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In order to design a reactor, kinetics of degradation of polycarbonate/CaCO3 com-
posites was investigated here by thermogravimetric analysis (TGA), applying model-free 
and modelistic methods together, to obtain E, A, ∆S*, ∆H* and ∆G* (kinetic parameters). 
The system was tested with all the mechanisms available using non-isothermal modelis-
tic method (Coats-Redfern). This approach allowed choosing the models, which are oth-
erwise difficult to decide upon simply based on regression fit methods. The mechanism 
proposed was a simple nth order. Application of artificial neural network supported in 
designing a neural network could lead to a quick determination of kinetic parameters.
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Introduction

Polycarbonate (PC) is an engineering polymer, 
and second largest in consumption being used ex-
tensively in the areas of electronics, construction, 
automotive, aircraft industry, compact discs, food 
containers, packaging, and medical devices. The 
production rate of PC worldwide grew to around 
4.5 million metric tons by the end of 20161. Out of 
the total PC production, the construction industry 
consumes the second largest portion of the polycar-
bonate2. PC is the most widely used polymer due to 
its high impact strength, high optical transparency, 
and good thermal stability; however, it needs im-
provement in the area of tribology and rheology. In 
order to improve its properties, PC is being rein-
forced with nanofillers3–5 and this research again 
adds to the growing demand for PC. These applica-
tions lead to very high consumption and finally 
high accumulation of used polycarbonate as waste. 
The disposal of PC waste, having high weight-to-
volume ratios, imposes an environmental hazard be-
cause these plastics are non-biodegradable. Solid 
waste disposal is achieved using landfilling and in-
cineration, but landfilling is not possible in the case 
of plastics6–9, and incineration results in the produc-
tion of toxic gases, such as flue gas, and acid and 
heavy metals leading to air pollution10–12. The recy-
cling of plastic waste is a better option13,14. To trans-
form the polymer waste into useful, low molecular 

weight hydrocarbons, clean hydrocarbons, fuels, 
gasoline, or other valuable lubricants, thermal or 
catalytic degradation can prove useful. Pyrolytic 
degradation of polymers in the absence of oxygen 
gives a mixture of hydrocarbons6,8,10–12. Literature 
provides an insight into the key products of pyrolyt-
ic degradation of polycarbonate, such as CH4, CO, 
CO2, H2O and other hydrocarbons like ketones, al-
dehydes, and carbonyls that exhibit low molecular 
weight15. Thermal analysis using thermogravimetric 
analyzer (TGA) plays an important role in studying 
the overall kinetics by assessing the alteration in 
mass with time, providing well controlled condi-
tions16,17. Frequent studies focused on understanding 
PC degradation have been carried out using Py-GC, 
TG-FTIR or TG-MS15,18. Currently, the two most 
important methods used in studying degradation ki-
netics are model-free and modelistic techniques. 
These two approaches propose a number of advan-
tages but have limitations when applied for real cas-
es since they are based on several assumptions. 
Model-free methods cannot be used for prediction 
of the reaction mechanism. If we consider the case 
of successive and parallel reactions, although iso-
conversional supposition is easy to implement, it is 
not always satisfied19,20. With modelistic techniques 
it is possible to describe the reaction model that can 
give an idea about the process mechanism; howev-
er, its application to complex processes is not feasi-
ble because the reaction scheme is dependent on 
individual selection21. Therefore, a combined use of 
model-free and modelistic technique helps to elimi-
nate some of the disadvantages, and the combina-
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tion of advantages leads to the best reaction mecha-
nism22,23.

In addition to these methods, artificial neural 
network (ANN) is another tool useful for predicting 
kinetic parameters. It is a powerful computing tech-
nique useful in predicting the properties of materi-
als using a certain amount of experimental results24.
It finds applications in modelling the properties of 
various materials, and is being used rigorously in 
the field of materials science25–28. ANN can be used 
to analyse and explore the relationship between ex-
perimental inputs and outputs to study the behavior 
of material properties. It is possible to develop a 
generalized model even if the output variables are 
nonlinear functions of input variables25.

A literature survey reveals that the ANN ap-
proach has been used to evaluate thermodynamic 
and kinetic parameters, and could be successfully 
applied for obtaining filtered signals from calorime-
ter29. In another development, it was established 
that ANN was applied for the prediction of kinetic 
parameters of carbon fiber reinforced carbon com-
posites using the experimental results from thermo-
gravimetric analyzer30. Kinetic parameter prediction 
for biomass oxidation is one of the recent works 
done using ANN31.

