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ABSTRACT. Let A be a Banach algebra. We introduce the notions of
approximate left ¢-biprojective and approximate left character biprojective
Banach algebras, where ¢ is a non-zero multiplicative linear functional on
A. We show that for a SIN group G, the Segal algebra S(G) is approx-
imate left ¢1-biprojective if and only if G is amenable, where ¢1 is the
augmentation character on S(G). Also we show that the measure algebra
M (Q) is approximate left character biprojective if and only if G is discrete
and amenable. For a Clifford semigroup S, we show that £1(S) is approx-
imate left character biprojective if and only if £!(S) is pseudo-amenable.
We study the hereditary property of these notions. Finally we give some
examples to show the differences of these notions and the classical ones.

1. INTRODUCTION

A Banach algebra A is called amenable if for every Banach A-bimodule
X, every continuous derivation D from A into X* is inner, that is, there exists
ro € X* such that
D(a)=a-zg—z9-a (acA).
An equivalent notion to amenability is the existence of a bounded net (mg,)
in A ®, A, where ®, denotes the projective tensor product, such that
a-Mo—mMg-a—0, ma(ma)a—a (a € A),

here m4 : A®, A — A is given by m4(a ® b) = ab for every a,b € A ([13]). In
the homological theory, two important notions, biflatness and biprojectivity
for Banach algebras, have a key role. In fact a Banach algebra A is called
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biflat (biprojective), if there exists a bounded A-bimodule morphism p: A —
(A®pA)*™* (p: A — A®, A) such that 7%* o p is the canonical embedding of A
into A** (p is a right inverse for 74 ), respectively. Note that a Banach algebra
A is amenable if and only if A is biflat and it has a bounded approximate
identity. It is well known that for a locally compact group G, L(G) is biflat
(biprojective) if and only if G is amenable (compact), respectively, see [10].

Let A be a Banach algebra. Throughout, the character space of A is
denoted by A(A), that is, all non-zero multiplicative linear functionals on A.
Recently a notion of amenability related to a character has been introduced
n [14]. Indeed a Banach algebra A is called left ¢-amenable, if there exists
a bounded net (ao) in A such that aae — ¢(a)aq — 0 and ¢(aq) — 1 for
all @ € A, where ¢ € A(A). For a locally compact group G, the Fourier
algebra A(G) is always left ¢g-amenable. Also the group algebra L(G) is left
¢-amenable if and only if G is amenable, for further information see [25] and
[2].

In [21] the authors introduced the character version of homological prop-
erties of Banach algebras like ¢-biflat and ¢-biprojective. A Banach algebra
A is called ¢-biflat (¢-biprojective) if there exists a bounded A-bimodule mor-
phism

prA—= (AR, A", (p:A— AR, A)

such that
pomyopla)=¢(a), (pomaopla)=d(a)) (ac A,

respectively, where ¢~>(F ) = F(¢) for all F € A**. For a locally compact group
G, they showed that the Segal algebra S(G) is ¢-biflat (¢-biprojective) if and
only if G is amenable (compact). Also A(G) is ¢-biprojective if and only if
G is discrete, see [17] and [21]. In [5] another definition of ¢-biflatness has
been given. A Banach algebra A with a character ¢ € A(A) has condition W
(according to our approach we say right ¢-biflat), if there exists a bounded
linear map p: A — (A ®, A)** that satisfies

(i) plab) = ¢(b)p(a) = p(a) - b,

(ii) pomy o pla) = o(a),
a,b € A. Also the characterization of the right ¢-biflatness for symmetric
Segal algebras has been given in [5]. The definition of the left ¢-biflatness is
similar.

Recently approximate versions of the amenability and the homological
properties of Banach algebras have been under more observations. In [26]
Zhang introduced the notion of approximate biprojective Banach algebras.
A Banach algebra A is approximate biprojective if there exists a net of A-
bimodule morphisms p, : A =+ A ®, A such that

Ta0pala) > a (a€A).
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The authors investigated approximate biprojectivity of some semigroup alge-
bras and some related Triangular Banach algebras, see [22] and [23]. Approx-
imate amenable Banach algebras have been introduced by Ghahramani and
Loy. Indeed a Banach algebra A is approximate amenable if for every Banach
A-bimodule X and every continuous derivation D : A — X*, there exists a
net (z4) in X* such that

D(a) =lima x4 — 2o -a (a€ A).

