
820 Technical Gazette 25, 3(2018), 820-830

ISSN 1330-3651(Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20180203105331
Original scientific paper

A Web Cache Replacement Strategy for Safety-Critical Systems

Jianhai DU, Shiwei GAO, Jianghua LV, Qianqian LI, Shilong MA

Abstract: A Safety-Critical System (SCS), such as a spacecraft, is usually a complex system. It produces a large amount of test data during a comprehensive testing
process. The large amount of data is often managed by a comprehensive test data query system. The primary factor affecting the management experience of a
comprehensive test data query system is the performance of querying the test data. It is a big challenge to manage and maintain the huge and complex testing data.To
address this challenge, a web cache replacement algorithm which can effectively improve the query performance and reduce the network latency is needed. However, a
general-purpose web cache replacement algorithm usually cannot be directly applied to this type of system due to the low hit rate and low byte hit rate. In order to improve
the hit rate and byte hit rate, a data stream mining technology is introduced, and a new web cache algorithm GDSF-DST (Greedy Dual-Size Frequency with Data Stream
Technology) for the Safety-Critical System (SCS) is proposed based on the original GDSF algorithm. The experimental results show that compared with state of the art
traditional algorithms, GDSF-DST achieves competitive performance and improves the hit rate and byte hit rate by about 20%.

Keywords: data mining; data query; Safety-Critical System; spacecraft; Web Cache Replacement Strategy

1 INTRODUCTION

Information technology significantly improves the

efficiency of automated testing of the equipment, which
leads to an explosive growth of the test data [1, 2]. In
particular, more complex and extensive test data are
generated in the comprehensive testing of the complex
SCS (safety-critical systems), such as the spacecraft [3].
For each model of SCS, the total amount of
comprehensive test data per year can reach the T order of
magnitude, and the test data are various and
multidimensional. These data need to be stored in
multiple data tables. In each data sheet of a table there are
tens of millions of data items [4]. Thus, managing and
maintaining the huge and complex test data poses
challenges. The primary factor that affects the system
performance and the management experience is
efficiently querying test data, which is one of the most
frequent applications.

In a traditional B/S(Brower/Serve) data querying
system, data is retrieved from the database server for
every query. Meanwhile, each query has to retrieve data
from the entire database; therefore, a large number of
queries from the large database may cause a significant
time delay. This approach frequently transmits a large
number of the same data between the database server and
the application server, resulting in unnecessary network
burden. In addition, for the equipment being tested, the
database server needs to dynamically load a large amount
of test data. The database server is accessed frequently,
and thus the performance of the whole system is seriously
affected. To ensure the stability of the server and the
integrity of the data entry, data query should consume as
few resources of the server as possible.

Web caching presents an effective way to solve the
aforementioned problems. It plays an important role in
improving Web performance by placing probably re-
accessible objects closer to users, which can thus reduce
the response time, the consumption of network
bandwidth, and the workload of the original server [3].
An efficient web cache replacement algorithm for a
particular application environment can also significantly
affect the system performance and the user experience.

The main criterion for the cache replacement algorithm is
to minimize the metrics of average delay, error rate, and
byte error rate. In a cache replacement algorithm, the
main factors that need to be considered in the value
function design include Recency, Frequency, Cost, Size,
Expiration Time and Modification Time [6, 7].
Particularly, Recency refers to the last time when the
object is referred. Frequency is the total number of times
of object reference. Cost refers to the resources’ cost of
acquiring the object from the original server. Size refers
to the size of the object. Expiration Time refers to the
expiration time of the object, and Modification Time
refers to the time when the object is recently modified.

Considering the above factors, the cache replacement
algorithm can be divided into the following five
categories [6]. The first type is based on LRU (Least
Recently Used), including LRU, LRU-Threshold (Least
Recently Used-Threshold), Pitkow/Recker strategy, EXP1
(Exponential 1), Value-Aging, HLRU (History LRU),
PSS (Pyramidal Selection Schema) [7], and Partitioned
LRU. These algorithms are relatively easy to implement
with low time complexity. However, the LRU variants are
simple, and unable to effectively consider the effect of the
object size or the access frequency. The second type of
algorithms is based on LFU (Least Frequently Used)
algorithms, including DSLFU (Delay sensitive LFU),
LFU-Aging (Least Frequently Used-Aging), LFU-
DA(LFU with Dynamic Aging), σ-Aging, swLFU
(Server-Weighted LFU), DSLV (Dynamic Semantic LFU
Policy with Victim tracer) [8], and ALFUR (Average
Least Frequency Used Removal). These algorithms
require complex cache management, and can cause cache
pollution. There may exist multiple objects with the same
frequency count at the same time, in which case
additional factors are required to determine which object
to remove. The third type of algorithms takes both
recency and frequency into account. Some algorithms add
other factors as well. These algorithms include LRFU
(Least Recently/Frequently Used), SLRU (Segmented
LRU), SF-LRU (Second ChanceFrequency-Least
Recently Used), Generational Replacement, LRU* (Least
Recently Used*), LRU-Hot (Least Recently Used-Hot),
LRU-SP (LRU-size-adjusted and popularity-aware), and

Jianhai DU et al.: A Web Cache Replacement Strategy for Safety-Critical Systems

Tehnički vjesnik 25, 3(2018), 820-830 821

CSS (Cubic Selection Scheme). If designed properly, they
can avoid the aforementioned shortcomings of the first
two types of algorithms based on recency and frequency
respectively. However, because of the special process,
most of these algorithms can introduce additional
complexity. Only the LRU* algorithms and Generational
Replacement algorithms attempt to combine LRU with
frequency. Nevertheless, they do not take into account the
effect of the object size. The fourth type of cache
replacement algorithms is function-based. These
algorithms can optimize the performance by selecting
appropriate weighting parameters, including GDS
(Greedy-Dual-Sizel), GDSF (Greedy-Dual-Size-
Frequency), Server-assisted cache replacement, TSP
(Taylor Series Prediction), Bolot/Hoschka's strategy, M-
Metric, Hybrid, LRV (Lowest Relative Value), LUV
(Least-Unified Value), and LR (Logistic Regression)-
Model. They consider multiple factors to deal with
different workloads. However, the limitation of these
algorithms is that it is difficult for them to choose an
appropriate weighting parameter. New problems may
arise in the computation of the function values. The fifth
type of algorithms uses a random decision to find the
object to be replaced [6], including RAND (random),
Harmonic, LRU-C (LRU-Cost), LRU-S (LRU-Size), and
Randomized replacement with general value functions.
These algorithms are easy to implement and do not
require any special data structures when inserting objects
or deleting objects. However, it is difficult for these
algorithms to evaluate them. For example, there may exist
slight differences in the results of different simulation
instances running on the same Web request trace.

