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ABSTRACT
This paper is concerned with event-triggered autonomous platoon control with probabilistic
sensor and actuator failures. A new platoon model is established, in which the effect of event-
triggered scheme and probabilistic failures are involved. Based on the model, the criteria for the
exponential stability and co-designing both the trigger parameters and the output feedback are
derived by using the Lyapunov method. The theoretical results show that the proposed controller
would be able to safely maintain a smaller inter-vehicle spacing and the platoon would be string
stable. The effectiveness and advantage of the presented methodology are demonstrated by
numerical simulations.
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1. Introduction

Autonomous platoon control system (APCS) is a vehi-
cle-following control system which automatically
accelerates and decelerates so as to keep a small inter-
vehicle distance [1,2]. There are so many advantages of
moving vehicle based on the notion of platoons, such
as driving safety and comfort, reducing fuel consump-
tion and air pollution, and improving the throughput
in the urban traffic [3,4]. As a result, a lot of research
works on platoon control have been extensively stud-
ied in [5–7].

Since vehicles in a platoon are coupled, disturbances
acting on one vehicle may inevitably affect the others,
rendering spacing errors to amplify along the platoon
which is called string instability [8,9]. Therefore, an
important aspect of vehicle platoon control, beyond
stabilizing each of the individual vehicles involved, is
the problem of ensuring string stability, or stability of
the platoon of vehicles as a whole.

To guarantee string stability and maintain the
desired space, much research has been proposed in [3–
17]. As stated in [6], there have been two control strat-
egies, i.e. the bidirectional following and predecessor
and leader following. First, the bidirectional following
strategy is a platoon control scheme by which the
information of its following and preceding vehicle
should be employed. This scheme is decentralized,
since the control information can be obtained by on-
board sensors alone. Still, the nearest neighbour fol-
lowing control suffers from the high sensitivity to the
length of the vehicular platoon and lower performance
compared with the predecessor and leader following

strategy. Such as in [8], the authors investigate optimal
control strategies for a nearest neighbour following
with an increasing number of vehicles and show that
some related linear quadratic regulator (LQR) prob-
lems are ill-posed. A mistuning control method is
designed in [9] to improve the stability margin of the
platoon system. In order to enhance the coherence of
the nearest neighbour following control scheme, an
optimal controller was designed in [10].

Due to these weaknesses of the bidirectional struc-
ture, most of the platoon-control research work has
been based on the predecessor and leader following
platoon control structure. This control scheme is
advantageous because, apart from its simplicity in
achieving string stability, it utilizes the wireless com-
munication technology to increase the performance of
the platoon. However, the use of the wireless commu-
nication immediately causes some questions on the
effect of communication constraints. Under this
framework, these works present in [11] studied the
effects of communication delays on string stability;
longitudinal platoon control and state estimation via
communication channels with packed-dropout are
addressed in [12]; a decentralized communication and
control strategy is presented in [13] for automated
driving assistance to a platoon of vehicles in heavy traf-
fic and scarce visibility.

In contrast to the aforementioned literature, the
main focus in this paper is on how to deal with the fol-
lowing three aspects. First, ignoring the frequent oper-
ation on the actuator brings an uncomfortable
experience to the passengers and increases the fuel

CONTACT Wei Yue 148098475@qq.com; weiy@dlmu.edu.cn
* Present address: College of Mechanical and Electrical Engineering, Dalian Minzu University, Dalian, China.

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

AUTOMATIKA, 2017
VOL. 58, NO. 1, 35–47
https://doi.org/10.1080/00051144.2017.1323714

http://crossmarksupport.crossref.org/?doi=10.1080/00051144.2017.1323714&domain=pdf
mailto:148098475@qq.com
mailto:weiy@dlmu.edu.cn
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/00051144.2017.1323714
http://www.tandfonline.com
http://www.tandfonline.com


consumption. In [14], the authors discuss how the fre-
quent operation affects the fuel consumption. In [15],
a model predictive control method was discussed,
which can minimize the frequent operation on the
throttle. However, these control methods suggested are
not applicable to the APCS. Second, without consider-
ing the contingent failures might happen to the on-
board sensors in practical cars for reasons such as poor
visibility due to rain or sandstorm and interference of
radar signals [16,17]. The combined actuator fault is
the third aspect that may add to the limitations since
the actuator failure will cause a wrong operation on
the actuator speed growing or reducing. Previous
works on actuator failure detection and control related
to vehicle control have been carried out in [18,19].
However, the detection technologies suggested are not
applicable to the fully APCS, which is still an open and
challenging problem.