Other extended notions are pseudo-amenability and pseudo-contractibility. A
Banach algebra A is pseudo-amenable (pseudo-contractible) if there exists a
not necessarily bounded net (mg,) in A ®, A such that

a-me—meg-a—0, (a-mqg=mq-a), ma(me)a —a (a € A),

respectively, for more information the reader is referred to [9], [7] and [8]. The
character version of approximate notions of amenability have been introduced
and studied in [1]. A Banach algebra A is called approzimate left ¢-amenable
if there exists a (not necessarily bounded) net (a,) in A such that aa, —
¢(a)ag — 0 and ¢(ay) — 1 for all @ € A. Also A is approzimate character
amenable, if A is approximate left ¢-amenable for all ¢ € A(A) U {0}. Note
that L'(G)™" is character amenable if and only if G is discrete and amenable.
Also M(G) is character amenable if and only if G is discrete and amenable
(1))-

In this paper we give a new approximate homological notion with respect
to a character which is weaker than ¢-biflatness and also right ¢-biflatness.

DEFINITION 1.1. Let A be a Banach algebra and ¢ € A(A). A is called
approzimate left ¢-biprojective if there exists a met of bounded linear maps
from A into A®, A, say (pa)act, such that

(i) a- pa(b) - pa(ab) M> 0,

(i) pa(ba) — ¢(a)pa(b) L1 0,

(iii) ¢poma o pala) — ¢(a) — 0,
for every a,b € A. We say that A is approzimate left character biprojective if
A is approzimate left ¢-biprojective for all ¢ € A(A).

In this paper, first we show that the approximate left ¢-amenability is a
stronger notion than the approximate left ¢-biprojectivity. While we study
the hereditary properties of this notion, we show that for a SIN group G,
the Segal algebra S(G) is approximate left ¢;-biprojective if and only if G is
amenable, where ¢; is the augmentation character on S(G) and the measure
algebra M (G) is approximate left character biprojective if and only if G is dis-
crete and amenable. Finally we give some examples of Banach algebras among
Triangular Banach algebras which are never approximate left ¢-biprojective
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and some examples which reveal the differences of our new notion and the
classical ones.

2. APPROXIMATE LEFT ¢-BIPROJECTIVITY

In this section we study the general properties of approximate left ¢-
biprojective Banach algebras.

PROPOSITION 2.1. Let A be a Banach algebra and ¢ € A(A). Suppose
that A is approzimate left ¢-biprojective and A has an element ag such that
aay = aga for all a € A and ¢(ag) = 1. Then A is approxzimate left ¢-
amenable.

PROOF. Let (pq)acr be as in Definition 1.1. Let ag be an element in A
such that aay = apa and ¢(ap) = 1 for every a € A. Set ny = pa(ap). It is
clear that (ny) is a net in A ®, A such that

a-no = ¢(a)na = a- palao) — ¢(a)pa(ao)
= a- pa(ao) = palaao) + palaao) — pa(aoa)
+ palaoa) — ¢(a)palag) — 0
for every a € A. Also we have
poma(na) —1=¢omaopalag) — ¢(ag) — 0.

Define T: A®, A — A by T(a®b) = ¢(b)a for each a,b € A. It is clear that
T is a bounded linear map which satisfies

T(az)=al(z), T(x-a)=¢(a)T(x), ¢T =goma, (a€ A xec AR,A).
Set mq = T'(nq). One can show that

aT(ny) — ¢(a)T(ng) =T(a-ng, — ¢pla)ng) =0, (a € A)
and

d(me) = ¢ oT(ny) =poma(ng) — 1.
Thus A is approximate left ¢-amenable. O

PROPOSITION 2.2. Let A be a Banach algebra and ¢ € A(A). If A is
approzimate biprojective, then A is approximate left ¢-biprojective.

PROOF. Since A is approximate biprojective, there exists a net of A-
bimodule morphisms p, : A =+ A ®, A such that
Taopala) = a (a€A).

Pick agp € A such that ¢(ag) = 1. Let T : A®, A - A ®, A be defined by
T(a®b) = ¢(b)a ® ag for each a,b € A. Clearly T is a bounded linear map.
It is easy to see that

(2.1) z-Ta®b)=¢b)x-a®as=T(x-(a®Db)),
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(2.2) T(a®b)p(z) = p(br)a®@as=T((a®Db) - x)

(2.3) pomaoT(a®b) = ¢(d(a)agh) = ¢(ab) = pomala®b),

for each a,b,x € A. We claim that (T o p, ), satisfies the conditions of Defi-
nition 1.1. To see this, using (2.1) we have

