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PROPER INCLUSIONS OF MORREY SPACES
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Abstract. In this paper, we prove that the inclusions between Mor-
rey spaces, between weak Morrey spaces, and between a Morrey space and
a weak Morrey space are all proper. The proper inclusion between a Mor-
rey space and a weak Morrey space is established via the unboundedness
of the Hardy-Littlewood maximal operator on Morrey spaces of exponent
1. In addition, we also give a necessary condition for each inclusion. Our
results refine previous inclusion properties studied in [4].

1. Introduction

Morrey spaces were first introduced by C. B. Morrey in [7] in relation to
the study of the solution of certain elliptic partial differential equations. For
1 ≤ p ≤ q < ∞, the Morrey space Mp

q = Mp
q(R

d) is defined to be the set of

all f ∈ Lp
loc(R

d) such that

‖f‖Mp
q
:= sup

a∈Rd, r>0

|B(a, r)|
1

q

(

1

|B(a, r)|

∫

B(a,r)

|f(y)|p dy

)
1

p

< ∞.

Here, B(a, r) is an open ball centered at a with radius r, and |B(a, r)| denotes
its Lebesgue measure. Notice that, when p = q, one can recover the Lebesgue
space Lp = Lp(Rd) as the special case of Mp

q . See [9] for various spaces
related to Morrey spaces. Many researchers have proved the boundedness of
classical integral operators on Morrey spaces and their generalizations. See,
for instance, [1, 2] and the references therein.

Concerning the Hardy-Littlewood maximal operator (defined in Section
3), one may prove its boundedness on Morrey spaces using the inclusionMp

q ⊆
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M1
q. In general, we have the following inclusions of Morrey spaces

Lq = Mq
q ⊆ Mp2

q ⊆ Mp1

q ⊆ M1
q

provided that 1 ≤ p1 ≤ p2 ≤ q < ∞. These inclusions may be obtained
by applying Hölder’s inequality. Note that, for 1 ≤ p2 < q < ∞, we have

f(x) := |x|−
d
q ∈ Mp2

q \ Mq
q. This tells us that the inclusion Mq

q ⊆ Mp2

q is
proper for 1 ≤ p2 < q < ∞.

Besides the ‘strong’ Morrey spaces, we also have weak Morrey spaces
whose definitions are given as follows.

Definition 1.1. Let 1 ≤ p ≤ q < ∞. A measurable functions f on Rd is

said to belong to the weak Morrey space wMp
q = wMp

q(R
d) if the quasi-norm

‖f‖wMp
q
:= sup

γ>0
‖γχ{|f |>γ}‖Mp

q

is finite.

Note that, by using the inequality γχ{|f |>γ} ≤ |f | for every γ > 0, we
have Mp

q ⊆ wMp
q . The inclusion properties of weak Morrey spaces, gener-

alized Morrey spaces, generalized weak Morrey spaces, and their necessary
conditions were discussed in [4]. In particular, for the case of Morrey spaces
and weak Morrey spaces, the results can be stated as follows.

Theorem 1.2 ([4]). For 1 ≤ p1 ≤ p2 ≤ q < ∞, the following inclusion

holds

wMp2

q ⊆ wMp1

q .

Further, if p1 < p2, then

wMp2

q ⊆ Mp1

q .

In addition to the above inclusion relations of Morrey spaces, we have the
following theorems.

Theorem 1.3. Let 1 ≤ p1 < p2 < q < ∞. Then each of the following

inclusions is proper:

(i) Mp2

q ⊆ Mp1

q ;

(ii) wMp2

q ⊆ Mp1

q ;

(iii) wMp2

q ⊆ wMp1

q .

Theorem 1.4. Let 1 ≤ p ≤ q < ∞. Then the inclusion Mp
q ⊆ wMp

q is

proper.

