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Abstract. Feigin-Stoyanovsky’s type subspace W (Λ) of a standard
g̃-module L(Λ) is a g̃1-submodule of L(Λ) generated by the highest-weight
vector vΛ, where g̃1 is a certain commutative subalgebra of g̃. Based on

the description of basis of W (Λ) for g̃ of type C
(1)
ℓ

, we give a presentation
of this subspace in terms of generators and relations

W (Λ) ≃ U(g̃−1 )/J.

1. Introduction

B. Feigin and A. Stoyanovsky introduced principal subspaces of stan-

dard modules for affine Lie algebras of type A
(1)
1 and A

(1)
2 in [12] where they

have recovered Rogers-Ramanujan type identities by considering graded di-
mensions of these subspaces. An important part of their investigation was
the knowledge of presentations of these subspaces in terms of generators and
relations. Another type of principal subspaces, called Feigin-Stoyanovsky’s
type subspaces, was introduced by M. Primc who constructed bases of these
subspaces in different cases ([24–26, 18]). These kind of subspaces were fur-
ther studied by many authors ([28, 15, 10, 11, 1, 13, 14, 2, 4, 5, 17, 30], etc.) and
the knowledge of presentation presents an important question in this study
([6–9, 27, 23]).

In our previous works we have described bases of Feigin-Stoyanovsky’s

type subspaces of standard modules for affine Lie algebras of type C
(1)
ℓ ([3])
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and obtained from them basis for the whole standard modules ([3]). In this
note we use the description of bases of a Feigin-Stoyanovsky’s type subspaces
to give presentations of these subspaces in terms of generators and relations.

2. Feigin-Stoyanovsky’s type subspaces

Let g be a complex simple Lie algebra of type Cℓ with a Cartan subalgebra
h and a root decomposition g = h+

∑

gα. Let

R = {±ǫi ± ǫj | 1 ≤ i ≤ j ≤ ℓ}\{0}

be the corresponding root system realized in R
ℓ with the canonical basis

ǫ1, . . . , ǫℓ. Fix simple roots

α1 = ǫ1 − ǫ2, . . . , αℓ−1 = ǫℓ−1 − ǫℓ, αℓ = 2ǫℓ

and let g = n− + h+ n+ be the corresponding triangular decomposition. Let
θ = 2α1 + · · ·+ 2αℓ−1 + αℓ = 2ǫ1 be the maximal root and

ωr = ǫ1 + · · ·+ ǫr, r = 1, . . . , ℓ

fundamental weights (cf. [16]). Fix root vectors xα ∈ gα. We identify h and
h∗ via the Killing form 〈 , 〉 normalized in such a way that 〈θ, θ〉 = 2.

Let g̃ be the affine Lie algebra of type C
(1)
ℓ associated to g,

g̃ = g⊗ C[t, t−1] + Cc+ Cd,

with the canonical central element c and the degree element d (cf. [19]). Let

g̃ = ñ− + h̃+ ñ+,

be a triangular decomposition of g̃, where ñ− = n− + g ⊗ t−1C[t−1], h̃ =
h+Cc+Cd, ñ+ = n+ + g⊗ tC[t]. Denote by Λ0, . . . ,Λℓ fundamental weights
of g̃.

For x ∈ g and n ∈ Z denote by x(n) = x⊗tn and x(z) =
∑

n∈Z
x(n)z−n−1,

where z is a formal variable.
Let L(Λ) be a standard g̃-module with the highest weight

Λ = k0Λ0 + k1Λ1 + · · ·+ kℓΛℓ,

ki ∈ Z+ for i = 0, . . . , ℓ, and fix a highest weight vector vΛ. Denote by
k = Λ(c) the level of g̃-module L(Λ), k = k0 + k1 + · · ·+ kℓ.

Fix the minuscule weight ω = ωℓ = ǫ1 + · · · + ǫℓ ∈ h∗; then 〈ω, α〉 ∈
{−1, 0, 1} for all α ∈ R and define the set of colors

Γ = {α ∈ R | 〈ω, α〉 = 1} = {ǫi + ǫj | 1 ≤ i ≤ j ≤ ℓ}.

Write

(ij) = ǫi + ǫj ∈ Γ and xij = xǫi+ǫj .