0T 0 pa() = T(a- pa(b)) = T(palad)),
also by (2.2) we have
T(pa(ba)) = ¢(a)T(pa(b)) = T(pa(ba)) = T(pa(d) - a)
= T(pa(ba)) = T(pa(ba)) =0,
and also (2.3) implies that

pomaoT(pa(a)) = ¢omal(pala)) = a,
for each a,b € A. Thus A is approximate left ¢-biprojective. O

Let A and B be Banach algebras and let X be a Banach A, B-module,
that is, X is a Banach space, a left A-module and a right B-module with the
compatible module action that satisfies (a-xz)-b=a-(x-b) and ||ja-x - b|| <
lal/||z|||b]| for every a € A,z € X,b € B. With the usual matrix operation

and
a T A X
[ ( 0 b ) | = llall + llzll +llol, T = ( 0 B )

becomes a Banach algebra which is called Triangular Banach algebra. Take

¢ € A(B). We define a character ¢4 € A(T) via 1y < 8 CZ > = ¢(b) for

every a € A, b € B and ¢ € X. In the following example we present a
non-approximate left ¢-biprojective Banach algebra.

ExaMpPLE 2.3. Consider the triangular Banach algebra T = ( % g ) .
a b

Define ¢ € A(T) by ¢((

not approximate left ¢-biprojective. To see this we go toward a contradiction
and assume that T is approximate left ¢-biprojective. Since T is unital, by

Proposition 2.1 T is approximate left ¢-amenable. Set I = < 8 g ) It is

easy to see that ¢|; # 0 and I is approximate left ¢-amenable. Thus there
exists a net (i, ) in I such that

fiq — G(i)ia — 0, B(ia) =1, (i€l

) = c for all a,b,c € C. We claim that T is
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Hence there exist nets (aq) and (by) in C such that i, = ( 8 ZO‘ ) . So for
«

. 0 a .
eachz(o b)ln[,wehave

0 a 0 aq 0 aq
<0 b)(o ba>b<0 ba>ﬁo’

which implies that ab, — ba, — 0, for each a,b € C. Since b, — 1, taking
a =1 and b = 0, gives a contradiction.

We remind that by [1, Proposition 2.7], A is approximate left ¢-amenable
if and only if there exists a net (mq) in (A®,A)** such that a-mq —¢(a)mae —
0 and ¢ o (mq) — 1 for all a € A.

For each ¢ € A(A) there exists a unique _extension é to A** which is
defined by ¢(F) = F(¢). It is easy to see that ¢ € A(A**).

PROPOSITION 2.4. Let A be a Banach algebra and ¢ € A(A). If A is
approzimate left ¢-amenable, then A is approzimate left ¢-biprojective.

PROOF. Let A be approximate left ¢-amenable. Then there exists a net
Mg in (A ®, A)** such that a - my — ¢(a)me — 0 and ¢ o 7**(m,) = 1, for
each a € A, see [1, Proposition 2.7]. Take e¢ > 0 and arbitrary finite subsets
FCAand A C (A®, A)*. Then we have
la-ma — (a)mall <€, [domi(ma) =1 <e (a€F)
It is well-known that for each a, there exists a net (n§)s in A ®, A such that

w™ . . .
nGg — Mq. Since m%* is a w*-continuous map, we have

ma(ng) = 75 (n3) 25 7 (ma)-
Thus we have

|a - n3(f) —ama(f)]

<% 1B@n3() - d@ma(f)l < 5
and
[ oma(ng) —dom™(ma)| <e
for each a € F and f € A, where Ko = sup{|/f|| : f € A}. Since a-mq —
d(a)ymq — 0 and ¢ o 7*(m,,) = 1, we can find § = B(F, A, €) such that

la-n3(f) = dlamg ()] < e

X |poma(ng) — 1] <e, (a€F, feEAN)

for some ¢ € RT. Using Mazur’s lemma, we have a net (n(FAe) in A®, A
such that

lla-npae — d@)nEaoll =0, |[pomalnpae)—1—0, (aelF).
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Define p(pa,e) : A — A®p A by pipa,e(a) =a-npa, for each a € A. It is
clear that p(p A e)(ab) = a- p(pa,e (D) for each a,b € A. So we have
(2.4) ||P(F,A,e)(ab) - ¢(b)P(F,A,e) (a)|l = |lab- N(F,Ae) — p(b)a - n(F,A,e)H
< lalllb-n(rma,ep — ¢0)n(r a0l — 0,
for each a,b € A. Also
|pomaoprae(a)—da)] =[pomala-npa,e) — ¢(a)l

= |p(a)llg o ma(n(ra,e) — 1 =0,
for each a € A — ker¢. It is easy to see that ¢ o w4 0 p(pa,e(a) = ¢(a) for
each a € ker ¢. O

REMARK 2.5. Let A be a Banach algebra and ¢ € A(A). Using the
arguments of the previous proposition one can see that if A is either pseudo-
amenable or approximate amenable, then A is approximate left ¢-biprojective.