Apart from the traditional cache replacement
algorithms summarized above, several more intelligent
and adaptive cache replacement algorithms have been
proposed in recent years. The basic principles of these
intelligent algorithms are as follows. A machine learning
model (mostly classifier, such as a SVM (Support Vector
Machine) [9, 10], a NB (Naive Bayes classifier), or a C4.5
(decision tree) and so on) is first trained through the
contents of the Web log for classifying the incoming web
objects. Then based on these classified results, traditional
web caching replacement algorithms deal with new web
objects and decide which object will be replaced when the
cache is not enough. Therefore, the performance of the
traditional web caching alternative algorithms is still very
important. In particular, a SmartCache is designed for a
router-based system [11], which is composed of the
cache, the SVM trainer and classifier, and the browser
extension. The browser interacts with users to collect their
experience satisfaction and prepare training dataset for the
SVM trainer. With the desired features extracted from
training dataset, the trained SVM classifier is used to
predict classes of the Web objects. Then, in conjunction
with the LFU, the cache makes a cache replacement based
on the SVM-LFU policy. In recent studies [12, 13], Ali
Waleed, et al., proposed a series of intelligent caching
replacement approaches known as SVM-LRU, SVM-
GDSF, NB-LRU, NB-GDS, NB-DA, C4.5-GDS and
C4.5-LRU by integrating machine learning models, such
as a SVM, a NB, or a C4.5, with conventional Web proxy
caching techniques, such as LRU, GDS and GDSF. A
learning based replacement algorithm (LBR) is proposed

to build an efficient replacement model for web caching
by incorporating a machine learning technique (naive
Bayes) into the LRU replacement method to improve the
prediction of possibility [14]. Fuzzy Similarity is
integrated with traditional caching algorithms for caching
replacement strategies [15]. A semi-intelligent approach
is developed for web cache replacement using a
multinomial web object classifier [16]. A Neural Network
Proxy Cache Replacement (NNPCR) method is proposed
to use neural networks to decide which objects are worth
caching or being replaced by other objects [17]. Three
replacement policies are introduced by following different
strategies, including a dynamic programming approach, a
branch and bound approach, and a heuristic approach, to
find the best objects to be kept and the worst objects to be
replaced, as well as to efficiently select objects to be
evicted, respectively [18]. Specific cache replacement
strategies have been improved and designed for specific
fields in recent studies. Particularly, an enhanced method
is proposed to actively cache the data for data-intensive
computations in distributed GIS by considering both data
relationships and their timeliness [19]. A novel cache
scheme, named Optimized Cache Replacement, is
proposed for Information Centric Networks (OCRICN)
[20]. For Network-Coding-Assisted Data Broadcast, a
decoding-oriented cache management scheme, named
decoding-oriented least recently used (DLRU), is
proposed to incorporate decoding information in making
cache replacement decisions [21].

However, these existing intelligent algorithms above
have some common shortcomings. For instance, to
achieve desirable performance for the intelligent
algorithms, they usually need more system resources, a
large number of data for training in advance and higher
computational complexity. Thus, the systems based on
these algorithms have low cost performance and mainly
aim at ordinary users access web pages, multimedia, etc.
in the World Wide Web. In addition, each type of
algorithms has its own advantages and disadvantages.
Even if some are the ones so-called "good enough"
through which better results can be obtained on the basic
performance indicators [6, 22], none can perform well in
any application environment. The network environment is
dynamic and uncertain. For instance, workload varies
with different applications; a variety of Web access
features exist and design goals for different cache systems
and the design factors to be considered are not the same.
No replacement strategies can well adapt to any network
situation. Therefore, it has become a hot spot in the field
of cache replacement which algorithm is the most
appropriate replacement strategy according to varied
network conditions and access characteristics [22].

Spacecraft integration test data are time-related, time-
intensive, of large volume and complex structures. The
users' query behaviors on the data are of strong temporal
locality, strong spatial locality, high frequency (a small
part of objects are accessed many more times than the
others) and multiple visits (in order to ensure the
completeness and the accuracy of the test, each data is
accessed multiple times) [23]. Nevertheless, the existing
web cache replacement algorithms are not suitable for
integrated test data query systems for safety critical
systems like Spacecraft. For this kind of system, a new

Jianhai DU et al.: A Web Cache Replacement Strategy for Safety-Critical Systems

822 Technical Gazette 25, 3(2018), 820-830

web cache replacement algorithm needs to be designed to
improve the cache hit rate of the algorithm, and
consequently realize the higher utilization rate of the
resources on the database server, less network load, a
better overall performance of the system, better user
experience and the higher work efficiency of users.

This study proposes a Web cache replacement
algorithm based on GDSF algorithm, GDSF-DST
(Greedy Dual-Size Frequency with Data Stream
technology). The algorithm is proposed by analyzing the
characteristics of test data of the safety-critical system and
users’ query behaviors. Considering the characteristics of
practical application requirements and the current
classical Web cache replacement algorithms, this
algorithm also introduces technology related to data
stream mining and adopts the idea of sliding time
window. With comprehensive experiments and analysis,
the results show that the algorithm presents better
performance, with less consumption of system resources,
higher efficiency, stability and certain universality.

2 BACKGROUND
2.1 The characteristics of Spacecraft Integrated Test Data

and the Query Behaviours of Users

In the spacecraft integrated test database system, a

variety of test data are stored in various types of database
tables. The typical spacecraft integrated test data table
structure includes the following characteristics. Taking
time as the primary key, the comprehensive test data store
the value [24] of each parameter at this time point.
Specifically, the integrated test data of spacecraft have the
following four characteristics.

(1) Large volume of data: About 20 G of data are
produced per hour, and the amount of data produced per
day can be up to 480 G. For a single spacecraft model, the
total amount of its data can reach T orders of magnitude.

(2) Complicated data structures: The data types of
spacecraft integrated test data are numerous. The
subsystems each spacecraft model belongs to are various,
and each subsystem has different parameters. So the data
structures are very complicated. These complex data are
stored in multiple database tables.

(3) The data are associated with time: In the database,
the business data take time as the key. Logically, the data
are time-correlated, that is, the time information is used as
the retrieve condition when data are queried and analyzed.
It emphasizes on the situation of the data at each time
point in a certain period and the changing trend of the
data throughout the whole time period.

(4) Time intensive: One piece of datum or more are
produced per second. Even if the data within a relatively
short period of time are queried, there is still a large
number of query results. For example, query data within
an hour are at least 3600 pieces.

From a macro point of view, users have some
behavioral characteristics in querying the data of
spacecraft integrated test system, which mainly include
the following four aspects.

(1) The data queried by users are of strong temporal
locality: For the case of the data query with a device
being tested, the data queried in a particular day are
usually limited to the data generated on that day, and thus

the queried data extent evolves as the day goes by. For the
case of the summary query, the data queried daily are
generally limited to a period of time (1 week to 10 days)
in the previous test phase, and the data are usually
summarized and analyzed according to a certain time
period.

(2) Users repeatedly visit the data: In order to ensure
the integrity and the accuracy of the test, each datum will
be queried many times.

(3) The data queried by users are of spatial locality:
All the integrated test data of the current models are
stored in the database server. However, the data queried
by users are limited to a short test time. Therefore, being a
small part of the data in the database, the accessed data
are of spatial locality.

(4) Some objects are accessed frequently: the
frequency of some objects accessed over a certain period
of time is significantly larger than that of the others. For
example, the part with a fault will be repeatedly checked
by some staff.

