

we get

Putting last equation in (36) and using (35) leads to
0 = —42?\p, (z, ) + 4oy, (z, 22) — 4h, (22, 22) + 40 (2, 23).

After complete linearization of the last equation and using the theory of
functional identities leads to Ap(22,22) = M\y(z,23) and 0 = —da\,(z,7) +
4\ (z,2%). Using theory one more time we get Ay (z,22?) = 0 and A\, (x, z) = 0.
Equation (35) can now be rewritten as

2D(2?%) = 2D(x)z + 2zD(x).

Consequently from the last equation follows that D is a Jordan derivation.
By Herstein theorem D is a derivation. Thereby the proof is completed. [

We are now in the position to prove Theorem 2.

PROOF OF THEOREM 2. The complete linearization of (5) gives us (8).
Assume first that R is not a PIring. According to Theorem 3 D is a derivation.
Now suppose that R is a PI ring. It is well-known that in this case R
has a nonzero center (see [13]). Let ¢ be a nonzero central element. Pick any
x € R. Next, setting 1 =19 = -+- = ,_1 = c and z,, = cx? in (8) we arrive
at
nD(c"2?) = D(c" Hea? + (n — 1)D(c" 12?)c

+ " D(cx?) + (n — 1) 22 D(c)



A RESULT IN THE SPIRIT OF HERSTEIN THEOREM 85

for all x € R. Next, setting 1 = 29 = cx and 3 = --- = x, = c in (8) we

arrive at
nD(c"z?) = 2D(zc" Yex + (n — 2)D(c" a?)e

+ 2" YeD(cx) + (n — 2)c"'2?D(c)
for all x € R. Comparing last two equations we get

0= D(c" Yex? + D(c" '2%)c + " D(ca?)

37
(87) +c" 2% D(c) — 2D (" Hex — 2wc" D(cx)
for all # € R. Next, setting #1 = --- = 2,,_1 = ¢ and x,, = 22 in (8) we arrive
at
(38) nD(c" 'z?) = D(c" Va? + (n — 1)D(c"2x?)c

+ " ID(2?) + (n — 1) 222 D(c)
for all z € R. Now comparing the last equation and (37) we get
0= (n+1)D(c" Yex? + (n — 1)D(c"*2%)c + c"D(2?)
+ (2n — )" 2% D(c) 4+ ne" D (cx?)
—2nD(zc" Yex — 2nazc™ ' D(cr)

for all x € R. Substituting = for ¢ in last relation and using the relations
D(c") = D(c" Y+ ¢ 1D(c) we get

(39) nD(c*) = (2 —n)c?D(c) + (2n — 1)eD(c?)

for all x € R. Next, setting 1 = z,29 = cx and 3 = --- =z, = ¢ in (8) we

arrive at

(40) nD(c" 2?) = D(c" ')z + D(c"2x)cx 4+ (n — 2)D(x%c"?)c
+2c" ' D(x) + 2" 2D(cx) + (n — 2)c" " ?2*D(c)

for all z € R. Setting #1 = z,29 =z and 3 = --- = 2, = ¢ in (8) we arrive

at

nD(c"2x?) = 2D(c"2x)z + (n — 2)D(2*c" )¢
+ 22" 2 D(z) + (n — 2)c" 322 D(c)
for all x € R. Now comparing (38) and (40) we get
0= D(c" Ya? + D(c"%2%)c + "1 D(z?)
+ " 222 D(c) — D(xc" Yz — D(c"?x)cx — 2" D(x) — xc" 2 D(cx)
for all x € R. Comparing the last two equations we get
0=nD(c"Ha? 4+ (2 —n)D(c"2x)cx + (2 — n)xc" ' D(z)
+ (n —2)D(x?c" ) + (2n — 2)c" 222 D(c)

+nc" ' D(2?) — nD(xc" )z — nac" 2 D(cx)