This gives a Z-gradation of g̃; let g0 = h+
∑

〈ω,α〉=0 gα, then

g̃ = g̃−1 + g̃0 + g̃1,
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where

g̃0 = g0 ⊗ C[t, t−1]⊕ Cc⊕ Cd, g̃±1 =
∑

α∈±Γ

gα ⊗ C[t, t−1].

The subalgebra g̃1 is commutative, and g0 acts on g̃1 by adjoint action.
Feigin-Stoyanovsky’s type subspace of L(Λ) is a g̃1-submodule of L(Λ)

generated by the highest-weight vector vΛ,

W (Λ) = U(g̃1) · vΛ = U(g̃−1 ) · vΛ ⊂ L(Λ),

where g̃−1 = g̃1 ∩ ñ−.
We use an exponential notation to describe monomials m ∈ U(g̃−1 ) =

S(g̃−1 ):

m = · · ·xi′j′ (−n)bi′j′ · · ·xij(−1)aij .

It will be clear from the context to which factors exponents aij ’s, bij ’s, cij ’s
correspond to.

A monomial m is said to satisfy difference conditions for W (Λ), DC for
short, if for any n ∈ N and i1 ≤ · · · ≤ it ≤ jt ≤ . . . ≤ j1 ≤ it+1 ≤ · · · ≤ is ≤
js ≤ . . . ≤ jt+1, the exponents of xij(−n)’s and xij(−n− 1)’s in m, denoted
by aij ’s and bij ’, respectively, satisfy

bi1j1 + . . .+ bitjt + ait+1jt+1 + . . .+ aisjs ≤ k.

A monomial m satisfies initial conditions for W (Λ), IC for short, if for
every i1 ≤ · · · ≤ it ≤ jt ≤ . . . ≤ j1,

ai1j1 + . . .+ aitjt ≤ k0 + k1 + . . .+ kj1−1

where aij ’s denote exponents of xij(−1) in m.

Theorem 2.1 ([3]). The set

{mvΛ |m satisfies DC and IC for W (Λ)}

is a basis of W (Λ).

3. Presentation of Feigin-Stoyanovsky’s type subspaces

Difference conditions are consequences of the adjoint action of g0 on the
vertex-operator relation

xθ(z)
k+1 = 0,

or, equivalently, on a family of relations

(3.1)
∑

n1,...,nk+1≥1
n1+···+nk+1=N

x11(−n1) · · ·x11(−nk+1) = 0, for N ≥ k + 1

on L(Λ) (cf. [3]; see also [21, 22, 20])).
Root vectors of g can be chosen so that the action of g0 on g1 is given by

[x−αi
, xij ] = xi+1,j , [x−αj

, xij ] = xi,j+1, [x−αi
, xii] = 2xi,i+1



118 G. TRUPČEVIĆ

(cf. [16]). Then one easily sees that the adjoint action gives the following
family of relations on L(Λ):

(3.2)
∑

n1+···+nk+1=N

{i1,...,ik+1,j1,...,jk+1}={1m1 ,...,ℓmℓ}

Cijxi1j1 (−n1) · · ·xik+1jk+1
(−nk+1) = 0,

for some nonnegative integers Cij, where the sum runs over all such partitions
i, j of a multiset {1m1 , . . . , ℓmℓ}, m1 + · · ·+mℓ = 2(k + 1) (cf. [3]).

One obtains the difference conditions by finding minimal monomials of
these relations, the so called leading terms of relations, whose multiples can
be excluded from the spanning set. For this, a linear order on monomials is
introduced. Define a linear order on the set of colors Γ: (i′j′) < (ij) if i′ > i

or i′ = i, j′ > j. On the set of variables Γ̃− = {xγ(n) | γ ∈ Γ, n ∈ Z−} define
a linear order by xα(n) < xβ(n

′) if n < n′ or n = n′, α < β. For monomials,
assume that factors descend from right to left, then use a lexicographic order
(compare factors the greatest to the lowest one). Order < is compatible with
multiplication (see [24, 30]):

if m1 < m2 then mm1 < mm2, for m,m1,m2 ∈ U(g̃−1 ).