2.2. Problem analysis

A query system is a Web application of B/S

architecture in which data access is incentive; that is, each
front-end operation will have a corresponding response.
Due to the confidentiality of the spacecraft system, data
backups are forbidden on an ordinary PC. And the large
result set makes it unfeasible to cache the results on the
browsers. Therefore, for each query operation, the results
must be returned from the background. Based on the
previous analysis of the spacecraft integration test data
and the query characteristics of users, with the method of
the Web server caching data, this algorithm successfully
solves the problem that the same data have to be
repeatedly transmitted between the browsers and the
database, reducing the access load of the database server
and the network traffic user query response time. Those
methods referred to above are not perfectly suitable for
spacecraft integrated test data query in a real-time
environment. The method proposed in this paper is that all
the data accessed by users within a business day are
considered as an accessing scale unit. The time interval
for accessing data within a business day is represented as
timeInterval = [begin, end]. In order to ensure the
continuity of the data in the cache, the data in the
timeInterval in each original database table are logically
divided into different small data tables by the hour. Then
data can be obtained from the database server on a small
data table scale. And each small data table is viewed as an
object to be cached on the Web application server.
Consequently, the core problem is that excellent cache
replacement algorithms need to be designed to improve
the performance of the system.

Depending on different locations in the Web, the
Web cache can be categorized as a browser cache, a Web
proxy cache, and an original server cache. The browser
cache is on the client side, the original server cache is the
cache of the server itself, and the Web proxy cache is on
the Web proxy server. The Web proxy server lies between
the user receiver and the original server, receiving
requests from hundreds of users and replying the results
to users. The Web proxy cache is widely used in Web

Jianhai DU et al.: A Web Cache Replacement Strategy for Safety-Critical Systems

Tehnički vjesnik 25, 3(2018), 820-830 823

proxy servers, the performance of which has a direct
influence on that of Web access. It is exactly the focus in
this paper. Spacecraft system is a typical safety critical
complex system. The common methods given in previous
literature are not completely applicable to the spacecraft
integrated test data query in a real-time environment.
Therefore, it is of great significance to design an excellent
cache replacement algorithm to improve the performance
of the system.

3 GDSF ALGORITHM

GreedyDual algorithm was first proposed in the paper

[25], and then based on GreedyDual algorithm, Pei Cao
and Sandy Irani proposed GreedyDual-Size (GDS)
algorithm [26]. The literature [27] proposed GDSF
algorithm on the basis of GDS algorithm, which
introduced the influence of the times of object visit on the
performance of cache replacement algorithms. At present,
GDSF algorithm, one of the most widely used cache
replacement algorithms, is universally recognized as a
"good enough" cache replacement algorithm with a better
cache hit rate. It takes into account the access frequency
of Web objects, the cost of acquiring objects and the
influence of object sizes. By setting up the aging factor,
the influence of the Web access temporal locality on
cache replacement is perfectly fused into the algorithm.
Whereas unable to adapt to the rapid changes of data
stream, GDSF algorithm fails to get enough good cache
hit rate. Web application is a typical data stream
application [28], and Spacecraft integrated test data query
system is a type of Web application. On the basis of
GDSF algorithm, GDSF-DST algorithm, GDSF with Data
Stream Mining, is put forward, with some methods used
to mine frequent patterns on time sliding window in data
stream mining. Improving the frequency counting method
of GDSF and bringing in the concept of expired
transaction, the algorithm is of better adaptability, cache
hit ratio and performance of cache system.

The cache replacement algorithm GDSF uses the
following function to calculate the eigenvalue of each
Web object:

freq
()() ()
()

CostV L f
Size

= + ∗
II I
I

 (1)

where:
- I is a Web object.
- V(I) is the eigenvalue of the Web object I.
- L is an aging factor whose initial value is 0. When

cache replacement occurs, the value of L equals the
eigenvalue of the latest replaced object.

- ffreq(I) represents the frequency count of the object I,
that is, the times the object has been requested before.

- When object I is hit by cache, its corresponding value
is incremented by 1, otherwise ffreq(I) is equal to 1.

- Size(I) refers to the size of the object I.
- Cost(I) stands for the cost of retrieving the object I.

The pseudocode of the algorithm GDSF is shown in

Tab. 1. When a cache replacement is needed, GDSF
replaces the object with the smallest eigenvalue. It is
obvious in Eq. (1) that the GDSF algorithm takes into

consideration the influence of the object access frequency
(ffreq(I)), the cost of retrieving the object (Cost(I)) and the
object size (Size(I)). In addition, GDSF also takes into
account the temporal locality of object access. So each
time the object in the cache is hit, the eigenvalue V of the
object will be updated. And when the cache replacement
occurs, the value of the aging factor L is updated to the
maximum V value in the eigenvalues of those evicted
objects. Consequently, the value of the aging factor L is
increasing gradually. By this way, the aging factor part in
the eigenvalue function of the recently hit object is larger
than that in the eigenvalue function of the object not
having been accessed for a long time. And the influence
of the temporal locality feature of the object access is
integrated into the algorithm accordingly. Yet, it is beyond
GDSF that users are more concerned about recent
transactions and those older transactions have little effect
on the transactions currently queried. However, it is rather
costly to deal with those older ones. So the transaction
data in a certain period of time may be of more
significance. The application of sliding window model
can just cope with the problem of data expiration. Hence,
the algorithm GDSF-DST will be presented in the next
section.

Table 1 GDSF algorithm
cache replacement algorithm GDSF: GDSF(I1, I2,…, Iz)
Input: The sequence of objects requested: I1, I2,…, Iz
Output: The processing of each object by the cache
replacement algorithm, and then return the requested object
sequence.
1. Initialize L← 0 ;
2. For each In in I1, I2,…, Iz
3. If In is already in cache then

4．V(In) ← freq
()

()
()

n
n

n

Cost I
L f I

Size I
+ ∗ ;

5. End If;
6. If In is not in memory then
7. While there is not enough room in cache for In ;
8. Evict Ie

j; //Ie
j is the minimum V value of all the object in

cache
9. End while;
10. L ← V(Ie

k); //Ie
k is the maximum V value of all the object

evicted recently
11. End If;
12. bring In into cache ;

13.V(In) ← freq
()

()
()

n
n

n

Cost I
L f I

Size I
+ ∗ ;

14. End For;
15. return the requested object sequence;

4 GDSF-DST
4.1 Related definitions

Before the explanation of the algorithm, the concepts

to be used in it are introduced firstly.
Let I = {I1, I2,…, In,…, Im} be a set of data items.
Definition 1: transaction Tj = {Ix, Iy,…, Iz} is a subset

of I, namely, Tj ⊆ I. And each transaction has its own
identifier called TID. The data items in the transaction are
out of order and can be arranged in any order.

Definition 2: data stream DS = {T1, T2,…, Ij,…, Tm}
consists of transactions sequentially arranged in time
order. The number of transactions may be infinite. The

Jianhai DU et al.: A Web Cache Replacement Strategy for Safety-Critical Systems

824 Technical Gazette 25, 3(2018), 820-830

TID of each transaction is assigned in terms of the arrival
time and it is unique.