86 M. FOSNER, B. MARCEN AND J. VUKMAN

for all x € R. Setting 1 =z and 22 = --- =z, = ¢ in (8) we arrive at
(n—1)D(c"%z)c = nD(c" 'x) — D(c" Ha — "1 D(x)
— (n—1)zc"2D(c)
for all x € R. Comparing the last two equations we get
0= (n—1)D(c" Ha? + (3 —2n)D(c" %z)cx
(41) + (2 = n)zc" 'D(x) + (n — 2)D(2%c" %) + (2n — 2)c" 222 D(c)
+nc" 1D(z?) — " ID(z)z — (n — 1)zc" 2D(c)x — nzc" 2 D(cx)
for all x € R. Setting cz instead of x in the last equation we get
0= (n—1)D(" H?z? + (3 — 2n)D(c"'x)c
(42) + (2 = n)zc"D(cx) 4+ (n — 2)D(x*c" 1) + (2n — 2)c"2* D(c)
+nc"1D(?2?) — "D(cx)x — (n — Dac"D(c)x — nac" 1 D(Px)
for all z € R. Multiplying (41) by ¢* we obtain
0= (n—1)D(" Hc2? + (3 —2n)D(c" 2x)Px
(43) + (2 = n)xc" ™ D(x) 4+ (n — 2)D(x*c" )t + (2n — 2)c" 2 D(c)
+nc" ' D(2?) — "' D(x)x — (n — 1)zc"D(c)x — nac" D(cx)
for all x € R. Comparing (42) and (43) leads to
0= (3—2n)D(c"'a)c*x + 2xc" D(cx)
+ (n —2)D(x*c" 1) + nc" ' D(2?c?)
(44) — c"D(cx)x — nwc" " D(c*x)
— (3 =2n)D(c"?2)cx — (2 — n)xc" T D(x)
— (n = 2)D(z%c"3)* — ne" M D(2?) + " D(z).
Setting ¢ instead of z in (44) leads to
(2 —n)D(c"™)e? = (—n +2)D(c" )
+ (2 = 3n)c" M D(c?) + nc" 1 D(c?).

Setting 1 = cand 3 = -+ =z, = x in (8) we arrive at
(45) nD(cz" ) = D" He+ (n— 1)D(ca™ )z
+2"7'D(c) + (n — 1)ea™ 2 D(x)
for all z € R. Setting 71 = 2%, 23 = cand 23 = --- = z,, = z in (8) we arrive
at
(46) nD(cz™) = D(z"2¢)x? + D(z"™)c + (n — 2)D(ca™ Nz

+ 2" 2eD(2?) + 2" D(c) + (n — 2)cx™ ' D(x)
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for all x € R. Setting 21 = cx and 23 = --- = x, = x in (8) we arrive at
nD(cz™) = D(z" ez + (n — 1)D(cz™ )z
+ 2" D(cx) + (n — 1)ex™ ' D(x)
for all x € R. Comparing (46) and (47) we get
0= D(ca" ?)x* + D(z")c — D(cz" ")z — D(2" Y)ex
+ 2" 2eD(2?) + 2" D(c) — ca" ' D(z) — 2" D(cx).
Hence we get
0= D(cz" ?)x? — D(ca™ Y + 2" 2eD(2?) + 2" D(c) — 2" ' D(cx).
Putting (45) into last equation we get
0 = D(ca™ ?)x? + nca" 2D (2?) + na"D(c) — na" "' D(cx)
— D(z" Hex — 2" ' D(c)x — (n — 1)ex™ 2 D(z)x.
Setting cz instead of x into (45) we get
nD(c"z" ) = D(c" 12" He+ (n — 1)D(c" ta" ) ex
+ " 1" D(e) + (n — 1) 2" 2 D(cx).