In a similar study, an ANN tool, radial basis 
functional network, was employed for the case of 
polymer-clay/silica hybrid nanocomposites to pre-
dict the thermal and mechanical properties, and 
concluded that such tools are useful in the predic-
tion of properties of nanocomposites without actual 
manufacturing32. In a recent development, ANN 
models were generated to obtain thermoanalytical 
signals very similar to experimental ones using var-
ious combinations of kinetic parameters and reac-
tion model type33. It has thus been revealed that 
ANN offers several advantages over conventional 
modelling techniques because it is not based upon 
assumptions concerning kinetic model, and requires 
no kinetic interval. It is extremely capable of resist-
ing the noisy signals29.

It has been observed that the combined use of 
model-free and modelistic techniques might result 
in parameter interdependency, also known as the ki-
netic compensation effect34. On the other hand, arti-
ficial neural network (ANN) can predict kinetic 
triplet parameters independently unlike the modelis-
tic technique as it is not based on the isoconversion-
al norm33.

This is a unique attempt to determine all the 
kinetic and thermodynamic parameters using mod-
el-free and modelistic methods together for the 
polycarbonate nanocomposites and prediction of 
these parameters independently using artificial neu-
ral network.

Materials and methods

Materials

Polycarbonate (MAKROLON® 2407) was ob-
tained from Bayer Material Science Pvt. Ltd., Mum-
bai, India. It is a general purpose, low viscosity, UV 
stabilized grade with MVR (300 °C/1.2 kg) 19 
cm3/10 min and melt temperature in the range 280–
320 °C. PC/CaCO3 nanocomposites were synthe-
sized via melt extrusion using HAAKE Minilab II 
Micro Compounder. CaCO3 nanoparticles were ob-
tained using the process as described in a previous 
work35. Prior to mixing, the PC pellets were dried at 
80 °C for 12 hours. Three different wt.% loading of 
CaCO3 nanoparticles were added to PC to obtain 
PC/CaCO3 nanocomposites (PCC). The compound-
er was of 5 g or 7 cm3 capacity, and had two conical 
counter-rotating screws with a bypass pathway for 
the flow of material, which allowed for proper dis-
persion. The countercurrent screw arrangement and 
3-minute recycling ensured proper mixing of 
nanoparticles into the polycarbonate matrix. The 
processing temperature in the compounder was 
maintained at 280 °C, and rotating speed of coun-
tercurrent conical extruders was maintained at 100 
rpm. The injector was maintained at 310 °C, and, 
molder at 145 °C. The molding pressure was about 
900 bars for 7 seconds, with a post pressure of 650 
bars for 5 seconds. All these parameters were final-
ized after a number of trials.

Characterization methods

TGA

Thermogravimetric analysis is a technique 
where thermal properties are determined by mea-
suring physical and chemical properties as a func-
tion of temperature at a constant heating rate, or 
time. Thermogravimetric analysis was performed 
on a TG 6300 type analyzer (SII Nanotechnology 
Incorporation, Japan) exposed to inert (N2) atmo-
sphere at a constant rate of 60–100 mL min–1. The 
kinetic study was carried out using a definite amount 
of sample (5–10 mg), dried at 105 °C for 1 hour, 
and heating from 30 °C to 900 °C at different heat-
ing rates, 5, 10, 15, 20 °C min–1 under inert atmo-
sphere. The use of purge gas removes the volatiles 
that are generated during degradation.

Kinetic analysis

A model free and modelistic approach is being 
used in this work to obtain all the kinetic parame-
ters. The model-free method was used firstly to ob-
tain a preliminary idea of the apparent activation 
energy value followed by the modelistic method. 
The values were then compared to each other and 
thus finalized. A number of model-free methods 
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mentioned in the literature are Flynn-Wall-Ozawa 
(FWO) method, Kissinger-Akahira-Sunose (KAS), 
Friedman method, and Kissinger-Peak method22.

The polymer pyrolysis reaction follows a sol-
id-state reaction, and degree of conversion α de-
cides the rate, as given by Equation (1):

	 0

0

i

f

m m
m m

α
−

=
−

	 (1)

where m0 is the initial mass, mf  is the final mass, and 
mi, is mass at any time t. The fundamental equation 
of degradation kinetics can be described by Equa-
tion (2)36–39

	 ( ) ( )d  
d

k T f
t
α α= 	 (2)

where, f(α) and k(T) represent conversion and the 
temperature function, respectively. k is the tempera-
ture dependent reaction constant, which is defined 
by the Arrhenius equation as given by Equation (3):

	 exp – Ek
RT

 =   
	 (3)

where, A, T, R, and E are the pre-exponential factor, 
absolute temperature, universal gas constant, and 
activation energy of the process, respectively. Rear-
rangement of Equation (2) after substitution of 
Equation (3) into (2) results in Equation (4):