Definition 3: The sliding window SW [29] is the
sequence of the most recent N (N ≥ 0) transactions in the
data stream DS. The order of the transactions in the
sliding window is consistent with that in the data stream
DS. Depending on whether N is fixed or variable, the
sliding window can be classified into fixed-sized sliding
window and variable-sized sliding window. The
commonly used variable-sized sliding window is mainly
based on the time sliding window, which means that
transactions for the most recent time period (e.g. 1 hour)
are saved in the window. The operation in sliding
windows involves deleting the oldest transactions from a
sliding window and adding new ones to it. When the
number of transactions in the window reaches N, removal
and insertion in a fixed-sized sliding window must be
simultaneous, while it is unrestrained in a variable-size
one [30].

In this paper, a transaction represents a set of the
objects requested by a user with a Web click. Each data
item table in the set denotes a Web object. The data
stream composed of all the transactions in order of arrival
is the Web click stream which will be analyzed in the
following section.

4.2 GDSF-DST Algorithm Description

The eigenvalue function of the algorithm GDSF-DST
can be expressed as:

d oldest last

oldest last

()
(,) (,) , ()

()
(,) 0, (,)

n
n j n j j

n

n j j j

Cost I
V I T L f I T T T T

Size I
V I T T T T T

 = + ∗ ≥ ≤

 = < ≤

 (2)

Where:

d
d 1

if 1
(,)

(,) if 2

 if 1

0 if

n j
n j

n j

n j

r j
f I T

f I T f r j

I T
r

I T

−

==
∗ + ≥

∈=
∉

 (3)

In Eq. (2), the meanings of L, Cost(In) and Size(In) are

the same as those in formula (1). V(In, Tj) represents the
eigenvalue of object In when transaction Tj arrives. fd(In, Tj)
denotes the decay support amount of object In when
transaction Tj arrives. Toldest ≥ Tj ≤ Tlast and Toldest < Tj or
Tj ≤ Tlast represent the sliding time window, which
introduces the impact of expired transactions on the
algorithm.

Web object access is of temporal locality, namely, the
closer from now the object is accessed, the more likely it
is to be accessed in the future. In other words, the Web
click stream is bound to change over time, and commonly
the information contained in recently generated
transactions is more valuable than it in historical
transactions [31]. Therefore, the time decay model
support amount algorithm [32, 33] is proposed to
gradually lower the impact of historical transactions. The
decay ratio of data items in unit time is decay factor f(0 <

f ≤ 1). When transaction Tj arrives, the decay support
amount of data item In is fd(In, Tj). Finally, the decay
support amount of data item nI can be calculated by Eq.
(3).

4.3 Algorithm Flow of GDSF-DST

Before introducing the algorithm flow, the data
structure to be used in the algorithm is given first:

A sliding time window is a time-based one able to
store the ordered transactions arriving in the most recent
variable period (time). The members of the sliding time
window are represented by a data structure called SwItem.
Fields include a submission time subTime and a
transaction TID. When a new transaction Tj arrives, the
sliding time window requires updating. Encapsulate its
fields into SwItem, insert the SwItem into the back of the
queue, check from the beginning of the queue and then
delete all the expired transactions. oldestTid and
newestTid respectively represent the transaction TID in
the head of the sliding time window queue and the one in
the end of the queue (newestTid minus oldestTid equals
the length of the sliding window (time)).

fdHash refers to object information Hash table, which
is used to store the decay support amount of Web objects
and other related information and expressed in the form of
key value pairs. Given the Web object name is the
primary key, the value is a data structure called
Item_Node, <Item_Name, Item_Node>. Item_Node
contains five data fields: tid (the TID of the latest
transaction consisting of object Item_Name), count (the
decay support amount), size (the object size), value (the
object eigenvalue) and cost (the cost of gaining the object
from the original server). Recording tid is to judge
whether a transaction is an outdated one, and to calculate
the decay support amount of the object as well.

When a new transaction Tj arrives, the GDFS-DSM
algorithm flow for each object In in the transaction is
depicted as follows:

If object In exists in the cache and is hit, the decay
support amount of the object In is updated:

1j tidcount count f −= ∗ + (4)

(The decay support amount count has the same

meaning as fd(In, Tj) in Eq. (2). f is the decay factor, which
equates with that in Eq. (3). The range of f is (0,1]. When
the value of f is 1, no decay happens.)

Update the TID recently contained by the object In:
tid=j；update the eigenvalue V(In, Tj) of the object In by
Eq. (2); and the value of Used remains unchanged. Then
the processing of the object ends in the algorithm.

If the object In does not exist in the cache, the decay
support amount of the object In equals 1: count=1；The
TID of the transaction recently containing the object In is j:
tid=j.

 Compute the eigenvalue V(In, Tj) of the object In by
Eq. (2) and save the relevant information of the object In
to the object information hash table fdHash:

()nUsed Used Size I= + (5)

Jianhai DU et al.: A Web Cache Replacement Strategy for Safety-Critical Systems

Tehnički vjesnik 25, 3(2018), 820-830 825

If Used ≤ TotalSize, there is adequate space in the
cache to save the object In. In this case, store the object In
into the cache directly. The process of the object is over.

If Used > TotalSize, the cache space is inadequate. In
this case, a cache replacement is required. So expired
objects need picking out one by one in fdHash. (As to an
Item_Node in fdHash, if Item_Node.tid < oldestTid, then
the object corresponding to that node is an expired object).
Once an expired object Ie is found, perform as the
following steps:

Eliminate the object Ie from the cache and its relevant
information from fdHash.

()eUsed Used Size I= − (6)

Continue to search for the next expired object; and

repeat the above steps until Used ≤ TotalSize or no
expired objects exist in fdHash.

If Used ≤ TotalSize, it means that there is enough
cache space to store the object In after removing the
expired object Ie. Store the object In in the cache. The
processing of the object ends in the algorithm.

If Used > TotalSize, it means there is still not enough
cache space to store the object In after removing all
expired objects. In this case, traverse fdHash, select the
least k (k ≥ 1) eigenvalues (when the eigenvalues are the
same, select the objects containing the least tid
preferentially) and find their corresponding objects I1,
I2,…, Ik which meet the following three conditions:

1 2(,) (,) (,)j j k jV I T V I T V I T≤ ≤ ≤ (7)

1
()

k

x
x

Used Size I TotalSize
=

− ≤∑ (8)

1

1
()

k

x
x

Used Size I TotalSize
−

=
− >∑ (9)

The aging factor L is assigned to the maximum value

V(Ik, Tj), that is,

1 (,) (,)x k x j k jL max V I T V I T≤ ≤= = (10)

Remove objects I1, I2,…, Ik from the cache. And
update the value of Used:

1
()

k

x
x

Used Used Size I
=

= −∑ (11)

Clear away the relevant information of the objects I1,

I2,…, Ik from fdHash. Add the object In to the cache. The
process of the object is over. The above steps are looped
until all objects in transaction Tj are processed. Return to
the set of objects for the transaction request, and the
processing ends. The pseudocode of the algorithm GDSF-
DST is shown in Tab. 2.

In the algorithm GDSF-DST, the concept of sliding
window model in data stream mining is employed. The
idea of the sliding window model is originated from that it
is impractical to store all the transactions in the data
stream with limited memory size. Besides, the large time

overhead for processing all historical transactions is
unacceptable. Most importantly, users are more concerned
about the most recent transactions. And the application of
the sliding window model can exactly address the
problem of data expiration.