THEOREM 2.6. Let A be a Banach algebra and ¢ € A(A). If A is ¢-biflat,
then A is approzimate left ¢-biprojective.

(2.5)

PROOF. Since A is ¢-biflat, there exists a bounded A-bimodule morphism
p:A— (A®, A)** such that ¢ o 7%* o p(a) = ¢(a) for each a € A. There
exists a net (po) in B(A, A ®, A), the set of all bounded linear maps from A
into A ®, A, such that p, converges to p in the weak-star operator topology.
Since 77%" is a w*-continuous map, for each a € A we have

740 pala) = 75 © pala) > 75 0 pl(a),
SO
Boma0pala) = For o pla).
Let € > 0 and take arbitrary finite subsets F' = {a1,a2,...,a,} and G =
{x1,22,...,2,} of A. Set

M ={(a1 - T(z1) — T(a1x1), a2 - T(x2) — T(azx2),...,ar - T(x,) — T(arx,),
pompgoT(x1) — d(x1),poma o T(x2) — d(x2),. ..,
pomaoT(x,) — P(x,))|T € B(A,A®, A),a; € Fx; € G}
as a subset of [[[_, (4 ®, A) @1 [[;_, C. It is clear that M is a convex set
and (0,0, ...,0) belongs to M" and by Mazur’s Lemma (0,0,...,0) € MY =
il Then we can find an element 6 p g, in B(A, A ®, A) such that
@i - O(r,c.e)(bi) = Opc.eaibi)ll <€, [|0(rc.elaibi) —O0ra.elai) bil <e
and

|pomaobiraela) —dlai)| <e,
for each i € {1,2,...,r}. Hence the net (0(p,q,e))(F,c,c) satisfies

a - G(F,G,e)(b) — 9(F,G,e) (ab) — 0, G(F,G,e)(ab) — 9(F,G,e) (a) -b—0
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and goma 00 (p . (a) —d(a) — 0 for each a,b € A. Consider the map 7" as in
the proof of Proposition 2.2. It is easy to see that (T 0 0(p g.e))(r G, satisfies
the conditions of Definition 1.1. So A is approximate left ¢-biprojective. O

We have to remind that every biflat Banach algebra A with ¢ € A(A) is
¢-biflat. Then using the previous theorem, we have the following corollary.

COROLLARY 2.7. Suppose that A is a biflat Banach algebra and ¢ € A(A).
Then A is approzimate left ¢—biprojective.

PROPOSITION 2.8. Let A be a Banach algebra and ¢ € A(A). Suppose
that I is a closed ideal of A such that ¢|; # 0. If A is approzimate left ¢-
biprojective, then I is approximate left ¢-biprojective.

PROOF. Let (pa)q be a net of maps which satisfies Definition 1.1. Take
1o in I such that ¢(ig) = 1. Define T': A®p, A — I®,1 by T(a®b) = aiy@igb
for every a,b € A. It is easy to see that T is a bounded linear map. Set
No =T 0 polr : I — I ®, I. Then we have

27705(.7) _na(ij) = T(’Lpa(j) _pa(i.j)) —0

and
Na(if) — ¢(J)na (i) = T(pa(ij) — ¢(j)pali)) = 0,
also
pomrona(i) —¢(i) = ¢omroT opali) — ¢(i) = pomaopali) — (i) = 0
for each 4,5 € I. O

Let A and B be Banach algebras, ¢ € A(A) and v € A(B). We denote by
¢ ® 1 a map defined by ¢ @9 (a ®@b) = ¢(a)(b) foralla € Aand b € B. It is
easy to see that ¢ ® ¢ € A(A®, B). Also note that A®, B with the following
actions becomes a Banach A-bimodule:

ay - (a2 ®b) =a1a2 @b, (a2 ®b)- a1 =asa1 @b, (ar,a2 € A;b € B).

THEOREM 2.9. Let A and B be Banach algebras, ¢ € A(A) and ¢ €
A(B). Suppose that A is unital and B has an idempotent xo with xo & ker 1.
If A®, B is approzimate left ¢ ® -biprojective, then A is approzimate left
¢-biprojective.