Complete linearization of (48) and setting 1 = z and x93 = - - - = x,, = ¢ gives
us

0= D(c" Yex — D(xc"?)c® + nc" ' D(cx)
—nzc"2D(?) + (2n — 1) tzD(c) — nc" ' D(c)x — (n — 1)c"D(x).
Now putting (41) into last equation we get
0= D(c" Nz — D(@c" ')+ (2—n)c" ' D(x) + (2n — 2)zc"2D(c)
+ (n = 1) 2D(cx) — (n — 1)ac"3D(?) — (n — 1)c"2D(c)x.
Setting cx instead of = into last equation we get
0= D(c" Yex — D(xc™) + (2 — n)c" ' D(cx) + (2n — 2)zc" 1 D(c)
+(n—1)c"2D(c*z) — (n — 1)zc"2D(c*) — (n — 1)c" ' D(c)z.
Comparing the last two equations we get
0=—D(c"'2)c+ (2—n)c"D(x) + (2n — 3)c" ' D(cx)
+ D(c"z) — (n — 1) 2D(c%x).
Setting c¢ instead of z into last equation we get
0= —D(c" e+ (1 —n)c"D(c) + (2n — 3)c" 1 D(c?)
(51 + D(c"™) + (1 —n)c"2D(c?).
Comparing (51) and (39) leads to
nD(c"™) = nD(c"1)? + (2n — 2)c"D(c) + 1 D(P).

(47)

(48)

(49)

(50)
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Setting 1 = cx and 23 = --- = x, = ¢ in (8) we arrive at
(52) nD(xc") = D(c" Vex + (n — 1)D(zc" e
+ " 'D(cx) 4+ (n — 1)zc" "t D(c)
for all x € R. Putting (52) into (50) we get
(53) 0=—D(c"'2)c+ (2n —n?*)c"D(z) + (2n? — 3n + 1)c" ' D(cx)
+D(c" Nex + (n— 1) rzD(c) + (n — n?)c"2D(c2x).
Comparing (50) and (53) leads to
(54) 0= (n?—=3n+2)c"D(z) + (—=2n +5n — 4)c" ' D(ca) + D(c"x)
+ (n? = 2n + 1) 2D(c*z) — D(c" Yex + (1 —n)c"'aD(c).
Now comparing (49) and (54) leads to
(55) nD(c*x) = (2 —n)c®*D(z) + 2(n — 1)eD(cx)
—xcD(c) + eD(c)x + xD(c?).
Setting c? instead of x into the last equation and considering that
nD(c®) = (2 —n)c?D(c) + (2n — 1)eD(c?)
leads to
(56)  n?D(c') = (—2n? +6n —4)*D(c) + (3n* — 3n + 2)c2D(c?).
Multiplying (55) by ¢? leads to
ne?D(z) = (2 —n)c*D(x) + 2(n — 1) D(cx)
—2c®D(c) + A D(c)x + xc®D(c?).
On the other hand setting ¢? instead of ¢ into the (55) leads to
nD(c*z) = (2 —n)c*D(z) + 2(n — 1)2D(c%x)
—2®D(c?) + 2 D(c*)x + xD(ct).
Now comparing the last two equations leads to
—nD(c*z) = (=3n + 2)c?*D(c*x) + (2n — 2)ED(cx)
—2c®D(c) + D(c)x + 22 D(c?) — 2D(c*)x — xD(c*).
Setting c?z instead z into the (55) leads to
n?D(c*z) = n(2 — n)®D(c*z) + 2n(n — 1)eD(x)
—ncdxD(c) + nc®*D(c)x + ncxD(c?).
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Comparing the last two equations leads to
0= (3n? —8n +4)c*D(z) + (—4n® + 8n — 4)c*D(cx)
(57) + (n—2)zc3D(c) + (—n + 2)ED(c)z + 2c22D(c?) — nc’D(c?)x
—nxD(c*) + (2 — n)nc?D(c*x) + 2(n — 1)neD(cz).
Setting cz instead of z into the (55) and using (57) leads to
0= (4n? — 12n + 8)c*D(z) + (—8n? + 20n — 12)c*D(cx)
(58) —2xc3D(c) +2¢*D(c)x + (n + 2)c*xD(c*) — ne?D(c?)x
—nzD(c*) + (2n — 2)%2D(c%x).
Now putting (55) and (56) into the last equation leads to
(4n* —12n + 8)c®*D(cx) = (4n” — 12n + 8)c*D(x)
(59) —2n2zc3D(c) + (4n* — 6n + 4)ED(c)x
+ (2n? — 3n + 2)c*xD(c?) — n*c2D(c?)x.
Setting c¢ instead of x into the last equation we get
(60) D(c?) = 2¢D(c).
Using (60) into the (39) and (56) we get
D(c?) = 3¢2D(c),
D(c*) = 4¢3 D(c).