Table 2 GDSF-DST algorithm

cache replacement algorithm GDSF-DST: GDSF-DST(Tj)
Input: Transaction Tj
Output: Perform a cache replacement algorithm on each Web
object in the transaction, and return the requested object set
for the transaction
1. Initialize parameters ;
2. For each In in Tj
3. If In is already in cache then
4. count(In) ← count(In)∗f j-tid(In)+1;
5. tid (In) ← j ;
6. V(In ,Tj) ← L + count(In)∗Cost(In)/Size(In);
7. Add the object In to result list;
8. continue;
9. Else//Create information of the object In
10. count(In) ← 1;
11. tid(In) ← j;
12. V(In ,T) ← L + count(In)∗Cost(In)/Size(In) ;
13. End If;
14. Used ← Used + Size(In);
15. If Used ≤ TotalSize then
16. Save the object In to the cache;
17. Add the object In to result list;
18. continue;
19. Else
20. While there is expired object Ie in the cache?
21. Evict Ie

j; //Ie
j is the expired object in cache;

22. End while;
23. End If;
24. If Used ≤ TotalSize then
25. Save the object In to the cache;
26. Add the object In to result list;
27. continue;
28. Else
29. While Used > TotalSize
30. Evict Imin; //Imin is the minimum V value
31. Used ← Used – Size(Imin);
32. End while;
33. L ← V(Ik) //Ik is with the maximum V value of all the

object evicted recently
34. Save the object In to the cache;
35. Add the object In to result list;
36. End If;
37. End For;
38. return the result list;

5 EXPERIMENTS
5.1 Experimental Design
5.1.1 Experimental Environment

In this experiment, the algorithm is implemented in

Java language on the DELL PC with Microsoft Windows
7(CPU model is Intel i5-7500; the CPU frequency 3.4
GHz; the capacity of the physical memory 4 GB; the hard
drive Seagate 500G SATA3 and the hard drive speed
7200 rpm).

5.1.2 Experimental Data

In this paper, the Trace Driven Simulation [5, 34] is
adopted to simulate the algorithm. The experimental data

Jianhai DU et al.: A Web Cache Replacement Strategy for Safety-Critical Systems

826 Technical Gazette 25, 3(2018), 820-830

are derived from the query log information recorded by
the server of the spacecraft integrated test data query
system. Not all the original query log information can be
published, some of which is indeed unnecessary. As a
result, several processed Web query log files are
employed in this paper. The file naming specification is
WebLog_+ log number, twenty-one query records are
stored in each log file. Spacecraft integrated test data are
made up of quite a few data streams, data types with huge
volume of data. For ease of operation in this experiment,
four representative data streams are selected. In the above
log files, each record represents a query and is treated as a
transaction. And a transaction usually accesses multiple
Web objects. To facilitate operation in the cache
replacement algorithm, each of the mentioned log files is
parsed into a transaction file respectively. The transaction
file naming format is TransactionFlow + the number of
the corresponding log file. Each log is parsed into a
transaction record. In the experiment, log data during 15
days, from September 1th, 2017 to September 15th, 2017
are employed. Since the log data statistics tables will
occupy too much space, they are omitted here.

5.1.3 Performance Indicators

The commonly used indicators to measure the

performance of the cache replacement algorithm [22]
mainly include Hit Ratio (HR), Byte Hit Ratio (BHR) and
Delay Saving Radio (DSR). In this paper, Hit Radio (HR)
and Byte Hit Ratio (BHR), the most commonly used ones,
are adopted.Hit rate is an indication of user perceived lag,
while byte hit rate is an indication of the amount of
network traffic [35]. The total number of the requested
Web objects is represented by N. Si represents the size
(the number of bytes) of the ith requested Web object. σi
indicates whether the ith object is hit in the cache. If it is
hit, σi = 1; otherwise σi = 0. Li represents the download
time required to obtain the object i from the original
server. Definitions are as follows:

Hit Ratio (HR): The percentage for the number of the
objects hit in the cache and the total number of the objects
requested.

The calculation formula is: 1

N

i
iHR

N

σ
==
∑

Byte Hit Ratio (BHR): The percentage for the number
of bytes of the objects hit in the cache and the total
number of bytes of the objects requested.

The calculation formula is: 1

1

N

i i
i

N

i
i

S
BHR

S

σ
=

=

=
∑

∑

5.2 Experimental Analysis

From the previous algorithm description, it can be

seen that the parameters used in both GDSF and GDSF-
DST -- the aging factor L, the frequency count ffreq(In) of
the object, the decay support amount fd(In, Tj) of the object
and the size Size(In) of the object -- are defined clearly.
However, measuring the cost Cost(In) of retrieving the

object is complicated. The cost refers to anything required
to obtain the object from the original server, such as the
time delay, the expenditure (paid objects or paid periodic
lines), the number of hops, etc., or a combination of
multiple ones. In practice, the value of the Cost(I) is often
defined according to the target of the caching system.
According to the reference [26], to maximize HR, let
Cost(I) = 1. And to maximize BHR, let Cost(I) = 2 +
Size(I)/536. In the spacecraft integrated test data query
system, the original data are stored on the same server,
and the data server and the Web server are in the intranet
environment. Therefore, the time cost of retrieving
different objects from the original server is not very
different, and there is no need to consider the economic
cost. In this case, the value of Cost(I) is defined as 1 so as
to achieve a better hit ratio.

5.2.1 The Influence of Decay Factor f on Hit Ratio and Byte

Hit Ratio

Before considering the influence of decay factor f on
the performance of the algorithm, the influence of the
sliding time window size STW_SIZE should be shielded
first. The actual query feature of Spacecraft integrated test
data query system is that users usually query data between
8 am and 8:30 pm. When STW_SIZE is set to 13 hours,
there are no expired transactions within a day, that is, the
sliding time window does not work. Therefore, in the
experiment in this section, STW_SIZE is set to 13 hours.
The literature [22] demonstrates that a better hit ratio can
be achieved in the cache replacement algorithm with the
relative capacity of the cache reaching 20%.Therefore, in
this section, the relative size of the cache capacity
TotalSize is set to 20% of the total amount of access. The
algorithm GDSF-DST is experimented with daily log data
from September 1th, 2017 to September 10th, 2017.When
the decay factor f is respectively set to 0.94, 0.95, 0.96,
0.97, 0.98, 0.99, 0.991, 0.992, 0.993, 0.994, 0.995, 0.996,
0.997, 0.998, 0.999 and 1, the values of HR and BHR are
shown in Fig. 1 and Fig. 2 respectively. In Fig. 1 and Fig.
2, the abscissa represents the values of the decay factor f
while the ordinate represents the values of the hit ratio
and those of the byte hit ratio respectively. Obviously, in
Fig. 1, the best hit ratio can be obtained with values of the
decay factor f in the range [0.996, 0.997]. When the
values of f are in the range [0.94, 0.996], the hit ratio
increases with the increase of the values of f. When the
values of f are in the range [0.997, 1], the hit ratio
decreases with the increase of the values of f. The
relationship between the average hit ratio and the values
of f also presents the same rule. In Fig. 2, when f = 0.996
or f = 0.997, the byte hit ratio is the maximum. When the
values of f are in the range [0.94, 0.996], the byte hit ratio
increases with the increase of the values of f. When the
values of f are in the range [0.997, 1], the byte hit ratio
decreases with the increase of the values of f. The
relationship between the average byte hit ratio and the
values of f also presents the same rule. When the value of
f changes, hit ratio and byte hit ratio have the same trend.
The main reason why the decay factor f has a significant
impact on both the hit ratio and the byte hit ratio of the
algorithm is that the data queried by the users of the
spacecraft integrated test query system are of strong

Jianhai DU et al.: A Web Cache Replacement Strategy for Safety-Critical Systems

Tehnički vjesnik 25, 3(2018), 820-830 827

temporal locality. And the decay factor f can speed up the
reduction of the eigenvalues of long-history data, so it can
adapt to the user query behavior characteristics of the
spacecraft integrated test query system better.