	 ( )d  exp
d

EA f
t RT
α α = −  

	 (4)

In the non-isothermal case, in order to raise the 
temperature, a heating rate (q) is employed, as giv-
en by Equation (5)

	
d constant
d
T q
t
= = 	 (5)

Therefore, Equation (6):

	 ( )d exp  
d

A E f
t q RT
α α = −  

	 (6)

We used the Kissinger-Peak method, which as-
sumes that the maximum reaction rate corresponds 
to the peak temperature (Tp) obtained from DTG 
peak. The Kissinger-Peak equation40 is given below, 
Equation (7):

	 2ln ln
p p

E AR
T RT E
β   = − +      

	 (7)

A plot of 2ln
pT
β 

 
  

 against 1/Tp gives a straight

line. The slope of this line gives activation energy (E).

The modelistic methods use α-temperature 
curves in which the models are fitted and checked, 
and at the same time the activation energy E, pre-ex-
ponential factor A, and mechanism n of reaction are 
determined.

For a solid-state reaction, the conversion func-
tion f(α) and the reaction mechanism are related, as 
given by Equation (8). The reaction mechanism by 
model-free method can be decided based on this 
conversion function.

	 ( ) ( ) ( )1 ln 1
pnmf α α α α= − − −   	 (8)

where, exponent factors m, n, and p are achieved 
empirically so that one of them is always zero39,41.

After substituting the values in Equation (8) 
and separating the variables, the final form is inte-
grated, and the following Equation (9) obtained:
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T
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α α
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The left-hand side of the equation represents 
g(α) obtained by integration of conversion function 
of f(α), which explicitly represents the mechanism. 
Table 1 presents mechanisms as algebraic expres-
sions effective in solid-state reactions39,42,43.

In Equation (9), the integral on the right-hand 
side has no precise analytical solution; therefore, 
the Coats and Redfern calculation procedure44 was 
used for prediction of activation energy by means of 
an approximate expression.

Equation (4) considers the maximum reaction 
rate and leads to Equation (10):

( ) ( )
2

'
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1 1 exp
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d
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 
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The variables at the maximum reaction rate are 
denoted by subscript ‘max’. Moreover, when Equa-
tion (9) is combined with Equation (10), the result-
ing Equation (11) is as given below.

	 ( ) ( )'
max max

max

Eg f h
RT

α α
 

= −  
 

	 (11)

Equation (10) designates that αmax value is de-
pendent on E/RTmax for a fixed kinetic model. In or-

Ta b l e  1 	–	Comparing degradation temperatures

Sample Tonset (°C) T0.5 (°C) Tmax Peak rate

PC 433 511 517 1.36 % °C–1

3 % PCNC 429 489 485 1.32 % °C–1
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der to evaluate the limits of αmax for different kinetic 
models, Equation (10) can be applied and used to 
determine the magnitude of αmax that can be further 
used to classify the kinetic models.

For the present study, the non-isothermal mod-
elistic method Coats and Redfern44 was employed. 
The kinetic parameters are determined in the range 
of 0.1–0.6 (α) using the data set as obtained from 
TG and DTG curves. Using a modified Coats and 
Redfern Equation (12) as given below, the kinetic 
parameters can be determined.

	
( )

2ln ln
g AR E
T qE RT
α

= − 	 (12)

where, g(α) is a function, an integral of f(α), which 
is influenced by the kinetic model of the occurring 
reaction. From Equation (12), a plot of ln[g(α)/T2] 
against 1/T results in a straight line, and its slope 
and intercept correspond to activation energy E and 
pre-exponential factor A, respectively. The mathe-
matical model and conversion mechanism will de-
cide the algebraic expression for the functions 
g(α)39,42. The true g(α)can be obtained if one attains 
a maximum correlation coefficient for its linear de-
pendency.

The temperature integral in Equation (9) has 
been solved by different authors45,46 and they sug-
gested different solutions. For example, Madhysu-
danan-Krishnan-Ninan45 suggested Equation (13).
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Equations 12 and 13 demonstrate that the cal-
culated values of the activation energy E and pre-ex-
ponential factor A using same g(α) are different to a 
certain extent.