Now we can derive that

(61) D(c") = nc" ' D(c).

Using (61) the (59) can be rewritten as

(62) 2D(cz) = 2¢D(x) + xzD(c) + D(c)z.

Using last equation, (61) and (55) leads to

(63) D(c*z) = 2D(x) 4+ zeD(c) + eD(c)z.

Comparing the last two equations leads to

(64) 2D(c*x) = 2¢D(cx) + xeD(c) + c¢D(c)x.

Now setting 1 =292 = -+ = 2,1 = cx and z,, = x in (8). Hence we obtain

nD(c"tz") = D(c" e Ha 4+ (n — 1)D(c" 2" V)ex
+ "I D(2) + (n — 1) 22" D(cx).
Next, setting 1 = 23 =-+- = z,_1 = ¢ and x,, = " in (8) we arrive at
nD(c" 'z"™) = D(c" 1)z + (n — 1)D(c"%2")c
+ " Y D" D+ 2" D(2)) + (n — 1) 22" D(c)
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for all x € R. Comparing both identities we get
0= D(c" 2" Yz + (n—1)D(" 22" Hex
(65) + (n = 1)e"?a" " D(ex) — D(e"H)a" — (n — 1)D(c"a")e
— " ID(E" Yz — (n— 1) 22" D(c)

for all x € R. Setting z1 = z and 3 = x3 = --- = ©,_1 = ¢ in the complete
linearization of (65) we get

— (n = 1)D(c*32) + (n — 2)*"*D(c)x + (n — 1)D(c*"*x)c
+ " D(ex) + (n —2)* " *axD(c) — "' D(xc"?) =0
for all x € R. Then substituting « for cx in relation (66) we obtain
— (n = 1)D("%z) + (n — 2)*"3D(c)z + (n — 1)D(*"3x)c
+D(x) + (n —2) " 3xD(c) — " D(xc"3) =0
for all z € R. Multiplying identity (66) by ¢ we get
— (n=1)D(*"3z)c+ (n— 2)c3D(c)x + (n — 1)D(c**x)c?
+ "3 D(ex) + (n —2)*"3xD(c) — ¢"D(xc" %) =0
Comparing the last two identities, we have
— (n = 1)D(c*2z) +2(n — 1)D(c*3x)c
(68) + D(cZx)c® ™ — " ID(c" ) — (n — 1)D(* ) c?
— 73 D(ze) + "D(zc" %) =0

(66)

(67)

for all z € R. Substituting = by cx in (5) we get
nD(c"z™) = nD(c" tz" Vex + nc" 2" D(cx)

for all z € R. Next, setting z1 = 22 = -+ = x,_1 = ¢ and x,, = cx™ in the
complete linearization of (5) we have

nD(c"z™) = D(c" Hea™ + (n — 1)eD(c" ™)
+ "D (cx™) 4 (n — 1) t2" D(c).
Comparing the last two identities we see that
D(c" Nz + (n —1)D(c"'2™) + " 2D(ca™)
(69) +(n—1)c"22"D(c) — nD(c" 2" )z — nc" 22" D(cx) = 0.