Figure 1 The relationship between HR and f

Figure 2 The relationship between BHR and f

5.2.2 The Influence of the Sliding Window Size STW_SIZE

on Hit Ratio and Byte Hit Ratio

Through the previous experimental analysis, it can be

seen that the best hit ratio can be achieved in GDSF-DST
when the values of f are in the range [0.996, 0.997]. In
this section, let f = 0.996. And the relative size of the
cache capacity TotalSize is still set to 20% of the total
amount of access. The algorithm GDSF-DST is
experimented with daily log data from September 1th,
2017 to September 10th, 2017. On the basis of the query

characteristics of the system described above, when
STW_SIZE is greater than or equal to 13 hours, no expired
transactions exist. Therefore, in this experiment,
STW_SIZE is set to 13 h, 12 h, 11 h, 10 h, 9 h, 8 h, 7 h, 6
h, 5 h, 4 h, 3 h, 2 h, 1 h, 30 m, 20 m, 10 m, 9 m, 8 m, 7 m,
6 m, 5 m, 4 m, 3 m, and 2 m. (h stands for hours, and m
stands for minutes).

Tab. 3 presents the experimental data of average hit
ratio and SW_SIZE and Tab. 4 presents the experimental
data of average byte hit ratio and SW_SIZE. Fig. 3, drawn
from the data in Tab. 3, presents the relationship between
the hit ratio and the size of STW_SIZE, in which the
ordinate indicates the hit ratio and the abscissa indicates
the sliding window size STW_SIZE. The units of
STW_SIZE are minutes. In order to show the changes
more clearly, this plots the logarithm to base 10 of the
values on the abscissa. Fig. 4, drawn from the data in Tab.
4, presents the relationship between the byte hit ratio and
the size of STW_SIZE, in which the ordinate indicates the
byte hit ratio and the abscissa indicates the sliding
window size STW_SIZE. The units of STW_SIZE are
minutes. Evidently, in Fig. 3 and Fig. 4, with the sliding
window size declining from 10 hours to 8 minutes,
GDSF-DST can achieve great hit ratio and byte hit ratio,
and the performance index remains stable. When the size
of the sliding window is greater than 10 hours, as the size
of the sliding window increases, both hit ratio and byte hit
ratio decrease, which indicates that the performance of the
algorithm can be improved to a certain extent by adding a
sliding window to determine expired transactions.

When the sliding window is less than 2 minutes, both
the hit ratio and the byte hit ratio of the algorithm become
extremely unstable and rapidly decrease. This is because
the time is too short, and many other transactions related
to the ones being queried by users are also thrown out
prematurely; while when the sliding window size reaches
8 minutes, the algorithm GDSF-DST can achieve better
hit ratio and byte hit ratio and the performance index
remains stable. It shows that the time of the transactions
related to the transaction queried by users generally
maintains between 2 minutes and 8 minutes. And often in
some small period of time there are some objects accessed
at high frequency.

Table 3 The relationship between HR and STW_SIZE

STW_SIZW / min 780 720 660 600 540 480 420 360 300 240 180 120
The average
hit ratio

0.565
983

0.566
099

0.567
023

0.567
023

0.567
023

0.567
023

0.567
023

0.567
023

0.567
023

0.567
023

0.567
023

0.567
023

SW_SIZW / min 60 30 20 10 9 8 7 6 5 4 3 2
The average
 hit ratio

0.567
023

0.567
023

0.567
023

0.567
023

0.567
023

0.567
023

0.566
999

0.566
958

0.566
958

0.566
955

0.566
732

0.562
552

Table4 The relationship between BHR and STW_SIZE

STW_SIZW / min 780 720 660 600 540 480 420 360 300 240 180 120
The average
byte hit ratio

0.539
581

0.539
693

0.540
668

0.540
668

0.540
668

0.540
668

0.540
668

0.540
668

0.540
668

0.540
668

0.540
668

0.540
668

SW_SIZW / min 60 30 20 10 9 8 7 6 5 4 3 2
The average
byte hit ratio

0.540
668

0.540
668

0.540
668

0.540
668

0.540
668

0.540
668

0.540
653

0.540
606

0.540
606

0.540
614

0.540
667

0.538
913

As the size of the sliding window is reduced from 10

hours to 8 minutes, the hit ratio and the byte hit ratio
remain stable. Because a query usually involves a wide

range of objects, transactions in a short time can contain
most objects, which makes a large number of the objects
non-expired. The smaller sliding windows are, the fewer

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

hi
t r

at
io

the decay factor f

1-Sep

2-Sep

3-Sep

4-Sep

5-Sep

6-Sep

7-Sep

8-Sep

9-Sep

10-Sep

Average

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

by
te

 h
it

ra
tio

the decay factor f

1-Sep

2-Sep

3-Sep

4-Sep

5-Sep

6-Sep

7-Sep

8-Sep

9-Sep

10-Sep

Average

Jianhai DU et al.: A Web Cache Replacement Strategy for Safety-Critical Systems

828 Technical Gazette 25, 3(2018), 820-830

the stored transactions are, thereby reducing the spatial
complexity of the algorithm. Therefore, under the premise
of ensuring the performance of the algorithm, the smaller
time window should be selected. In Fig. 3 and Fig. 4, the
red data point is the one of the sliding window size as 10
minutes, and the performance of the algorithm is stable
before and after the point. Therefore, for the workload of
the spacecraft integrated test data query system, the
sliding window size can be selected as 10 minutes.

Figure 3 The relationship between hit ratio and STW_SIZE size

Figure 4 The relationship between byte hit ratio and STW_SIZE size

Figure 5 The relationship between hit ratio and cache capacity

Figure 6 The relationship between byte hit ratio and cache capacity

5.2.3 The Influence of the Cache Capacity TotalSize on Hit
Ratio and Byte Hit Ratio

Based on the previous analysis, in this section, the

sliding window size STW_SIZE is set to 10 minutes, and
the decay factor f is set to 0.996.The cache capacity
relative size TotalSize is set to 1%, 2%, 3%, 4%, 5%, 10%,
15%, 20%, 25%, and 30%, respectively, and then
experiments are carried out. The log data used for the
experiments are the log records during 5 days, from
September 11th, 2017 to September 15th, 2017. In Fig. 5,
the ordinate represents the value of the hit ratio and the
abscissa indicates the relative capacity of the cache. In Fig.
6, the ordinate represents the value of the byte hit ratio
and the abscissa indicates the relative capacity of the
cache. It can be seen from the figures that the hit ratio and
the byte hit ratio increase rapidly with the increase of the
cache capacity TotalSize. When the relative capacity of
the cache reaches 30%, the hit ratio and the byte hit ratio
can exceed 70%.