Remark 1.5. The claim about the proper inclusion Mp2

q ⊆ Mp1

q is stated
in [4, p. 2] without proof. We shall see the detailed explanation of this claim
in the proof of Theorem 1.3 (i). In [4, Remark 2.4], the authors refer to [3]
for the proper inclusion between the generalized Morrey space L1,φ and the
corresponding weak type space wL1.φ, where φ(t) = t−1 log(3 + t). Since
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L1,φ 6= M1
q for this choice of φ, Theorem 1.4 can be seen as a complement of

the result in [3].

We also obtain the following necessary conditions for inclusion of Morrey
spaces and weak Morrey spaces which can be seen as a refinement of some
necessary conditions given in [4].

Theorem 1.6. Let 1 ≤ pi ≤ qi < ∞ for i = 1, 2. Then the following

implications hold:

(i) Mp2

q2
⊆ Mp1

q1
implies q1 = q2 and p1 ≤ p2;

(ii) wMp2

q2
⊆ wMp1

q1
implies q1 = q2 and p1 ≤ p2;

(iii) wMp2

q2
⊆ Mp1

q1
implies q1 = q2 and p1 < p2.

Remark 1.7. A necessary and sufficient condition for inclusion of Morrey
spaces on a bounded domain can be found in [10, Theorem 2.1] and [11]. The
case of Morrey spaces on Rd is mentioned in [6, Eq. (3.9)] and the authors
refer to [12, Satz 1.6]. However, we do not have the access to the paper, so
that we do not know how the proof goes. See also [6, Corollary 3.14] for
weighted version of Theorem 1.6. Here we present a proof of the necessary
and sufficient condition for the inclusion property, which is different from and
simpler than that in [10].

The organization of this paper is as follows. In the next section, we prove
that for 1 ≤ p1 < p2 < q < ∞ the set Mp1

q \Mp2

q is not empty. By the same
example, we also show that for 1 ≤ p1 < p2 < q the inclusion wMp2

q ⊆ wMp1

q

is proper. In Section 3, we give the proof of Theorem 1.4 using the unbounded-
ness of the Hardy-Littlewood maximal operator on Morrey spaces of exponent
1. The proof of Theorem 1.6 is given in the last section. Throughout this pa-
per, we denote by C a positive constant which is independent of the function
f and its value may be different from line to line.

2. The proof of Theorem 1.3

We shall first prove Theorem 1.3 (i) by constructing a function which
belongs to Mp1

q but not to Mp2

q , for 1 ≤ p1 < p2 < q < ∞.

Proof of Theorem 1.3 (i). Let 1 ≤ p1 < p2 < q < ∞ and β :=
d(p1+p2)

2q . Then we have

dp1
q

< β <
dp2
q

(2.1)

and

d− β =
d(q − p1) + d(q − p2)

2q
> 0.
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Define g(x) := χB(0,1)(x) + χRn\B(0,1)(x)|x|
−β . Then, for each k ∈ N, we

choose rk ∈ (k, k + 1) such that
∫

B(0,k+1)\B(0,k)

g(x) dx = |B(0, rk) \B(0, k)|.

Next define

f(x) := χB(0,1)(x) +
∞
∑

k=1

χB(0,rk)\B(0,k)(x).(2.2)

We shall show that f ∈ Mp1

q \Mp2

q . First observe that
∫

B(a,r)

|f(x)|pdx ≤

∫

B(0,r)

|f(x)|p dx

for every 1 ≤ p < ∞, a ∈ Rd, r > 0. Now, for 1 ≤ p < ∞ and r > 2, we have
∫

B(0,r)

|f(x)|p dx =

∫

B(0,r)

|f(x)| dx ≤

∫

B(0,2r)

g(x) dx,

so
∫

B(0,r)

|f(x)|p dx ≤

∫

B(0,2r)

|x|−β dx = Crd−β(2.3)

and
∫

B(0,r)

|f(x)|p dx ≥

∫

B(0,r)\B(0,1)

|x|−β dx(2.4)

= C(rd−β − 1) ≥ C

(

1−
1

2d−β

)

rd−β .