For initial conditions consider decompositions

Λ = Λ(r)+Λ(r), Λ(r) = k0Λ0+ · · ·+kr−1Λr−1, Λ(r) = krΛr+ · · ·+kℓΛℓ,

for 1 ≤ r ≤ ℓ. By v(r) and v(r) denote highest weight vectors of the associated

standard modules L(Λ(r)) and L(Λ(r)) of level k(r) = k0 + · · · + kr−1 and
k(r) = kr + · · · + kℓ, respectively. Then L(Λ) can be embedded in a tensor

product L(Λ) ⊂ L(Λ(r))⊗ L(Λ(r)). Since xij(−1)vΛr
= 0 if and only if j ≤ r

(cf. [3]), we have

m(v(r) ⊗ v(r)) = (mv(r))⊗ v(r)

for m = xi1j1(−1) · · ·xitjt(−1) such that js ≤ r, 1 ≤ s ≤ t. Hence, relations

between such monomials corresponding to difference conditions for W (Λ(r))
automatically become relations in L(Λ) (cf. [3]). This gives the following
family of relations on L(Λ):
(3.3)

∑

{i1,...,ik+1,j1,...,jk+1}={1m1 ,...,rmr}

Cijxi1j1(−1)xi2j2(−1) · · ·xi
k(r)+1

j
k(r)+1

(−1) = 0,

for some nonnegative integers Cij, where the sum runs over all such partitions

i, j of a multiset {1m1 , . . . , rmr}, m1 + · · ·+mr = 2(k(r) + 1).
Alternatively, for r ≥ 2 let g(r) ⊂ g0 be the subalgebra generated by

elements x±αt
, 1 ≤ t < r. Start from a relation

(3.4) x11(−1)k
(r)+1(v(r) ⊗ v(r)) = (x11(−1)k

(r)+1v(r))⊗ v(r) = 0.
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Now the adjoint action of g(r) on the above relation gives relations (3.3). For
r = 1, relations (3.3) come down to only one relation

(3.5) x11(−1)k0+1(v(1) ⊗ v(1)) = 0.

Recall that Feigin-Stoyanovsky’s type subspace W (Λ) is

W (Λ) = U(g̃−1 ) · vΛ.

Since g̃1 is commutative, universal enveloping algebra of g̃−1 is isomorphic to

a polynomial algebra C[Γ̃−]. Hence, there is a surjection

fΛ : C[Γ̃−] → W (Λ), f : m → m · vΛ.

We want to describe the kernel of this map, ker fΛ ⊂ C[Γ̃−], so that

W (Λ) ≃ C[Γ̃−]/ ker fΛ,

as vector spaces.

Theorem 3.1. Let JΛ ⊂ C[Γ̃−] be the ideal generated by the following

sets

U(g0) ·









∑

n1,...,nk+1≥1
n1+···+nk+1=N

x11(−n1) · · ·x11(−nk+1)









, for N ≥ k + 1,

U(g(r)) · x11(−1)k
(r)+1, for r = 2, . . . , ℓ,

x11(−1)k0+1.

Then ker fΛ = JΛ.

Proof. From (3.1), (3.4) and (3.5), see also (3.2) and (3.3), it follows
that the generators of JΛ lie in the kernel of fΛ. Hence fΛ can be factorized
to a quotient map

f̄Λ : C[Γ̃−]/JΛ → W (Λ).

This map is clearly a surjection, since fΛ is a surjection.
We can imitate the proof for the spanning set for W (Λ) (cf. Proposition 2

and 4 in [3]) to reduce the spanning set for C[Γ̃−]/JΛ. Consider the generators
of JΛ and identify the minimal monomial inside each one; their multiples can
be excluded from the spanning set. Like in [3], we get

B = {m |m satisfies DC and IC for W (Λ)}

as a spanning set of C[Γ̃−]/JΛ.
To see that f̄Λ is an injection, note that f̄Λ maps B bijectively onto

{mvΛ |m satisfies DC and IC for W (Λ)} ⊂ W (Λ),

which is a basis of W (Λ). This means that B is also linearly independent.

Hence f̄Λ maps a basis of C[Γ̃−]/JΛ onto a basis of W (Λ) and therefore f̄Λ is
a bijection.
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