PROOF. Let (po) : A®p B — (A®p B)®, (A®p, B) be a net of continuous
linear maps such that

(2.6) T pa(y) = palzy) =0, palyz) — ¢(x)paly) — 0

and

(2.7) PR oTmag,B O palr) — ¢ @P(x) =0
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for each x,y € A®,, B. Since z is an idempotent, for each a; and as in A we
have

(2.8) aras ® g = (a1 @ zp)(az ® xo).
Using also the unit element e of A, we have
palaraz @ xo)—ai - palaz ® o)
= pa((a1 ® zo)(az ® z9)) — a1 + palaz ® o)
= pa((a1 @ 0)(az ® x9)) — (a1 @ x0) - pa(az @ o)
+ (a1 ® 20) - palaz @ xg) — a1 - palaz @ xo)
= pa((a1 ® o) (az ® x9)) — (a1 ® xo) * pa(az ® zo)
+ (a1 - (e ® x0)) - palaz ® xo) — a1 - paaz ® zo)
= pa((a1 @ x9)(az ® x9)) — (a1 @ x0) - pa(az ® o)
+ (a1 - (e® x0)) - palaz ® xo) — a1 - paleas @ Toxo)
+ a1 - paleas @ xoxo) — ay - palag ® xg) — 0.

Also using (2.7) and (2.6) we have

palaraz ® zo)—d(az)palar @ zo)
= pa((a1 ® zo)(az2 ® z0)) — ¢(az)palar @ zo)
= pa((a1 ® z0)(az @ 0)) — ¢ @ (a2 ® x9)pa (a1 ® o)
+ ¢ @ P(az ® x0)pa(a1 ® zo) — dlaz)palar ® zo) — 0,

for each ay,as € A. Define
T:(A®,B)®, (A®,B) > A®, A
by
T(a®b)® (c®d)) =9(bd)a®c,

foreach a,c € A,b,d € B. One can see that T is a bounded linear operator and
maoT = (id® ) o Tag,B, Where id ® ¢¥(a ® b) = ¢(b)a for all a € A,b € B.
Set o (a) = T o pa(a ® xp). It is easy to see that for each «, the map
No : A = A ®, A is linear, continuous and satisfies

a- na(b) - %(ab) — 0, na(ba) - ¢(a)77a (b) — 0, (aa be A)-
Also we have
pomaona(a) = pomaoTops(a®xy) = ¢po(id@Y)omag, BOpa(a®r) — d(a),

for each a € A. Hence A is approximate left ¢-biprojective. O
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3. APPLICATION TO BANACH ALGEBRAS RELATED TO A LOCALLY
COMPACT GROUP

Let G be a locally compact group. A linear subspace S(G) of L1(G) is
said to be a Segal algebra, if it satisfies the following conditions:

(i) S(G) is dense in LY(G);

(ii) S(G) with a norm || - ||s is a Banach space and || f||1 < || f]||s for every
[ € 5(G);
(ili) For f € S(G) and y € G, we have L, f € S(G) the map y +— Ly(f)
from G into S(G) is continuous, where Ly(f)(x) = fly '),
(iv) || Ly(F)lls = || flls for every f € S(G) and y € G.
For more information see [18].

Let G be a locally compact group and let G be its dual group, which
consists of all non-zero continuous homomorphism ¢ from G into the circle
group T It is well-known that A(LY(G)) = {¢¢ : ¢ € G}, where oc(f) =
fG x)dx and dz is a left Haar measure on G, for more details, see
[11, Theorem 23.7].

The map ¢; : L'(G) — C which is specified by

1) = /G f(@)da

is called augmentation character. It is well known that the augmentation
character induces a character on S(G) is still denoted by ¢1, see [2].

A locally compact group G is called SIN group if it contains a funda-
mental family of compact invariant neighborhoods of the identity, see [4, p.
86).

THEOREM 3.1. Let G be a locally compact SIN-group. Then S(G) is
approzimate ¢1-biprojective if and only if G is amenable.