Therefore, by substituting p = p1 into (2.3) and recalling (2.1), we have

|B(0, r)|
1

q
− 1

p1

(

∫

B(0,r)

|f(x)|p1 dx

)
1

p1

≤ Cr
d
q
− d

p1 r
d
p1

− β

p1 = Cr
d
q
− β

p1 ≤ C.

(2.5)

On the other hand, for each r ≤ 2, we have

(2.6)
|B(0, r)|

1

q
− 1

p1

(

∫

B(0,r)

|f(x)|p1 dx

)
1

p1

≤ Cr
d
q
− d

p1

(

∫

B(0,r)

|f(x)|p1dx

)
1

p1

≤ Cr
d
q ≤ C.

By combining (2.5) and (2.6) we conclude that f ∈ Mp1

q .
Meanwhile, by substituting p = p2 into (2.4), we have

|B(0, r)|
1

q
− 1

p2

(

∫

B(0,r)

|f(x)|p2 dx

)
1

p2

≥ Cr
d
q
− d

p2 r
d−β

p2 = Cr
d
q
− β

p2 .
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Since d
q
− β

p2

> 0, we have

sup
a∈Rd,r>0

|B(a, r)|
1

q
− 1

p2

(

∫

B(a,r)

|f(x)|p2 dx

)
1

p2

≥ C sup
r>2

|B(0, r)|
1

q
− 1

p2

(

∫

B(0,r)

|f(x)|p2 dx

)
1

p2

≥ C sup
r>2

r
d
q
− β

p2 = ∞.

Thus f /∈ Mp2

q , and we are done.

Theorem 1.3 (ii) and (iii) are proved by using the function f from the
proof of Theorem 1.3 (i) and its relation with the characteristic function of
its level set. The detailed proof goes as follows.

Proof of Theorem 1.3 (ii)-(iii). For 1 ≤ p1 < p2 < q < ∞, let f be
defined by (2.2). Observe that

χ{|f |>γ} =

{

0, γ ≥ 1,

f, γ ∈ (0, 1).

This together with the fact that f /∈ Mp2

q gives

‖f‖wM
p2
q

= sup
γ∈(0,1)

γ‖χ{|f |>γ}‖Mp2
q

= sup
γ∈(0,1)

γ‖f‖Mp2
q

= ‖f‖Mp2
q

= ∞,

and hence f ∈ Mp1

q \ wMp2

q . Thus we have shown that wMp2

q ⊆ Mp1

q is a
proper inclusion. Since Mp1

q ⊆ wMp1

q , we also have f ∈ wMp1

q \ wMp2

q , so
the inclusion (iii) is proper.

3. The proof of Theorem 1.4

In order to prove Theorem 1.4, we need the following lemma.

Lemma 3.1. Let 1 ≤ p ≤ q < ∞. Then

‖f‖Mp
q
= ‖|f |p‖

1

p

M1
q
p

for every f ∈ Mp
q and

‖f‖wMp
q
= ‖|f |p‖

1

p

wM1
q
p

for every f ∈ wMp
q .
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Proof. We calculate

‖f‖Mp
q
= sup

B

(

|B|
p

q
−1

∫

B

|f(x)|p dx

)
1

p

= ‖|f |p‖
1

p

M1
q
p

.

By applying the first identity for χ
{|f |>γ

1

p }
, we have

‖|f |p‖
1

p

wM1
q
p

= sup
γ>0

γ
1

p ‖χ{|f |p>γ}‖
1

p

M1
q
p

= sup
γ>0

γ
1

p ‖χ
{|f |>γ

1

p }
‖Mp

q
= ‖f‖wMp

q
,

as desired.