Setting r1 = 9 = -+ = x,_1 = ¢ and x,, = x in the complete linearization
of (69) and using (68) we get

D(c" N e + " 2D(c"x) + (n — 1) 3xD(c) — D(*"?)x
+ (n = 1)D(c*3x)c — 2¢* 3 D(cx) — (n — 1)**zD(c?) 4+ " *D(x)
—"ID(c"tr) — (n — 1)D(c* ) c? + " D(zc" %) = 0.
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Using the last identity and (67) we obtain
D(c" e ra + 2 D(c"x) + (2n — 3)zc* 3 D(c)
— D(c* )z — 3 D(cx) — (n — 1)**xD(c?)
+"AD(Px) — TID(E T ) 4 (n = 2)P 3 D(e)z = 0
and hence
D(c"z) = " 'D(c)x 4 " txD(c) + " D(cx) — " 2D(cPx) + eD(c" x)

for all z € R. Setting 1 =29 =+ =x,—1 = ¢ and z,, = cz in (8) we arrive
at

nD(c"z) = D(c" Yex + (n — 1)D(c" tx)c+ " D(cx) + (n — 1) taD(c).
Comparing the last two identities we obtain
(70) D(c"'z) = — " ?D(c)x — " %xD(c)
—(n—1)c"2D(cz) + nc" 3 D(Px).
Putting (55) into last equation we get
(1) 2D(c"'z) = (n — 1) ?D(c)x
+ (n—1)c"2zD(c) + 2¢" ' D(x).
Using (64) and (70) we now get
(72)  2D(c"'z) = (n — 2)c" 2D(c)x + (n — 2)c" ?zD(c) + 2¢"2D(cx).
Substituting x by cz in the last equation we get
2D(c"z) = (n — 1)c" ' D(c)x + (n — 1)c"taD(c) + 2¢" ' D(cx).
Next we set ©1 =22 = -+- = 2,1 = ¢ and &, = 2 in (8). This yields
2nD(c"1z) = 2D(c" Ha+2(n—1)D(c"%z)c+2c" 1 D(x)4+2(n—1)c" 22 D(c).
Comparing the last two equations we get
2(n — 1)D(c"%z) = (n? — 4n + 2)c" 3 D(c)x
(73) + (n* —4n +2)c" 3z D(c)
+2nc" 3 D(cx) — 2¢" 2D ().
Setting 1 = x93 = x and 23 = -+ = x, = c in (8) we have
nD(z%c" %) = (n — 2)D(2*c"3)c + 2D (2" ?)x
+ (n —2)2%c¢" 3 D(c) + 22c"2D(x).
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Using the last equation and (73) we get
(n — D)nD(x?c"?) = (n — 1)(n — 2)D(2*c"3)c + (n? — 4n + 2)c" 3 D(c)z?
+ (n? —4n 4 2)c"3xD(c)x + 2nc" 3 D(cx)x
—2¢"2D(z)x + (n — 1)(n — 2)2%c" 3 D(c)
+2(n — 1)zc"2D(x).
Using (62) in the last equation we arrive at
(n — D)nD(x?c"?) = (n — 1)(n — 2)D(x*c"3)c + (n? — 4n + 2)c" 3 D(c)z?
+ (n? —4n 4 2)c"3xD(c)x + 2nc" 2D(x)x
+nc"3D(c)x? + nc" 3D (c)x — 2" 2D(x)x
+ (n—1)(n —2)z%c"3D(c) + 2(n — ac"2D(x).
Therefore we have
nD(z%c" %) = (n — 2)D(2*c"®)c + (n — 2)c" 3D(c)x?
(74) + (n—2)c"3xD(c)x + 2" D(z)x
+ (n —2)z%c¢" 3 D(c) + 22c"2D(x).
Setting 1 =19 =z, 23 =c* and 24 = ... = 1, = c in (8) we have
nD(z?c" 1) = 2D(zc" Yz + D(22c"3)c? + (n — 3)D(z*c"?)e
+22¢" 1 D(z) + 22" 3 D(c?) + (n — 3)x%c" 2 D(c).
Using (72) in the last equation we obtain
nD(z?c" 1) = (n — 1) ?D(c)z* + (n — 1) 2zD(c)x
+ D(z%c" ) + (n — 3)D(2%c" ) e + 2x¢" " D(x)
+(n —1)2%c¢"2D(c) 4+ 2¢" ' D(x)x.
On the other hand setting z; = 22 and 3 = 23 = ... = x,, = c in (8) we have
nD(z?c" 1) = (n — 1)D(2*c" %)c + (n — 1)c"2D(c)x?
+ (n = 122" 2D(c) + "1 D(2?).
Comparing last two equations we get
2D(z%c""?) = (n — 1)¢"3xD(c)x + D(z*c"3)e
+ 22" 2 D(x) 4+ 2¢" 2 D(z)x — " 2D(2?).
Now using (74) and (75) we have
(4 —n)D(x%c" e = 2(n — 2)c" 2 D(c)2® 4+ (—n? + 3n — 4)c" 3xD(c)x
+ (4 —2n)c"2D(z)z 4 2(n — 2)2%c" 3 D(c)
+ (4 — 2n)2zc" 2 D(x) + nc" 2D (2?).