PROOF. Since G is a SIN group, S(G) has a central approximate identity
[15]. We have an element f € S(G) such that gf = fg and ¢1(f) = 1 for
each g € S(G). Applying Proposition 2.1, approximate left ¢;-biprojectivity
of S(G) implies that S(G) is approximate left ¢1-amenable. So there exists a
net (mg) in S(G) such that

gma — ¢1(g)malls = 0, ¢1(ma) =1 (g € S(G)).
Since || - |1 < || - |ls, we have
lgma — ¢1(g)malli =0, ¢1(ma) =1 (g € S(G)).
Define f, = fmq, where ¢1(f) = 1. For each y € G and g € S(G), we have

(dyg):/Géyg(w)dw:/Gg(y‘lx)dx:/Gg(w)dw:wg),
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where ¢, denotes the point mass at {y}. By the condition (iii) in the definition
of S(@G), we have

[0y fo = falli = 16y f)ma — fmallx
< Gy f)ma — mally + [[ma — frallx
< 16y f)ma = G106y f)malls + |91y f)ma —mall
+ [Ima = 1 (f)mally + [[91(f)ma = fmal — 0.

(3.1)

On the other hand
¢1(fa) = 1(fma) = ¢1(f)d1(ma) — 1.

Since ¢y is a bounded linear functional, that is, |fo| < ||fall1, fa stays away
from 0. Without loss of generality we may assume that | fal[1 > 3. Define

o = Hljilal\ll . It is clear that (g4) is a bounded net in L'(G). Consider

H(Syga _galll < 2||5y|fa| - |fa|||1 < 2H5yfa - falll — 0.

Now by [20, Exercise 1.1.6], G is amenable.

Conversely, suppose that G is an amenable group. Since G is a SIN
group, by [24, Corollary 3.2] amenability of G implies that S(G) is pseudo-
amenable. Now using Remark (2.5) S(G) is approximate ¢;-biprojective.

O

We give a non-approximate left ¢-biprojective Banach algebra defined on
locally compact groups.

AG)  A(G)

0 AG)

gebra with respect to a locally compact group G. Suppose that ¢ € A(A(G)).
a b

Define w¢(< 0 ¢ ))

1y € A(T). Note that A(G) is a commutative Banach algebra, hence there

exists ag € A(G) such that aag = aga for every a € A(G) and ¢(ag) = 1. Set

EXAMPLE 3.2. Let T' = ( ), where A(G) is the Fourier al-

= ¢(c) for every a,b,c € A(G). It is easy to see that

0
Suppose conversely that 1" is ¥g-approximate left biprojective. By Proposi-
tion 2.1, T is approximate left 1 ¢-amenable. Using a similar argument as in
the Example 2.3, we have a net (aq) in A(G) such that a — ba, — 0 for every
a,b € A(G). By taking a € A(G) such that ¢(a) = 1 and b € ker ¢, we have
d(a) = ¢(a) — d(b)p(an) = ¢(a — bay) — 0 which is a contradiction. Then T
is not 1 4-approximate left biprojective.

to = < o0 ;)O , clearly for every t € T we have tty = tot and 4(to) = 1.

LEMMA 3.3. Let G be a locally compact group. Then A(G) is approzimate
left ¢-biprojective.
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PROOF. By [14, Example 2.6] A(G) is left ¢-amenable for each ¢ €
A(A(G)). So it is approximate left ¢-amenable. Proposition 2.4 implies that
A(G) is approximate left ¢-biprojective, for each ¢ € A(A(G)). O

Let G be a locally compact group and let M (G) be the measure algebra with
respect to G. It is well-known that L!(G) is a closed ideal of M(G). So every
character of L!(G) has an extension to M (G), particularly the augmentation
character ¢;. We again denote this extension by ¢;.

THEOREM 3.4. Let G be a locally compact group. Then M(G) is approz-
imate left ¢1-biprojective if and only if G is amenable.

PROOF. Suppose that M(G) is approximate left ¢;-biprojective. Since
M (G) is unital, by Proposition 2.1 M(G) is approximate left ¢;-amenable.
Since L'(G) is a closed ideal of M(G) and ¢1|11(g) # 0, by [14, Lemma 3.1]
L'(G) is approximate left ¢1-amenable. Using similar method as in the proof
of Theorem 3.1, one can show that G is amenable.

Conversely, let G be an amenable group. Then L' (G) is amenable. Hence
L'(G) is left ¢-amenable. So there exists a bounded net (a,) in L'(G) such
that

aaq — P1(a)ae — 0, ¢1(aq) =1 (a € L*(Q)).
Pick ip € L'(G) such that ¢ (ig) = 1. Set m, = igas. Thus
ame, — d1(a)me = aigaq — ¢1(a)ioaq
= aigaa — ¢1(aio)aa + ¢1(aio)aa — ¢1(a)ioan — 0

and ¢1(mq) = ¢1(ipas) = 1, for each a € M(G). Tt follows that M(G)
is left ¢1-amenable and by [1, p. 1332] we have M(G) is approximate left
¢1-amenable. Proposition 2.4 implies that M(G) is approximate left ¢;-
biprojective. O

COROLLARY 3.5. Let G be a locally compact group. Then M(G) is ap-
prozimate left character biprojective if and only if G is discrete and amenable.

