
GLASNIK MATEMATIČKI
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Abstract. Exact operator spaces are known to be locally reflexive,
but the converse is not true. We introduce the notion of global exactness
and show that it is equivalent to reflexivity for injective operator spaces.

1. Introduction

Following a discovery of Archbold and Batty ([2]) on the lack of min-
continuity property for certain canonical binormal embeddings of the algebraic
tensor product of two non nuclear C∗-algebras (or their biduals) into the
bidual of their min-tensor product, Kirchberg ([15]) introduced the notion of
exactness for C∗-algebras and proved later in [17] that for this larger class
(compared to the class of nuclear C∗-algebras) some of these complications
are resolved. Similar min-continuity type conditions are also introduced by
Effros and Haagerup in [7] (and some of these notions are already known to
be equivalent).

The operator space version of exactness is introduced by Pisier in [19] and
studied by Effros, Ozawa and Ruan in [9]. The theory has played a signif-
icant role in recent developments in the theory of C∗-algebras and operator
spaces. For more details on the notion of exactness, we refer the reader to
Wassermann ([27]) (for C∗-algebras) and Effros and Ruan ([10]) and Pisier
([20]) (for operator spaces).

Kirchberg showed in [16] that a C∗-algebra B is exact if and only if B is
locally reflexive and B∗∗ is weakly exact. The notion of weak∗ exactness is
introduced by Dong and Ruan in [6] and it is shown that an operator space
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V is exact if and only if V is locally reflexive and V ∗∗ is weak∗ exact. Also
it is known that an operator space is nuclear if and only if it is exact (or
locally reflexive) and has the WEP (weak expectation property), see [9]. The
relation between reflexivity and local reflexivity of operator spaces with min-
continuity type properties (operator space analogs of those of Archbold and
Batty) are explored in [6] using the results of Effros, Junge and Ruan in [8].

It is known that local reflexivity is in general strictly weaker than ex-
actness both for C∗-algebras (examples provided by Kirchberg) and operator
spaces (the operator space (ℓ1(N),MAX) is an example). In this paper we
introduce the notion of global exactness and show that it is equivalent to
reflexivity for injective operator spaces.

Let H be a Hilbert space. A concrete operator space is a subspace V

of B(H). For an operator space V , the space Mn(V ) of n × n matrices
with entries in V inherits an operator norm as a subspace of B(Hn). Given
operator spaces V and W , the n-th amplification ϕn : Mn(V ) → Mn(W ) of
a linear map ϕ : V → W is ϕn(T ) = [ϕ(Ti,j)], for T = [Ti,j ] ∈ Mn(V ). The
completely bounded norm of ϕ is defined by

‖ ϕ ‖cb= sup{‖ ϕn ‖: n ∈ N}.

A linear map ϕ is called completely bounded (resp., a complete isometry) if
‖ ϕ ‖cb< ∞ (respectively, each ϕn is an isometry). For concrete operator
spaces V ⊆ B(H) and W ⊆ B(K), ϕ is called completely positive if each
ϕn is positive with respect to the positive cones of B(Hn) and B(Kn). The
operator spaces V and W are completely isometric (resp., completely isomor-
phic) if there is a surjective complete isometry ϕ : V → W (resp., a bijective
completely bounded map ϕ : V → W with completely bounded inverse). We
write V ∼= W when V and W are completely isometric.

An abstract operator space is a vector space V with norms on matrix
spaces Mn(V ) such that V is completely isometric to a concrete operator
space. We do not distinguish between concrete and abstract operator spaces.

An operator space V is injective if, given operator spaces W1 ⊆ W2, with
completely isometric inclusion, any completely bounded map ϕ1 : W1 → V

can be extended to a completely bounded map ϕ2 : W2 → V with ‖ϕ2‖cb =
‖ϕ1‖cb. By the celebrated Wittstock Theorem, B(H) is an injective operator
space, for any Hilbert space H ([28]). Hamana ([13,14]) and Ruan ([24]) inde-
pendently showed that for any operator space V ⊆ B(H) there is a minimal
injective operator subspace I(V ) of B(H) containing V, called the injective
envelope of V .

A C∗-extension of a unital operator space V is a pair (A, i) consisting of
a unital C∗-algebra A, and a unital complete isometry i : V → A, such that
i(V ) generates A as a C∗-algebra. Two C∗-extensions (A, i) and (B, j) are V -
equivalent if there exist a ∗-isomorphism π : B → A such that π ◦ j = i. The
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C∗-envelope of V is the unique extension (A, i) with the universal property
of the next theorem (for more detail see [3, Theorem 4.3.1]).