We also use the following fact about the unboundedness of the Hardy-
Littlewood maximal operator M on Morrey spaces of exponent 1. The oper-
ator M maps a locally integrable function f to Mf which is given by

Mf(x) := sup
r>0

1

|B(x, r)|

∫

B(x,r)

|f(y)| dy, x ∈ R
d.

Lemma 3.2. The Hardy-Littlewood maximal operator M is not bounded

on the Morrey space M1
q for 1 < q < ∞.

Remark 3.3. Lemma 3.2 is a consequence of a necessary condition of the
boundedness of M on generalized Orlicz-Morrey spaces given in [8, Corollary
5.3]. The Morrey space Mp

q in this paper is recognized as the Orlicz-Morrey

space L(Φ,φ) with Φ(t) = tp and φ(t) = t−
1

q . Based on [8, Corollary 5.3], the
maximal operator M is bounded on L(Φ,φ) if and only if Φ ∈ ∇2 (that is,
Φ(r) ≤ 1

2kΦ(kr) for some k ≥ 1). Clearly Φ(t) = t /∈ ∇2.

Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let 1 ≤ p ≤ q. If p = q, then f(x) := |x|−
d
q ∈

wMp
q \ Mp

q . So assume that p < q and write r = q
p
. In view of Lemma

3.1, it suffices for us to prove that M1
r ⊂ wM1

r properly. Suppose to the
contrary that M1

r = wM1
r. Since the Hardy-Littlewood maximal operator M

is bounded from M1
r to wM1

r, we obtain

‖Mg‖wM1
r
≤ C ‖g‖M1

r
,

for every g ∈ M1
r. Meanwhile, by the Closed Graph Theorem, there must

exist a constant C′ > 0 such that

‖Mg‖M1
r
≤ C′‖Mg‖wM1

r

for every g ∈ M1
r. Combining the two inequalities, we obtain

‖Mg‖M1
r
≤ C‖g‖M1

r

for every g ∈ M1
r. This tells us that M is bounded on M1

r, which contradicts
Lemma 3.2. Therefore, wM1

r \M
1
r 6= ∅, as desired.
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To conclude this section, we write a proposition which gives us a subset of
weak Morrey spaces with norm equivalence between the Morrey norm ‖ · ‖Mp

q

and the weak Morrey quasi-norm ‖ · ‖wMp
q
.

Proposition 3.4. Let 1 ≤ p < q < ∞. Suppose that f is a positive radial

decreasing function in wMp
q(R

d). Then f ∈ Mp
q(R

d) with

‖f‖wMp
q
≤ ‖f‖Mp

q
≤

(

qωd−1

d(q − p)|B(0, 1)|

)
1

p

‖f‖wMp
q
,

that is, ‖f‖wMp
q
∼ ‖f‖Mp

q
.

Proof. Recall that, since γχ{|f |>γ} ≤ |f | for every γ > 0, we have

‖f‖wMp
q
≤ ‖f‖Mp

q
. Next, let x ∈ Rd. Since {y ∈ B(0, |x|) : f(y) > f(x)} =

B(0, |x|), we have

f(x) =
f(x)|{y ∈ B(0, |x|) : f(y) > f(x)}|

1

p

|B(0, |x|)|
1

p

≤
|B(0, |x|)|

1

p
− 1

q ‖f‖wMp
q

|B(0, |x|)|
1

p

= |B(0, 1)|−
1

q ‖f‖wMp
q
|x|−

d
q .

By combining the last estimate and

‖|x|−
d
q ‖Mp

q
= |B(0, 1)|

1

q

(

qωd−1

d(q − p)|B(0, 1)|

)
1

p

,

where ωd−1 is the surface area of the unit sphere Sd−1, we get

‖f‖Mp
q
≤ (|B(0, 1)|−

1

q ‖|x|−
d
q ‖Mp

q
)‖f‖wM

p
q
=

(

qωd−1

d(q − p)|B(0, 1)|

)
1

p

‖f‖wM
p
q
.