PROOF. Suppose that M(G) is approximate left character biprojective.
Since M (G) is unital, by Proposition 2.1 approximate character biprojectivity
implies that M (G) is approximate character amenable. Applying [1, Theorem
7.2] G is discrete and amenable.

Conversely, let G be amenable and discrete. Then by [9, Proposition
4.2] M(G) is pseudo-amenable. Hence by Remark 2.5, M (G) is approximate
character left biprojective. O

Now we give a Banach algebra which is not pseudo-amenable but it is approx-
imate left ¢-biprojective.

EXAMPLE 3.6. Let G be an infinite compact group. Since G is compact
G C L>=(G) C LY(G). 1t is easy to see that for every p € G we have
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muw=/ﬂwMy%mw=mw/}@m@*my

=p(x) [ fWpy)dy = ¢,(fp(z) (xe€q)

and
ou(p) = [ plip@ide = [ 1o =1, (1€ L'(@),

where we considered the normalized left Haar measure on G. Since p € LY(G),
the map f — fp is w*-continuous on L'(G)**. Hence for ¢, € A(L'(G)**)
we have
fp= d)p(f)/)a ¢p(p) = ¢p(p) =1, (f € LI(G) )

It means that L'(G)** is left ¢,-amenable, so L'(G)** is approximate left
$p-amenable. Therefore, by Proposition 2.4, L'(G)** is approximate left ¢,-
biprojective. But if L'(G)™" is pseudo-amenable, then by [9, Proposition 4.2]
G is discrete and amenable. Since G is compact, then G must be finite which
is a contradiction.

THEOREM 3.7. Let G be a locally compact SIN group. Then L'(G)** is
approzimate left character biprojective if and only if G is amenable.

PROOF. Suppose that L!(G)** is approximate left character biprojective.
Since G is a SIN group, L'(G) has a central approximate identity. Then for
every ¢ € A(LY(Q)) there exists an element ag € L*(G) such that aag = apa
and ¢(ag) = 1 every a € L'(G). Since the maps b — ab and b — ba are
w*-continuous on L(G)**, we have

aay = apa, Plag) = dplag) =1 (a € L'(G)™).

Proposition 2.4, implies that L'(G)** is approximate left ¢-amenable for
all $ € A(LY(G)™). By [1, Proposition 3.9] L'(G) is approximate left ¢-
amenable. Hence [1, Theorem 7.1] implies that G is amenable.

Conversely, suppose that G is amenable. Then L!(G) is amenable, hence
L' (G) is left p—amenable. By [14, Proposition 3.4] we have L!(G)** is
left ¢p—amenable for all ¢ € A(L'(G)). Hence L'(G)** is approximate left
$—amenable for all ¢ € A(LY(G)). Now by Theorem 2.4 L'(G)** is approxi-
mate left character biprojective, see also Definition 1.1. O

The semigroup S is called inverse semigroup, if for each s € S there exists
s* € S such that ss*s = s* and s*ss* = s. An inverse semigroup S is called
Clifford semigroup if for each s € S there exists s* € S such that ss* = s*s.
There exists a partial order on each inverse semigroup S, that is,

s<tes=sst (s,tebl).
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Let (5, <) be an inverse semigroup. For each s € S, set (2] = {y € S|y < z}.
S is called uniformly locally finite if sup{|(z]| : * € S} < co. Suppose that S
is an inverse semigroup and e € E(S), where E(S) is the set of all idempotents
of S. Then G, = {s € S|ss* = s*s = e} is a maximal subgroup of S with
respect to e. See [12] as a main reference of semigroup theory.

THEOREM 3.8. Let § = Uccp(s)Ge be a Clifford semigroup such that
E(S) is uniformly locally finite. Then €*(S) is approximate left character
biprojective if and only if £(S) pseudo-amenable.

PROOF. Suppose that ¢1(S) is approximate left character biprojective.
By [19, Theorem 2.16], ¢*(S) = ' — Gecp(s)0*(Ge). Since £'(G.) has a
character ¢ (at least augmentation character), then this character extends to
¢1(S) which still is denoted by ¢1. So £1(S) is approximate left ¢;-biprojective.
Since ¢1]e(q,) # 0 and £1(G.) is a closed ideal of £!(S), by Proposition 2.8,
1(G,) is approximate left ¢;-biprojective. On the other hand, since ¢!(G.)
is unital, by Proposition 2.1, ¢}(G.) is approximate left ¢;-amenable. So by
[1, Theorem 7.1], G, is amenable for all e € E(S). Thus by [6, Corollary 3.9]
¢1(S) is pseudo-amenable.