(75)
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Substituting x by cz in the last equation we obtain
(4 —n)D(z*c" Ne = (2n —4) "' D(c)x* 4+ (—n? + 3n — 4)c" " aD(c)x
+2(2 = n)c"'D(cx)x 4+ (2n — 4)2*c" 1 D(c)
+2(2 — n)zc" ' D(cx) + nc" 2D (22?).
Now using (62) in the last equation we get
(4 —n)D(z*c" e = (n—2)c" ' D(c)x? + (—n® + n)c" " zD(c)x
(76) + (4 —2n)c"D(z)x + (4 — 2n)c"zD(x)
+ (n —2)z2c" 1 D(c) + nc"2D(*a?).
Setting 22 instead of = into (71) we arrive at
2D(c" '2?) = (n — )" 2D(c)z? + (n — 1)c"22°D(c) + 2" D(2?).
Comparing the last equation and (76) leads to
0= (=n?+3n)c" " D(c)z* + (—n? + 3n)c" 22 D(c)
(77) + (8 = 2n)c"D(2?) — 2(—n? +n)c"txD(c)x
— (8 —4n)c"D(x)x — (8 — 4n)c"xD(z) — 2nc"2D(c*2?).
Setting 22 instead of x into (63) and using (77) leads to
(8 — 4n)eD(x?) = (8 — 4n)eD(x)x + (8 — 4n)caD(x)
+ (n? —n)D(c)2z® + (n* — n)z>D(c)
—2(n? —n)xD(c)x.
Last equation can be rewritten as
(8 — 4n)eD(x?) = (8 — 4n)eD(x)x + (8 — 4n)cxD(x)
— (12 = w)[[D(e), ), 3]
Multiplying the above relation by c gives
(8 —4n)c?D(x?) = (8 — 4n)c2D(x)z 4 (8 — 4n)c*xD(x)
— (n* = n)c[[D(c), z], z].

(78)

(79)

Putting ¢? for ¢ in the relation (78) leads to
—4n)®*D(2?) = (8 — 4n)c?D(z)x —4n)cxD(x
(80) (8 —4n)eD(x7) = (8 24)D()2+(8 dn)c”zD(x)
— (0" = n)[[D(c%), 2], ].
and considering D(c?) = 2¢D(c) implies
(8 —4n)c?D(x?) = (8 — 4n)c2D(x)x + (8 — 4n)c*xD(x)
—2(n? —n)c[[D(c), z], x].
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Comparing the last relation with (79) gives
[[D(C), l‘], :L'] =0,
which reduces the relation (80) to
D(z%) = D(z)x + xD(x)

for all z € R. In other words, D is a Jordan derivation. By Herstein theorem
D is a derivation. The proof in case we have the relation (6) goes through in
a similar way and will be omitted. The proof of the theorem is complete. O
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