Hence ‖f‖wMp
q
∼ ‖f‖Mp

q
.

4. The proof of Theorem 1.6

Proof of Theorem 1.6 (i). It follows from the inclusion Mp2

q2
⊆ Mp1

q1

that

‖χB(0,r)‖Mp1
q1

≤ C‖χB(0,r)‖Mp2
q2
,

for every r > 0. Therefore

r
d
q1

− d
q2 ≤ C

for every r > 0, which implies that q1 = q2. Now choose ǫ ∈
(

0,min{ dp1

q1
, dp2

q2
}
)

.

For j ∈ N, define hj(x) := χ{j≤|x|≤j+j−ǫ}(x), and for K ∈ N write
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f(x) := χ{0≤|x|<1}(x) +
∑K

j=1 hj(x). Then

‖f‖Mp1
q1

≥ |B(0,K +K−ǫ)|
1

q1
− 1

p1

(

∫

B(0,K+K−ǫ)

|f(x)|p1 dx

)
1

p1

≥ C(K +K−ǫ)
d
q1

− d
p1 (K +K−ǫ)

d
p1

− ǫ
p1 = C(K +K−ǫ)

d
q1

− ǫ
p1 .(4.1)

Meanwhile, for each L ∈ N, L ≤ K, we observe that

|B(0, L+ L−ǫ)|
1

q2
− 1

p2

(

∫

B(0,L+L−ǫ)

|f(x)|p2dx

)
1

p2

≤ C(L+ L−ǫ)
d
q2

− ǫ
p2 .

Hence,

(4.2) ‖f‖Mp2
q2

≤ C(K +K−ǫ)
d
q2

− ǫ
p2 .

By combining (4.1), (4.2), q1 = q2, and ‖f‖Mp1
q1

≤ C‖f‖Mp2
q2
, we get

(K +K−ǫ)
ǫ
p2

− ǫ
p1 ≤ C.

As this holds for every K ∈ N, we conclude that p1 ≤ p2.

Remark 4.1. Note that the difference between the proof of Theorem 1.6
(i) and [4, Remark 3.4] is that we do not assume p1 ≤ p2.

Proof of Theorem 1.6 (ii). By arguing as in the proof of Theorem 1.6
(i) and using the identities

‖χB(0,r)‖wM
p1
q1

= |B(0, r)|
1

q1

and
‖χB(0,r)‖wM

p2
q2

= |B(0, r)|
1

q2 ,

we have q1 = q2. Assume to the contrary that p1 > p2. Define f by (2.2). By
a similar argument as in the proof of Theorem 1.3 (ii)-(iii), we have f ∈ wMp2

q2

but f /∈ wMp1

q1
, which contradicts wMp2

q2
⊆ wMp1

q1
. Hence p1 ≤ p2.

Remark 4.2. Observe that unlike [4, Theorem 4.4 and Remark 4.5], the
condition p1 ≤ p2 is not assumed in Theorem 1.6 (ii).

Proof of Theorem 1.6 (iii). Since Mp2

q2
⊆ wMp2

q2
, we have Mp2

q2
⊆

Mp1

q1
. Therefore, by virtue of Theorem 1.6 (ii), we have q1 = q2 and p1 ≤ p2.

Now, assume to the contrary that p1 = p2. According to Theorem 1.4, there
exists f0 ∈ wMp2

q2
such that f0 /∈ Mp1

q1
. This contradicts wMp2

q2
⊆ Mp1

q1
. Thus

p1 < p2, as desired.
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[10] L. C. Piccinini, Proprietä di Inclusione e Interpolazione tra Spazi di Morrey e loro
Generalizzazioni, Tesi di perfezionamento, Scuola Normale Superior Pisa, 1969.

[11] L. C. Piccinini, Inclusioni tra spazi di Morrey, Boll. Un. Mat. Ital. (4) 2 (1969),
95–99.
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