The converse is true by Remark 2.5. o

4. EXAMPLES

EXAMPLE 4.1. We give a Banach algebra which is approximate left ¢-
biprojective but it is not ¢-biprojective. Also this Banach algebra is character
left biprojective but it is not character biprojective. Consider the semigroup
Ny, with semigroup operation m V n = max{m,n}, where m and n are in
N. The character space A(¢1(N,)) precisely consists of all functions ¢, :
(*(Ny) — C defined by ¢, (35, @id;) = >, a; for every n € NU {oc}, for
more information see [3]. In [21], authors showed that ¢! (Ny) is ¢,-biflat for
each n € NU{oo}. Since this algebra is commutative, by [21, Proposition 3.3]
(1(Ny) is left ¢,-amenable. Thus ¢*(Ny) is approximate left ¢,-amenable.
By Proposition 2.4, 1(Ny/) is approximate character left biprojective. Hence
?1(Ny) is approximate left ¢, —biprojective. Moreover we showed that ¢!(Ny)
is ¢y,-biprojective for each n € N. But if ¢1(Ny) is ¢oo-biprojective, then
¢1(Ny) is character biprojective. So by [17, Remark 3.6] and [17, Lemma 3.7],
the maximal ideal space of ¢1(Ny/) is finite which is impossible, because the
maximal ideal space of £}(Ny) is NU {oo}.

EXAMPLE 4.2. We give a Banach algebra which is neither left ¢-amenable
nor ¢-biflat but it is approximate left ¢-biprojective. Hence the converse of
Theorem 2.6 does not always hold. We denote by ¢! the set of all sequences a =
((an)) of complex numbers with [ja|| = >"77, |an| < co. With the following
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product:

_ [ a(W)p(1), ifn=1
(axb)(n) = { a(Db(n) + b(L)a(n) + a(n)b(n), ifn>1 "

A = ({4 - |) becomes a Banach algebra. It is easy to see that A(¢}) =
{p1, b1 + ¢}, where ¢,,(a) = a(n) for each a € ¢*. By [16, Example 2.9] ¢!
is not left ¢;-amenable. Suppose that £ is ¢-biflat. Since #! is commutative,
by [21, Proposition 3.3] ¢-biflatness follows that ¢! is left ¢;-amenable, which
is a contradiction. Moreover by [5, Corollary 2.6], £! is not right ¢;-biflat (it
does not have condition W).

Using [16, Example 2.9], ¢! is approximate left ¢;-amenable. Then Propo-
sition 2.4 implies that ¢! is approximate left ¢;-biprojective. Moreover [16,
Example 2.9] showed that ¢! is left ¢; + ¢,-amenable so ¢! is approximate
left ¢1 + ¢,-biprojective. Hence ¢! is approximate left character biprojective.

ExXaMPLE 4.3. We give a Banach algebra which is approximate left ¢-
biprojective but it is not approximate left ¢-amenable. Then the converse
of Proposition 2.4 does not always hold. Let S be a left zero semigroup
with |S| > 2, that is, a semigroup with product st = s for all s,t € S.
For the semigroup algebra ¢1(S), we have fg = ¢s(g)f, where ¢g is the
augmentation character on ¢1(.9). We claim that £*(S) is approximate left ¢s-
biprojective. To see this, let fo € 1(S) be an element such that ¢g(fo) = 1.
Define p : £1(S) = £1(S) ®, *(S) by p(f) = [ @ fo for all f € £1(S). It is
easy to see that

f-p(g) =p(fg), p(fg)=ds(g)p(f)
and

psomacp(f)=¢s(fof) = o(f)

for each f,g € ¢1(S). We show that ¢1(S) is not approximate left ¢-amenable,
provided that |S| > 2. We go toward a contradiction and suppose that £*(S)
is approximate left ¢-amenable. Then there exists a net (f,) in ¢1(S) such
that ¢s(fa) =1 and

¢S(fa)f_¢5(f)fa:ffa_¢8(f)fa =0 (feﬂl(S))

It follows that f — ¢s(f)fa — 0 for each f € £1(S). Since S has at least two
elements s; and s2, consider d5, and &5, and replace them in f—@g(f)fo — 0.
It follows that 5, = ds,, s0 s1 = s2 which is impossible.
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