Theorem 1.1 (Arveson-Hamana). If V is a unital operator space, then
there exists a unique (up to V -equivalence) C∗-extension (A, i) of V with the
following universal property: Given any C∗-extension (B, j) of V, there exists
a unique surjective ∗-homomorphism π : A → B such that π ◦ i = j.

2. global exactness and reflexivity

Let E,F be operator spaces. Put

dcb(E,F ) = inf{‖ϕ‖cb, ‖ϕ
−1‖cb}

where the infimum runs over all complete isomorphisms ϕ : E → F . If
E,F are not completely isomorphic, set dcb(E,F ) = ∞. A finite dimensional
operator space W is λ-exact if for any ε > 0 there exist an integer n ∈ N and
a subspace S of Mn(C) such that dcb(W,S) < λ + ε. If dimW = n, then W

is n-exact ([10, section 14.2]). Put

dex(W ) = inf{λ : W is λ-exact}.

This could be regarded as the exactness approximation constant of W .
Clearly, dex(W ) ≤ dim W . To make this work for an arbitrary operator
space V , let

dex(V ) = sup{dex(W ) : W ⊆ V, W is finite dimensional}.

We say that V is λ-exact if dex(V ) ≤ λ, and that V is exact if it is 1-exact.
For more details, see [23, 10].

Definition 2.1. An operator space V is called globally exact if any finite
dimensional operator subspace W ⊆ V is completely isometric to a subspace
of Mn(C), for some positive integer n.

Clearly each globally exact operator space is exact, and each subspace of
a globally exact operator space is again globally exact. Also, a finite direct
sum

⊕n
i=1 Vi of operator spaces is globally exact if and only if each factor Vi

is globally exact.

Theorem 2.2. For an operator space V , the following are equivalent:
(i) V is globally exact;
(ii) For any finite dimensional operator subspace W ⊆ V , I(W ) is finite

dimensional.

Proof. Let V be globally exact and W ⊆ V be any finite dimensional
operator subspace. Then there is n ∈ N and a subspace S of Mn(C) such that
W ∼= S ⊆ Mn(C). Thus I(W ) ∼= I(S) ⊆ Mn(C) is finite dimensional.

Conversely, let (ii) holds and W be any finite dimensional operator sub-
space of V . By assumption, I(W ) is finite dimensional, and so is completely
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isometrically isomorphic to pAp⊥, for some finite dimensional C∗-algebra A

and a projection p ∈ A ([25]). As A ∼=
⊕m

i=1 Mni
(C), for some positive

integers m,ni, there are positive integers pi, qi such that

W ⊆ I(W ) ∼= pAp⊥ ∼=

m
⊕

i=1

Mpi,qi(C).

Thus there is an operator subspace S ⊆
⊕m

i=1 Mpi,qi(C) such that W ∼= S.
This means that V is globally exact.

Let V ⊆ B(H) be an operator space. The Paulsen operator system S(V )
is defined by

S(V ) =

[

CIH V

V ∗ CIH

]

=

{[

λ T

S∗ µ

]

: T, S ∈ V, λ, µ ∈ C

}

in M2(B(H)), where the entries λ and µ stand for λIH and µIH and S∗ is
the adjoint of S in B(H). Then S(V ) is an operator system in B(H2). Let
I(S(V )) be the injective envelope of S(V ) in B(H2) and let Φ : B(H2) →
I(S(V )) be a unital completely contractive onto projection. Hamana showed
that I(S(V )) has a 2× 2-matrix such that 1-2 corner is the injective envelope
I(V ) of V .

Lemma 2.3. Let V be an operator space. Then V is globally exact if and
only if S(V ) is globally exact.

Proof. (⇐) Let S(V ) be a globally exact operator space. As V is 1-2
corner subspace of S(V ), V is also globally exact.

(⇒) Let W be a finite dimensional subspace of S(V ). There is a finite
dimensional subspace W ′ ⊆ V such that W ⊆ S(W ′). As V is global exact,
by Theorem 2.2, I(W ′) is finite dimensional. By [25], I(W ′) is completely
isometric to

⊕n

i=1 B(Cpi ,Cqi), for some positive integer n. By [18, Theorem
2.2], I(S(W ′)) is finite dimensional and so is I(W ). That means that S(V ) is
a globally exact operator space.