The aim of this paper is to design an autonomous
platoon control method within an event-triggered
framework. We first model the platoon system that
takes full consideration of the probabilistic failures.
Sufficient conditions for the existence of output feed-
back controllers are derived in the context of an event-
triggered scheme, which ensure the exponential stabil-
ity of the platoon system. With these conditions, the
individual vehicle stability and string stability can be
guaranteed with a desired exponential decay rate. As
will be shown later in numerical simulations, the pre-
sented method can serve as an effective algorithm for
practical use.

The remainder of this paper is organized as follows.
Section 2 introduces the problem formulation of pla-
toon control with sensor and actuator failures taken
into consideration. Section 3 presents an event-trig-
gered controller for dealing with probabilistic failures.
Section 4 obtains the sufficient conditions for the con-
troller to achieve string stability. Numerical simula-
tions are shown in Section 5. Finally, Section 6
presents the conclusion.

2. Problem formulations

Consider a platoon system consisting of n vehicles (see
Figure 1) running in a horizontal environment. Denote
by zi; vi and ai the ith (i = 0, …, n¡1) vehicle’s posi-
tion, velocity and acceleration, with i = 0 standing for
the lead vehicle and the others being followers. Each
follower vehicle periodically broadcasts its position,

velocity and acceleration to the following vehicle in the
platoon one by one. The lead vehicle periodically
broadcasts its position, velocity and acceleration to all
the follower vehicles in the platoon. All followers are
equipped with GPS devices and to measure the dis-
tance and relative velocity between it and its preceding
vehicle.

2.1. Platoon system dynamics modelling

Consider a platoon of n vehicles, as shown in Figure 1,
where i = 0 stands for the leading vehicle. The spacing
error for the ith following vehicle can be defined as

di ¼ zi�1 � zi � dd � L ðz0 ¼ 0 in d1Þ; (1)

where dd is the desired vehicle spacing, zi�1 and zi
denote the position of two consecutive vehicles, and L
is the length of the vehicle. Then, the dynamics of the
ith following vehicle can be modelled by the following
nonlinear differential equations:

_di ¼ vi�1 � vi;

_vi ¼ ai;

_ai ¼ fiðvi; aiÞ þ giðviÞci; (2)

where viand ai are the velocity and acceleration, respec-
tively, ci is the control input of the ith vehicle’s engine,
with ci> 0 and ci < 0 representing the throttle input
and the brake input, respectively. fiðvi; aiÞ and giðviÞ are
given by

fiðvi; aiÞ ¼ � 1
&i

_vi þ sAicdi
2mi

v2i þ
dmi

mi

� �
� sAicdiviai

mi
;

giðviÞ ¼ 1
&imi

;

with s being the specificmass of the air. For the ith vehicle,
mi is the vehicle mass, Ai is the cross-sectional area, sAi

cdi=2mi is the air resistance, cdi is the drag coefficient, dmi

is the mechanical drag and &i is the engine time constant.
For (2), we adopt the following feedback lineariza-

tion control law:

ci ¼ uimi þ sAicdiv
2
i =2þ dmi þ &isAicdiviai; (3)

where ui is the additional input signal to be designed so
that the closed-loop system can satisfy certain perfor-
mance criteria. After introducing (3), the third equa-
tion in (2) becomes

_aiðtÞ ¼ � 1
&i
aiðtÞ þ 1

&i
uiðtÞ: (4)

Define xðtÞ ¼ Col xiðtÞ½ �n�1
i¼1 , uðtÞ ¼ Col uiðtÞ½ �n�1

i¼1

and yðtÞ ¼ Col yiðtÞ½ �n�1
i¼1 , respectively, as the state, theFigure 1. Autonomous platoon systems.
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control and the measurement output vectors, where

“Col” represents the column vector, xiðtÞ ¼
di vi ai½ �T and yiðtÞ ¼ di vi�1 � vi ai�1 � ai½
v0 � via0 � ai�T , i = 1, …, n¡1. Based on (2) and (4),
the state-space equation of the platoon system can be
written as

_xðtÞ ¼ AxðtÞ þ BuðtÞ; (5)

where

A ¼
Av 0 � � � 0

Ad Av � � � 0

� � � } } � � �
0 � � � Ad Av

2
6664

3
7775; B ¼

Bv 0 � � � 0

0 Bv � � � 0

� � � } } � � �
0 � � � 0 Bv

2
6664

3
7775;

Bv ¼ 0 0 1=&i½ �T ;

Av ¼
0 �1 0

0 0 1

0 0 �1=&i

2
4

3
5; Ad ¼

0 1 0

0 0 1

0 0 0

2
4

3
5:

Similarly, the output equation is written as

yðtÞ ¼ CxðtÞ; (6)

For each following vehicle, the kernel controller to
be designed is in the following output feedback form:

uiðtÞ ¼ KiyiðtÞ; (7)

where Ki ¼ ½kp kv ka kvl kal� is the controller
gain to be determined.