It has been established that, for solid phase re-
actions, the values of pre-exponential factor A are 
not expected to be within a definite range37,39. It is 
given in literature that empirical first-order pre-ex-
ponential factors may vary from 104 to 1018 s–1. 
Lower values of A point towards a surface reaction. 
If the reactions are independent of surface area, the 
low values indicate a tight complex. Higher values 
of A factors prove that the complex is loose. It is 
highly desirable to obtain an indication of molecu-
larity from the magnitude of the pre-exponential, 
since in many cases, the concentrations in the solid 
cannot be controlled47.

Eyring Equation36–39, is given by Equation (14) 
and it is the theory of transition state, activated 
complex.

	
*

expB pe k T SA
h R

χ  Δ
=  

 
	 (14)

where, the Neper number e = 2.7183, transmission 
factor χ = 1 for monomolecular reactions, Planck 
constant h, Boltzmann constant kB, and the peak 
temperature Tp obtained from the DTG curve. ΔS* 
representing the change in entropy is given by 
Equations (15) and (16)37,39,

	 * ln
B p

AhS R
e k Tχ

Δ = 	 (15)

Since
	 *

pH E RTΔ = − 	 (16)

The well-established thermodynamic Equation 
(17) can be used to calculate the changes in enthal-
py ΔH* and Gibbs free energy ΔG* for the formation 
of activated complex from the reagent.

	 * * *
pG H T SΔ = Δ − Δ 	 (17)

Artificial Neural Network

An artificial neural network, which imitates a 
nervous system, is capable of recognizing patterns 
similar to the brain, and consists of neurons or 
nodes as the processing units. The interconnected 
neurons are arranged in layers, such as input, hid-
den, and output layer. Based on the input variables, 
neurons in the input layers are finalized and the 
number of responses decide the neurons in the out-
put layer. Each layer comprises of a weight, bias 
and output vector. When the data is transferred as a 
signal from one neuron to the next neuron, the out-
put is obtained after the signal from the previous 
neuron is multiplied by the weight, adjusted by the 
activation function, and diverged by the bias. The 
learning algorithm regulates the weights of the pro-
cessing neurons by minimizing the possible errors 
in the network output. The hidden layer acts like a 
brain as input passes through hidden layer and pro-
cesses it as output. Training of a system involves 
adjustment of weight and bias to achieve the lowest 
mean squared error (mse), which is nothing but the 
performance. The major stages involved in design-
ing the ANN model after processing of the data set 
is building the network where the transfer functions 
are decided for the hidden and output layers. This is 
followed by training, which uses 70 % of the data, 
while the remaining 30 % are divided and used in 
validation and testing. The validation step checks 
for the performance, and when it finds that no fur-
ther improvement of the performance is possible, it 
stops the training, whereas the testing is carried out 
independently. The normalization of the dataset uti-
lizes Equation (18):

(13)
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where, the normalized value of xi is y, and the max-
imum and minimum values of xi are denoted by xmax 
and xmin, respectively.

The output neuron for a system is obtained by 
Equation (19)

	
1

n

i i
i

t a w x b
=

 
= − 

 
∑ 	 (19)

where, xi is the input signal, i=1,2,…,n, ith weight is 
wi, bias is b, and the transfer function a.

Here, the network consists of three layers with 
feed forward mode through tangent sigmoid as the 
transfer function (tansig) for the hidden layer, and a 
linear transfer function (purelin) for the layer as 
output. The linear activation function is given by 
Equation 20. The tan sigmoid function is denoted 
by Equation 21.

	 ( )f x x= 	 (20)

	 2

2tansig( ) 1
1 xx

e−= −
+

	 (21)

The mean squared error (mse) determines the 
performance, and coefficient of determination (R2) 
is an additional support, as given by Equation 22 
and 23.
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where, yprd, i is the data predicted, the experimental 
data corresponding to predicted is yexp, i, the number 
of data obtained experimentally is n, and its average 
is ym.

A sensitivity analysis is performed for assess-
ing the comparative significance of each input vari-
able on the output, and is given by Garson as in-
Equation (24)

	 1 1
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where, Ij is the relative significance of the jth input 
variable on the output variable. The number of in-

put and hidden neurons is denoted as Ni and Nh, 
respectively. The connection weight is denoted by 
W. The input, hidden, and output layers are repre-
sented by the superscripts I, h, and o, respectively. 
The input, hidden, and output neurons are referred 
to as subscripts k, m, and n, respectively.