5.2.4 Comparison with the Classical Algorithms

In this section, the sliding window size STW_SIZE in

the algorithm GDSF-DST is set to 10 minutes and the
decay factor f is set to 0.996. The log data used for the
experiments are the log records during 5 days, from
September 11th, 2017 to September 15th, 2017. The
relative cache capacity TotalSize is set to 1%, 2%, 3%, 4%,
5%, 10%, 15%, 20%, 25%, and 30%, respectively, and
experiments are carried out respectively on algorithms
GDSF-DST, GDSF, LFU, LFU-DA and LRU.

Figure 7 Comparison of hit ratios for multiple algorithms

Figure 8 Comparison of byte hit ratios for multiple algorithms

Fig. 7 shows the curves of hit ratio of each algorithm

varying with the cache capacity. Fig. 8 shows the curves
of the byte hit ratio of each algorithm varying with the

0.562

0.563

0.564

0.565

0.566

0.567

0.568

1 10 100 1000

hi
t r

at
io

the sliding window size SW_SIZE/min

0.5385

0.5390

0.5395

0.5400

0.5405

0.5410

1 10 100 1000

by
te

 h
it

ra
tio

the sliding window size SW_SIZE/min

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0% 5% 10% 15% 20% 25% 30% 35%

hi
t r

at
io

The cache capacity relative size TotalSize

11-Sep

12-Sep

13-Sep

14-Sep

15-Sep

Average

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0% 5% 10% 15% 20% 25% 30% 35%

by
te

 h
it

ra
tio

The cache capacity relative size TotalSize

11-Sep

12-Sep

13-Sep

14-Sep

15-Sep

Average

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0% 10% 20% 30%

hi
t r

at
io

The cache capacity relative size TotalSize

LRU

LFU

LFU-DA

GDSF

GDSF-DST

Jianhai DU et al.: A Web Cache Replacement Strategy for Safety-Critical Systems

Tehnički vjesnik 25, 3(2018), 820-830 829

cache capacity. Because the decay factor f and the sliding
window mechanism are introduced for the users’ query
behavior characteristics of the spacecraft integrated test
query system, both the hit ratio and the byte hit ratio in
GDSF-DST algorithm are better than those in other
algorithms (Fig. 7 and Fig. 8).

6 CONCLUSIONS

(1) In this paper, the characteristics of data in

spacecraft integration test data query system and users’
query behaviors are analyzed. Under the premise of full
investigation of the cache technology research progress,
combined with the relevant technology of Web data
stream mining, a cache replacement algorithm, GDSF-
DST, is designed for Spacecraft integrated testing data
query system.

(2) The specific process of the algorithm
implementation is presented and the Trace Driven
Simulation experiment is performed with the query log
data in the actual runtime environment.

(3) The newly-designed algorithm is fully analyzed
and compared with the existing typical cache replacement
algorithms, and it is proved that the algorithm has better
performance.

The deficiency in this paper and further work is to
evaluate the validity of the algorithm with Data
Envelopment Analysis (DEA). The method proposed in
this paper is only for the spacecraft integration test data
query. In future, we will collect data in other fields except
spacecraft comprehensive test, such as stock trading,
video websites, news websites, and some other data
applications with large volume of data, rapid changes and
the latest data changes which public users are more
concerned about. And then we will discuss the application
and expansion of GDSF-DST algorithm proposed in this
paper in these fields. The new algorithm proposed in this
paper is integrated with the algorithms of machine
learning to further improve the performance index of
cache replacement strategy and to verify the applicability
of the new intelligent algorithms in other environments.

ACKNOWLEDGEMENTS

This work was supported by the National Natural
Science Foundation of China under Grant Nos. U1736116
and 61300007, the Fundamental Research Funds for the
Central Universities of China under Grant Nos. YWF-15-
GJSYS-106 and YWF-14-JSJXY-007, and the Project of
the State Key Laboratory of Software Development
Environment of China under Grant Nos. SKLSDE
2015ZX-09 and SKLSDE-2014ZX-06.

7 REFERENCES

[1] Djurovic, D., Bulatovic, M., Sokovic, M., & Stoic, A.

(2015). Measurement of maintenance excellence/Mjerenje
izvrsnosti odrzavanja. Tehnicki Vjesnik-Technical Gazette,
22(5), 1263-1269. https://doi.org/10.17559/TV-20140922094945

[2] Blagojević, M., Rakić, D., Topalović, M., & Živković, M.
(2016). Optical coordinate measurements of parts and
assemblies in automotive industry. Tehnicki
vjesnik/Technical Gazette, 23(5), 1541-1546.
https://doi.org/10.17559/TV-20130918160442

[3] Lv, J., Ma, S., Li, X., et al. (2015). A high order
collaboration and real time formal model for automatic
testing of safety critical systems. Frontiers of Computer
Science, 9(4), 495-510.
https://doi.org/10.1007/s11704-015-2254-y

[4] Gao, S. W., Lv, J. H., Du, B. L., et al. (2015). Balancing
Frequencies and Fault Detection in the In-Parameter-Order
Algorithm.Journal of Computer Science and Technology,
30(5), 957-968. https://doi.org/10.1007/s11390-015-1574-6

[5] Kastaniotis, G., Maragos, E., Douligeris, C., et al.
(2012).Using data envelopment analysis to evaluate the
efficiency of Web caching object replacement strategies.
Journal of Network and Computer Applications, 35(2), 803-
817. https://doi.org/10.1016/j.jnca.2011.11.013

[6] Podlipnig, S. & Böszörmenyi, L. (2003). A survey of web
cache replacement strategies. ACM Computing Surveys
(CSUR), 35(4), 374-398.
https://doi.org/10.1145/954339.954341

[7] Aggarwal, C., Wolf, J. L., & Yu, P. S. (1999). Caching on
the world wide web. IEEE Transactions on Knowledge and
data Engineering, 11(1), 94-107.
https://doi.org/10.1109/69.755618

[8] Geetha, K. & Gounden, N. A. (2017). Dynamic Semantic
LFU Policy with Victim tracer (DSLV): A Customizing
Technique for Client Cache. Arabian Journal for Science
and Engineering, 42(2), 725-737.
https://doi.org/10.1007/s13369-016-2287-z

[9] Wang, S., Li, Z., Chao, W., et al. (2012). Applying adaptive
over-sampling technique based on data density and cost-
sensitive SVM to imbalanced learning. International Joint
Conference on Neural Networks. IEEE, 2, 1-8.
https://doi.org/10.1109/IJCNN.2012.6252696

[10] Wang, S., Li, Z., Zhang, X. (2013). Bootstrap Sampling
Based Data Cleaning and Maximum Entropy SVMs for
Large Datasets. IEEE, International Conference on TOOLS
with Artificial Intelligence. IEEE, 1(11), 1151-1156.
https://doi.org/10.1109/ICTAI.2012.164.