Theorem 2.4. Let A be a unital C∗-algebra. Then A is globally exact if
and only if A is finite dimensional.

Proof. A finite dimensional C∗-algebra is completely isometric to a finite
direct sum

⊕n

i=1 Mmi
(C), which is globally exact.

Conversely, let A ⊆ B(H) be an infinite dimensional unital C∗-algebra.
Then a maximal abelian self-adjoint unital subalgebra C(Ω) of A is infinite
dimensional ([26, Exercise I.11.1]). By induction, there is an infinite sequence
{fn}

∞
n=1 ⊆ C(Ω), with disjoint supports, and points xn ∈ Ω such that 0 ≤

fn ≤ 1 and fn(xn) = 1. Let f =
∑∞

n=1
fn
n

and let V be the finite dimensional

subspace of C(Ω) generated by 1, f and f2. Consider the corresponding
completely contractive projection ϕ : B(H) → I(V ), which is also unital, and
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thus completely positive. Let C∗
e (V ) be the corresponding C∗-subalgebra of

I(V ) with the Choi-Effros product ([10, Theorem 6.1.3]). Then

ϕ(f∗f) = ϕ(f2) = f2 = f∗f = ϕ(f)∗ϕ(f),

and by [10, Corollary 5.2.2], ϕ(T )ϕ(f) = ϕ(Tf), for any T ∈ B(H). In
particular,

f3 = f2f = ϕ(f2)ϕ(f) = ϕ(f2f) = f2 ◦ϕ f ∈ C∗

e (V ).

By induction, fn+m = fn ◦ϕ fm ∈ C∗
e (V ), for any n,m ∈ N, that is, the

product in C∗
e (V ) is the same as that of A. Thus C∗

e (V ) is the C∗-algebra
generated by V in A. On the other hand, if

∑m

k=1 αkf
k = 0, then

m
∑

k=1

αkf
k(xn) =

m
∑

k=1

αk(
fn

n
)k(xn) =

m
∑

k=1

αk

nk
= 0,

for each n, thus αk = 0, for each 1 ≤ k ≤ m, namely, {fk}∞k=1 is linearly
independent in C∗(V ). Thus C∗

e (V ) = C∗(V ) is not finite dimensional, and
so is I(V ), thus A is not globally exact by Theorem 2.2.

Theorem 2.5. For Hilbert spaces H and K, B(H,K) is globally exact if
and only if H or K is finite dimensional.

Proof. Let B(H,K) be globally exact. Without loss of generality, we
may assume that dim H ≤ dim K, which let us to embed B(H) completely
isometrically into B(H,K). Hence by Theorem 2.4, H is finite dimensional.
The converse follows from a result of H. Rosenthal [23, Proposition 2.11].

By [24, Theorem 14.4.1] and [12, Remark 5.3], C∗
r (Fn) is a untial infinite

dimensional exact C∗-algebra, for any n ∈ N, n ≥ 2 and for n = ∞. By
Theorem 1.6, C∗

r (Fn) is not globally exact. This provides an example of a
C∗-algebra which is uniformly exact in the sense of Rosenthal ([23]), but not
globally exact.

Next, let us give an example of a globally exact operator space V such
that I(V ) is not globally exact. Let H be an infinite dimensional separable
Hilbert space with orthonormal basis {en}

∞
n=1. Embed the column and row

Hilbert spaces Hc and Hr completely isometrically as the first column and
row operator subspaces of B(H) = M∞(C), for more detail see [10, Section
3.4]. Let V be the operator space spanned by Hc and Hr in B(H). Let W be
a finite dimensional operator subspace of V and p be the rank-1 projection
h 7→ 〈h, e1〉e1 in B(H). Put K1 = {h ∈ H : (h)c ∈ Wp} and K2 = {g ∈ H :
(g)r ∈ pW}. These are finite dimensional Hilbert spaces. Let K be the finite
dimensional Hilbert space spanned by K1 and K2 in H . We may regard W as
an operator subspace of B(K). Since B(K) is a finite dimensional injective
operator space, I(W ) ⊆ B(K) is finite dimensional. Thus V is globally exact.
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On the other hand, embed

E =

(

C C

C 0

)

to a top left corner subspace in V , completely isometrically. Then, I(E) =
M2(C), which is the top left corner of I(V ). By induction, compact operators
K(H) sits as a subspace in I(V ), thus I(V ) = B(H) ([4]), which is not globally
exact by Theorem 2.4.