Results and discussion

TGA

The thermogravimetric curves of pure polycar-
bonate (PC) and reinforced PC filled with 3 % 
CaCO3 (PCC) are shown in Fig. 1. The Table 1 indi-
cates 5 % and 50 % degradation along with the 
mass residue. Usually, polymer degradation obeys 
the sigmoidal or deceleration functions42. Pure PC 
starts degrading at 433 °C, whereas, PCC degrada-
tion starts at a temperature lower than that of pure 
PC. A shift towards lower temperature indicates that 
the presence of 3 % CaCO3 nanofillers lead to a de-
crease in the thermal stability of PC. This is due to 
the manifestation of organic modifier on the fillers 
leading to catalysis of the degradation process47. In 
the first stage of degradation, after evaporation of 
free and bound moisture, the complete loss of car-
bonate and partial degradation of isopropylidene 
group takes place. This is followed by the final deg-
radation of aromatic rings48. Figs. 2a and 2b repre-
sent the curves obtained from TG and DTG for the 
degradation of PCC at different heating rates. The 
four different heating rates chosen for the study 
were 5, 10, 15, 20 °C min–1. The Figs. 2a and 2b 
indicate the effect of heating rates on the process of 
degradation. Initially, the water removal region for 
all the heating rates is the same. It is observed that, 
with increasing heating rate, the TG curve and the 
maximum peak temperature (Tmax) shifts to higher 
temperature. It is well known that polymer absorbs 

F i g .  1  – TGA curves of pure PC and PCC
Temperature(°C)

M
as

s(
%

)
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energy before decomposing. At a higher heating 
rate, the decomposition is detected at higher tem-
peratures49. If heating rates are lower, a larger 
amount of instantaneous thermal energy needs to be 
supplied to the system, and it might take longer for 
the purge gas to reach equilibrium with the prevail-
ing temperature conditions of the furnace. Since a 
higher heating rate enables the reaction to take place 
in a shorter time, accordingly, the temperature nec-
essary to degrade the sample is also higher, result-
ing in the shift of the DTG curve to higher tempera-
ture50.

Kinetic studies

Model-free kinetics

Initially, the Kissinger model-free method, 
known as the peak temperature method, was used to 
obtain the values of activation energy, E. The val-

ues, as given in Table 2, were used as a reference 
for selecting the best model and deciding the mech-
anism of reaction.

Modelistic kinetics

By means of the Coats and Redfern method44, 
substitution of g(α) functions into Equation (13) 
gave a linear equation. The left side of the equation 
was plotted against 1/T to compute the linear re-
gression coefficient (R2) for the thermal degradation 
of the samples studied. The single heating rate plots 
on the left-hand side, ln [g(α)/T2] against 1/T, were 
computed for the thermal degradation as per Equa-
tion 12. In the case of the modelistic methods, the 
coefficient of linear regression (R2) generally plays 
an important role in deciding a suitable reaction 
mechanism. It is also suggested that comparing the 
activation energy obtained from modelistic methods 
with the activation energy obtained from model-free 
methods help in deciding the best mechanism. Table 
3 lists the different mechanisms g(α) in modelistic 
methods. Table 4 designates the values of kinetic 
parameters obtained for various mechanisms along 
with coefficient of regression for comparison with 
the model-free method results. The kinetic parame-
ters were compared with model-free method and the 
mechanism was thus finalized. The same study was 
carried out with another non-isothermal procedure, 
as described by Madhysudanan-Krishnan-Ninan45. 
The kinetic mechanism of PCC follows chemical 
reaction mechanisms. Using the two non-isothermal 
methods, the values calculated for E and A are al-
most the same, thus, an average of these values was 
considered for further evaluation.

At T = Tp, the values of ΔS*, ΔH*, and ΔG* 
were obtained using average values of E and A, as 
given in Table 5. T = Tp characterizes the highest 
process rate, and consequently, is a significant pa-
rameter. The change in Gibbs free energy, ΔG*, re-
veals the total energy increase in the system when 
reagents approach and the activated complex are 
formed. In turn, ΔG* is influenced by the enthalpy 
changes ΔH* and changes in entropy ΔS*. The ΔH*, 
which is a thermodynamic property, gives an idea 
of the differences in energy between the activated 
complex and reagents. The lower levels of energy 
indicate that the potential barrier is low, leading to 

F i g .  2 	–	 (a) TGA curves of pure PC and PCC at different 
heating rates, (b) DTG curves representing the peak tempera-
tures of pure PC and PCC at different heating rates

Ta b l e  2 	–	Kinetic data for degradation of PC and 3 % PCNC 
by Kissinger method

Atmosphere Samples
Tm (k)

E  
(kJ mol–1)5  

°C min–1
10  

°C min–1
15  

°C min–1
20  

°C min–1

Nitrogen
PC 496 516 530 538 156

PCNC 469 486 490 502 194

Temperature(°C)