[11] Li, Y., Zhou, G., Nie, B. (2017). Improving Web
Performance in Home Broadband Access Networks.
Wireless Personal Communications, 92(3), 925-940.
https://doi.org/10.1007/s11277-016-3585-1

[12] Ali, W., Shamsuddin, S. M., & Ismail, A. S. (2012).
Intelligent Web proxy caching approaches based on
machine learning techniques. Decision Support Systems.
53(3), 565-579. https://doi.org/10.1016/j.dss.2012.04.011

[13] Ali, W., Shamsuddin, S. M., & Ismail, A. S.
(2012).Intelligent Naïve Bayes-based approaches for Web
proxy caching. Knowledge-Based Systems, 31, 162-175.
https://doi.org/10.1016/j.knosys.2012.02.015

[14] Songwattana, A., Theeramunkong, T., & Vinh, P. C. (2014).
A learning-based approach for web cache management.
Mobile Networks and Applications, 19(2), 258-271.
https://doi.org/10.1007/s11036-014-0498-7

[15] Lee, C. (2013). Streaming media service based on fuzzy
similarity in wireless mobile networks. The Journal of
Supercomputing, 65(1), 86-105.
https://doi.org/10.1007/s11227-012-0778-6

[16] Sajeev, G. P. & Sebastian, M. P. (2013). Building semi-
intelligent web cache systems with lightweight machine
learning techniques. Computers & Electrical Engineering,
39(4), 1174-1191.
https://doi.org/10.1016/j.compeleceng.2013.02.005

[17] Romano, S. & ElAarag, H. (2011). A neural network proxy
cache replacement strategy and its implementation in the
Squid proxy server. Neural computing and Applications,
20(1), 59-78. https://doi.org/10.1007/s00521-010-0442-0

[18] Rashkovits, R. (2016). Preference-based content
replacement using recency-latency tradeoff. World Wide
Web, 19(3), 323-350.
https://doi.org/10.1007/s11280-014-0313-1

Jianhai DU et al.: A Web Cache Replacement Strategy for Safety-Critical Systems

830 Technical Gazette 25, 3(2018), 820-830

[19] Pan, S., Chong, Y., Xu, Z., et al. (2017). An enhanced
active caching strategy for data-intensive computations in
distributed GIS. The Journal of Supercomputing, 73(10),
4324-4346. https://doi.org/10.1007/s11227-017-2012-z

[20] Sun, X. C., Wang, Z. J., Chu, H., et al. (2016). An Efficient
Resource Management Algorithm for Information Centric
Networks. Journal of Internet Technology, 17(5), 1007-
1015. https://doi.org/10.6138/JIT.2016.17.5.20160111

[21] Chen, J., Lee, V. C. S., Liu, K., et al. (2017). Efficient
Cache Management for Network-Coding-Assisted Data
Broadcast. IEEE Transactions on Vehicular Technology.
66(4), 3361-3375. https://doi.org/10.1109/TVT.2016.2589460

[22] Kastaniotis, G., Maragos, E., Dimitsas, V., et al. 2007.
Web Proxy caching object replacement: Frontier analysis to
discover the good-enough algorithms. Proceedings of the
2007 15th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems. IEEE Computer Society, 132-137.
https://doi.org/10.1109/MASCOTS.2007.68

[23] Gao, S. W., Lv, J. H., Wuniri, Q. Q. G., et al. (2015).
Spacecraft Test Requirement Description and Automatic
Generation Method. Journal of Beijing University of
Aeronautics and Astronautics, 41(7), 1275-1286.
https://doi.org/10.13700/j.bh.1001-5965.2014.0762

[24] Chen, H. (2007). Design and Implementation of Integration
Test Data Platform for Manned Spacecraft. PhD. Thesis,
Beijing University of Aeronautics and Astronautics,
Beijing.

[25] Young, N. (1994). Thek-server dual and loose
competitiveness for paging. Algorithmica, 11(6), 525-541.
https://doi.org/10.1007/BF01189992

[26] Cao, P. & Irani, S. (1997). Cost-aware www proxy caching
algorithms. Usenix symposium on internet technologies and
systems, 12(97), 193-206.

[27] Cherkasova, L. (1998). Improving www proxies
performance with greedy-dual-size-frequency caching
policy. Hp Technical Report.

[28] Ferrara, E., De Meo, P., Fiumara, G., et al. (2014). Web
data extraction, applications and techniques: A survey.
Knowledge-based systems, 70, 301-323.
https://doi.org/10.1016/j.knosys.2014.07.007

[29] Li, H. F. & Lee ,S. Y. (2009). Mining frequent itemsets
over data streams using efficient window sliding
techniques. Expert Systems with Applications, 36(2), 1466-
1477. https://doi.org/10.1016/j.eswa.2007.11.061

[30] Thanh Lam, H. & Calders, T. (2010). Mining top-k
frequent items in a data stream with flexible sliding
windows. Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data
mining. ACM, 283-292.
https://doi.org/10.1145/1835804.1835842

[31] Mahanti, A., Eager, D., & Williamson, C. (2000). Temporal
locality and its impact on Web proxy cache performance.
Performance Evaluation, 42(2),187-203.
https://doi.org/10.1016/S0166-5316(00)00032-8

[32] Giannella, C., Han, J., Pei, J., et al. (2003). Mining frequent
patterns in data streams at multiple time granularities. Next
generation data mining, 212, 191-212.

[33] Chang, J. H. & Lee, W. S. (2003). Finding recent frequent
itemsets adaptively over online data streams. Proceedings
of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, 487-492.
https://doi.org/10.1145/956750.956807

[34] Patil, J. B. & Pawar, B. V. (2007). Trace driven simulation
of GDSF# and existing caching algorithms for web proxy
servers. Proceedings of the 6th WSEAS International
Conference on Data Networks, Communications and
Computers (DNCOCO 2007), Trinidad and Tobago. 378-

384.
[35] Romano, S. & ElAarag, H. (2012). A quantitative study of

Web cache replacement strategies using simulation.
Simulation, 88(5), 507-541.
https://doi.org/10.1007/978-1-4471-4893-7_4

Contact information:

Jianhai DU, PhD Student
School of Computer Science and Technology,
Beijing University of Aeronautics and Astronautics
Beijing, 100191, China
E-mail: dujianhai6@163.com

Shiwei GAO, Engineer
Beijing Institute of Aerospace Control Devices
Beijing, 100039, China
E-mail: ge89@163.com

Jianghua LV, Associate Professor
(Corresponding author)
School of Computer Science and Technology,
Beijing University of Aeronautics and Astronautics
Beijing, 100191, China
E-mail: jianghualvpaper@126.com

Qianqian LI,
School of Computer Science and Technology,
Beijing University of Aeronautics and Astronautics
Beijing, 100191, China
E-mail: paper135789@163.com

Shilong MA, Professor
School of Computer Science and Technology,
Beijing University of Aeronautics and Astronautics
Beijing, 100191, China
E-mail: shilongma8@163.com

	1 INTRODUCTION
	2 BACKGROUND
	3 GDSF ALGORITHM
	4 GDSF-DST
	5 EXPERIMENTS
	6 CONCLUSIONS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