Recall that an operator space V is reflexive if V ∗∗ ∼= V , and locally
reflexive if for any finite dimensional operator subspace E ⊆ V ∗∗, there is a
net ϕα : V ∗∗ → V of completely contractive maps, whose restrictions to V

are point-weak∗-convergent to the identity map on V ([10, 14.3]). It is known
that exactness implies local reflexivity ([10, Corollary 14.6.5]).

Theorem 2.6. Let V be an injective operator space. Then V is globally
exact if and only if it is reflexive.

Proof. Assume that V is reflexive. It is well known that ℓ∞ is not
reflexive hence, by [5, Corollary 4.3], it could not be embedded completely
isomorphically into V . By [1, Theorem 2.5], V is completely isometric to a fi-
nite direct sum

⊕n

i=1 B(Ki, Hi), such that eachHi or Ki is finite dimensional.
By Theorem 2.5, V is globally exact.

Conversely, assume that V is globally exact. By Theorem 2.4, ℓ∞ is not
globally exact and so can not be embedded completely isomorphically into
V . Again by [1, Theorem 2.5], V is completely isometric to a direct sum
⊕n

i=1 B(Ki, Hi) with each Hi or Ki is finite dimensional. Therefore,

V ∗∗ ∼= (

n
⊕

i=1

B(Ki, Hi))
∗∗ ∼=

n
⊕

i=1

B(Ki, Hi)
∗∗

=

n
⊕

i=1

K(Ki, Hi)
∗∗ ∼=

n
⊕

i=1

B(Ki, Hi) ∼= V.

Acknowledgements.

The authors would like to thank the antonymous referee for the comments
and corrections.

References

[1] M. Amini, A. R. Medghalchi and H. Nikpey, On tensor products of injective operator

spaces, Houston J. Math. 43 (2017), 1147–1163.
[2] R. Archbold and C. Batty, C∗-tensor norms and slice maps, J. London Math. Soc.

(2) 22 (1980), 127–138.



GLOBALLY EXACT OPERATOR SPACES 185

[3] D. Blecher and C. Le Merdy, Operator algebras and their modules–an operator space
approach, London Mathematical Society Monographs, New Series 30, Oxford Uni-
versity Press, Oxford, 2004.

[4] D. Blecher and V. I. Paulsen, Multipliers of operator spaces and the injective envelope,
Pacific J. Math. 200 (2001), 1–17.

[5] J. B. Conway, A course in functional analysis, Springer-Verlag, Berlin, 1990.
[6] Z. Dong and Z.-J. Ruan, Weak∗ exactness for dual operator spaces, J. Funct. Anal.

253 (2007), 373–397.
[7] E. G. Effros and U. Haagerup, Lifting problems and local reflexivity for C∗-algebras,

Duke Math. J. 52 (1985), 103–128.
[8] E. G. Effros, M. Junge and Z.-J. Ruan, Integral mappings and the principle of local

reflexivity for noncommutative L1-spaces, Ann. of Math. (2) 151 (2000), 59–92.
[9] E. G. Effros, N. Ozawa and Z.-J. Ruan, On injectivity and nuclearity for operator

spaces, Duke Math. J. 110 (2001), 489–521.
[10] E. Effros and Z.-J. Ruan, Operator spaces, Oxford University Press, New York, 2000.
[11] E. G. Effros and Z.-J. Ruan, On the abstract characterization of operator spaces,

Proc. Amer. Math. Soc. 119 (1993), 579–584.
[12] U. Haagerup, Quasi traces on exact C∗-algebra are traces, Math. Reports of the

Academy of Science of the Royal Society of Canada, arXiv:1403.7653.
[13] M. Hamana, Injective envelopes of operator systems, Publ. RIMS, Kyoto Univ. 15

(1979), 773–785.
[14] M. Hamana, Injective envelopes of dynamical systems, in: Operator algebras and

operator theory, Longman, Harlow, 1992, 69–77.
[15] E. Kirchberg, The Fubini theorem for exact C∗-algebras, J. Operator Theory 10

(1983), 3–8.
[16] E. Kirchberg, Exact C∗-algebras, tensor products, and the classification of purely

infinite algebras, in: Proceedings of the International Congress of Mathematicians,
vols. 1, 2, Zurich, 1994, Birkhäuser, Basel, 1995, 943–954.
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