D
TG

 %
 / °

C

Temperature(°C)

M
as

s(
%

)

(b)

(a)

A- 5 °C min–1, B- 10 °C min–1, 15- 5 °C min–1, D- 20 °C min–1

A- 5 °C min–1, B- 10 °C min–1, 15- 5 °C min–1, D- 20 °C min–1
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Ta b l e  3 	–	Algebraic expressions of the functions f(α) and integral form as g(α) and its corresponding mechanism

No. Kinetic model Symbol g(α) f(α) Rate-determining mechanism
n-Order reactions

1 First order F1 –ln(1–α) (1–α) Chemical reaction
2 Second-order F2 (1–α)–1–1 (1–α)2 Chemical reaction
3 Third-order F3 (1–α)–2–1 1/2(1–α)3 Chemical reaction
4 One-third-order F1/3 1–(1–α)2/3 3/2(1–α)1/3 Chemical reaction
5 Three-quarters-order F3/4 1–(1–α)1/4 4(1–α)3/4 Chemical reaction
6 One-and-a-half-order F3/2 (1–α)1/2 – 1 2(1–α)3/2 Chemical reaction

Diffusion
7 1-D diffusion D1 α2 1/2α One-dimensional diffusion
8 2-D diffusion D2 α+(1 – α)ln(1–α) [–ln(1–α)]–1 Two-dimensional diffusion
9 3-D diffusion D3 [1–(1–α)1/3]2 (3/2)(1–α)2/3[1–(1–α)1/3]–1 Three-dimensional diffusion

Phase-boundary reactions
10 Contracting area R2 1–(1–α)1/2 2(1–α)1/2 Contracting cylinder
11 Contracting area R3 1–(1–α)1/3 3(1–α)2/3 Contracting sphere

Nucleation and nuclei growth
12 Avrami-Erofeev A2 [–ln(1–α)]1/2 2(1–α)[–ln(1–α)]1/2 Random nucleation, n=2
13 Avrami-Erofeev A3 [–ln(1–α)]1/3 3(1–α)[–ln(1–α)]2/3 Random nucleation, n=3

Acceleratory rate equations
14 Mampel Power law P3/2 α3/2 (2/3)α–1/2 Nucleation
15 Mampel Power law P1/2 α1/2 2α–1/2 Nucleation
16 Mampel Power law P1/3 α1/3 3α2/3 Nucleation
17 Mampel Power law P1/4 α1/4 4α3/4 Nucleation

Ta b l e  4 	–	Results obtained for various mechanisms using Coats-Redfern method of calculation

Model Pure PC 3 % PCNC

Model-free method Ea = 156 Ea = 194

Chemical process or mechanism-non-invoking equations

E lnA R2 E lnA R2

0-order 128.4762 10.7127 0.9988 153.3434 15.45932 0.9853

1-order 156.5111 15.53077 0.9988 187.2479 21.33708 0.9968

2-order 189.2765 21.10885 0.9916 227.0055 28.17562 0.9999

3/2 172.3077 17.53193 0.9959 206.3951 23.94344 0.9992

3-order 226.6147 28.1109 0.9801 272.4248 36.63101 0.9971

Acceleratory rate equations

P3/2 199.0455 21.62118 0.9989 236.2091 28.62536 0.9861

Sigmoidal rate equations or random nucleation and subsequent growth

N = 1.5 100.6909 6.6542 0.9987 118.7401 10.60338 0.9965

Deceleratory rate equations
a. Phase boundary reactions (power law)

R1, F0, P1 128.4762 10.7127 0.9988 153.3434 15.45932 0.9853

R2, F1/2 141.9034 12.33389 0.9999 169.564 17.58487 0.9922

R3, F2/3 146.7421 12.74822 0.9997 175.309 18.17319 0.9939

b. Based on the diffusion mechanism

D1 269.6064 32.39561 0.999 319.0664 49.9099 0.9865

D6 248.7133 26.61595 0.9975 294.0994 35.13956 0.982
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the formation of activated complex. The ΔS* gives 
an indication of the system’s closeness to achieving 
thermodynamic equilibrium. A high ΔS* value spec-
ifies high reactivity, leading to the system’s fast re-
sponse to producing activated complex. The results 
showed that, with the increase in E values, the val-
ues of A increased. The observed result suggests the 
existence of isokinetic compensation effect. This 
means that the most likely equation established can 
describe the mechanism of thermal degradation of 
the samples. Also, if values of E increase with the 
ΔS* values, it indicates that higher E values corre-
spond to lower entropy. Thus, we can say that a 
small decrease in entropy is expected during the re-
shuffling of the composite structure when activated 
complex is formed47,51.

Artificial neural network (ANN)

We have used MATLAB based NN toolbox, 
version R2012a52 for developing the model. This 
tool supports supervised learning with feedforward, 
backpropagation, radial basis, and dynamic net-
works53. The data generated by the non-isothermal 
kinetic study of polycarbonate composites was used 
here as the input and output for generating the mod-
el. The input variables were degree of conversion 
(α), temperature in K corresponding to α, and time 
in minutes based on heating rates (5, 10, 15 and 20 
°C min–1). The data makes use of four different 
heating rates and conversions from 10 to 60 % with 
a difference of 5 %. Here, we attempted to predict 

the outputs independently for each kinetic parame-
ter. The output parameters were the kinetic triplets: 
activation energy (E), pre-exponential factor (A), 
and mechanism (n). The dataset used consisted of 
43 samples as described in supplementary Table S1.

The feedforward backpropagation method was 
used, where signal flows only from input to output. 
The artificial neural network architecture consisted 
of elementary layers as input, hidden, and output 
layers. Neural networks can learn and adjust the 
weights and bias to achieve the desired outputs re-
lated to the set of inputs by minimizing the error 
between the predicted and actual experimental out-
put. The optimization technique used here was Lev-
enberg-Marquardt. The network was trained using 
different topology, and the one that provided least 
mean squared error (mse), with hidden layer having 
sufficient number of neurons, was selected because 
it could successfully approximate any nonlinear 
functions.

The activation or transfer functions benefit 
learning of the nonlinear relationships amongst the 
input and output variables. Here, the hidden layer 
was assigned sigmoid activation function (hyper-
bolic tangent) and the output layer was purlinear52.

The performance evaluation of the model in 
predicting properties was evaluated in terms of mse. 
Least mse indicate the best fit, and the ideal value is 
zero or less than zero indicating no error.

Regression coefficients (R) were used in addi-
tion to the mse to keep a check on the performance. 
They can measure the correlation between experi-
mental and predicted values. The ideal value is al-
ways 1 or close to 1.

The network for the three outputs was designed 
independently, and the complete data could be di-
vided into training (70 %), validation (15 %), test-
ing (15 %). To decide the optimum number of hid-
den layers, the network was trained and checked for 
the mse as well as R. A single hidden layer was cho-
sen, since in most cases, excellent results have been 
obtained with single hidden layer54. It is expected 
that the efficiency of the model network could in-
crease with the number of neurons in the hidden 
layer, but may lead to overfitting53.

The various parameter settings for the training 
are shown in Table 6.

The model network topology selected for E as 
output was 3-10-1, indicating that the hidden layer 
consisted of 10 neurons. A network of 3-8-1 was 
successfully applied to determine lnA, and 3-5-1 for 
determining the mechanism (n).

The performance curve for training with mse as 
the performance criteria in the case of E prediction 
is shown in Fig. 3a. Best validation performance 
occurs at 8 epochs. The training stops when the val-
idation error increases, which occurs at 12 epochs. 

Ta b l e  5 	–	Kinetic parameters obtained for non-isothermal 
degradation of pure PC and PCNC

Parameters
Sample

Pure PC 3 % PCNC

Coats-Redfern

Mechanism Chemical process 
(1st order)

Chemical process 
(3/2 order)

R2 0.9988 0.9992

E (kJ mol–1) 156 206

A (min–1) 3.2∙106 2.6∙1010

Madhysudanan-Krishnan-Ninan

E (kJ mol–1) 156 207

A (min–1) 3.2·106 2.9∙1010

Average values

E (kJ mol–1) 156 206

A (min–1) 3.2∙106 2.9∙1010

–ΔS*(J mol–1 K–1) 137 60.7

ΔH*(kJ mol–1) 149 200

ΔG*(kJ mol–1) 257 246



S. J. Charde et al., Degradation Kinetics of Polycarbonate Composites, Chem. Biochem. Eng. Q., 32 (2) 151–165 (2018)	 159

Ta b l e  6 	–	Parameter settings for training ANN model

Neural network parameters
Selected values

E lnA n

1. Input layer neurons 3 3 3

2. Number of hidden layers 1 1 1

3. Number of neurons in the hidden layers 10 8 5

4. Number of neurons in the output layer 1 1 1

5. Activation function of hidden layers Tansig Tansig Tansig

6. Activation function of output layers Purelin Purelin Purelin

7. Training algorithm Levenberg-Marquardt Levenberg-Marquardt Levenberg-Marquardt

8. Number of epochs 1000 1000 1000

F i g .  3 	–	 (a) Performance curve for the case of activation energy (E), (b) Performance curve for the case of pre-exponential factor 
(lnA), (c) Performance curve for the case of mechanism (n)

(a) (b)

(c)



160	 S. J. Charde et al., Degradation Kinetics of Polycarbonate Composites, Chem. Biochem. Eng. Q., 32 (2) 151–165 (2018)

F i g .  4 	–	 (a) Regression plot for training, validation, and testing of activation energy (E), (b) Regression plot for training, validation, and 
testing of pre-exponential factor (lnA), (c) Regression plot for training, validation, and testing of reaction mechanism (n)

(a) (b) (c)
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Test and validation error follows the same trend 
pointing to best results. Similarly, performance 
curves for lnA and mechanism (n) are shown in Fig. 
3b and 3c, respectively. Best validation performance 
occurs at 15 for lnA and 128 for n.

The regression plot shows a linear relation be-
tween the predicted output and the target, as repre-
sented by regression coefficients, R, close to 1, 
shown in Figs. 4a, 4b, and 4c for training, valida-
tion, and testing of the kinetic parameters. A cor-
relation coefficient close to 1 was observed for the 
prediction of all the three kinetic factors. The ANN 
output predicted from the network was compared 
with the experimental values for E, lnA, and n, with 
a coefficient of correlation close to 1, as shown in 
Figs. 5a, 5b, and 5c, respectively. The network was 
tested with some new points excluding the dataset, 
and the coefficient of correlation achieved was 
close to 1, confirming the generalized capability of 
the network to predict kinetic parameters. Figs. 6a, 
6b, and 6c represent the graphs for the test samples 
of E, lnA, and n, respectively.

The relative significance of each input variable 
on the output was obtained by sensitivity analysis 
using Garson’s equation as explained previously. 
Table 7 represents the relative influence (%) of in-
put variables on output E, lnA, and n, respectively. 
Evidently, time as input variable, had the most in-
fluence on all the kinetic parameters. Time is based 
on heating rates; thus, heating rates are the most 
important parameters for the evaluation of kinetics. 
The second most important parameter influencing 
the kinetic parameters was confirmed to be tem-
perature. The importance of variables was estab-
lished to be in the order of

Time > Temperature > Conversion.

Conclusions

The results established based on two different 
non-isothermal methods (Coats-Redfern and Mad-
hysudanan-Krishnan-Ninan) were quite compara-
ble, implying that an average of the two could be 
taken. The kinetic parameters (E, A, ΔS*, ΔH*, and 
ΔG*) were calculated for all the samples. It can be 
concluded that the system is non-spontaneous. 
Modelistic methods and model-free methods pro-
vide almost the same values of activation energy. 

F i g .  5  – (a) Comparison of the experimental E values with the 
predicted E values (ANN), (b) Comparison of the experimental 
lnA values with the predicted lnA values (ANN), (c) Comparison 
of the experimental n value with the predicted n values (ANN)

(c)

(b)

(a)

Ta b l e  7 	–	Relative importance of input variables on the out-
put kinetic parameters

Kinetic 
parameters Time (min) Temperature 

(K)
Conversion 

(%)

E 42.5 % 40.51 % 16.98 %
lnA 41.57 % 35.5 % 22.88 %
n 46.55 % 27.9 % 25.55 %

R2 = 1

R2 = 0.9998

R2 = 0.9999
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Kinetics of pure PC is best described by chemical 
process, Fn mechanism, where n is 1, whereas, ki-
netics of 3 % polymer composite is best described 
by chemical process, F3/2 mechanism. Lower values 
of lnA in the range 106, indicates a tight complex or 
a surface reaction. Higher values of lnA indicate a 
loose complex, as is the case with polymer compos-
ites. A different mechanism acquired by polymer 
composites indicates different behavior of compos-
ites as compared to pure PC. The higher values of 
kinetic parameter were observed for polymer com-
posites. It was observed that the dependence of lnA 
on E is somewhat linear, also known as the kinetic 
compensation effect. It was also observed that low-
er entropy corresponds to higher E values. Thus, the 
use of model-free and modelistic methods leads to 
the better understanding of kinetics of polymer 
composites degradation. Hence, it is possible to de-
sign a reactor for degradation of PC and its compos-
ites to obtain synthetic gas and low molecular 
weight hydrocarbons. The application of artificial 
neural network supported in designing models that 
could be applied to determine kinetic parameters in-
dependently based on actual data and not regression 
fit alone, without carrying out a number of experi-
ments, would result in saving time and money.
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