2.2. Construction of event-triggered framework

As is well known, the periodic sampling mechanism
has been widely used in APCS. However, it may often
lead to sending many unnecessary signals to the con-
troller, which in turn will increase the fuel consump-
tion. Therefore, for the control of the platoon systems
shown in Figure 2, in order to achieve fuel economy, it
is significant to introduce an event-triggered mecha-
nism which decides whether the newly sampled infor-
mation should be sent to the controller. As shown in
Figure 2, an event generator is constructed between the
sensor and the controller, which decides when to trans-
mit the measurement output to the controller by a
specified trigger condition; the state is sampled regu-
larly by the sampler of the sensor with period h and is
fed into the event generator, which will be given in the
sequel. The following function of the event-triggered
platoon system architecture in Figure 2 is expected:

(1) The state of the vehicles i is sampled at time kh
by sampler with a given period h. The next state
is at time (k + 1)h.

(2) As shown in Figure 2, the event generator is con-
structed between the sensor and the controller,
which uses the sampled state to determine whether
the newly sampled state will be sent out to the con-
troller. Considering the probabilistic failures, we
adopt the following judgement algorithm:

½E rxðkþ jÞhÞf g � E rxðkhÞf g�TV½E rxðkþ jÞhÞf g
�E rxðkhÞf g� � mE rxðkþ jÞhÞf g�TV½E rxðkþ jÞhÞf g�;

(8)

where V is a positive weighting matrix, j2{0, 1 ,2 , …},
m 2 ½0; 1� and r ¼ diag r1; r2; . . .; rnf g with ri ¼ diag

frp; rv; ra; rvl; ralg is the failures’ status matrix of the

ith vehicle, and rp, rv, ra, rvl and ral are five unrelated

random variables.

(3) Under the event-triggered scheme (8), the release
times are assumed to be t0h, t1h, t2h, …, where t0
is the initial time. sjh ¼ tjþ1h� tjh denotes the
release period of event generator in (8). Consider-
ing the effect of the transmission delay on the
wireless communication network, we suppose the
time-varying delay from the lead vehicle is tk and
tk 2 ½0;~t�, where ~t is a positive integer. Therefore,
the measurement output xi(t0h), xi(t1h), xi(t2h), …
will arrive at the following vehicle at the instants
t0h + s0, t1h + s1, t2h + s2,…, respectively.

Considering the effect of the communication delay,
under the event generator with (8), the controller in
(7) can be rewritten as

uðtÞ ¼ KCxðtkhÞ; t 2 ½tkhþ tk; tkþ1hþ tkþ1�; (9)

where K ¼ diag Kif gn�1
1 .

Figure 2. Architecture of the event-triggered platoon system.
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Remark 2.1: Under the event-triggered scheme (8),
the set of release instants {t0h, t1h, t2h,…} is a subset of
the sampled instants {0, 1, 2, …}. Moreover, the
amount of {t0h, t1h, t2h, …} depends on not only the
parameter mi, but also on the variation of the preced-
ing vehicle’s state, that is to say, if the change of the
lead vehicle and the preceding vehicle’s states is not
serious, there will be no further actions on the follow-
ing vehicles.

2.3. Effect of sensor and actuator failures

Now, we are in a position to show the sensors and
actuators used in the platoon system and the problems
caused by the failures as indicated in the Table 1.

In this research, the sensor-failure model in [20]
was utilized to describe the failure phenomenon in
GPS, wheel speed sensor and accelerometer, namely

d
f
i ðtÞ ¼ rdi diðtÞ, vfi ðtÞ ¼ rvi viðtÞ, afi ðtÞ ¼ rai aiðtÞ; where
0 � rdi � rdi , 0 � rvi � rvi and 0 � rai � rai , with rdi , r

v
i

and rai . Then, the controller (9) can be written in the
following form:

uðtÞ ¼ KCrsxðtkhÞ; t 2 ½tkhþ tk; tkþ1hþ tkþ1�; (10)

where rs ¼ diagfrs1; rs2; . . .; rsðn�1Þg with rsi ¼ diag

rdsi; r
v
si; r

a
si

� �
and the mathematical expectation and

variance of rmsi (m ¼ d; v; a) are bmsi and λmsi , respec-
tively.

Based on (10), we consider the actuator failures as
in [21], then (10) can be described as follows:

uðtÞ ¼ raKCrsxðtkhÞ; t 2 ½tkhþ tk; tkþ1hþ tkþ1�; (11)

where rac ¼ diagfrac1; rac2; . . .; racðn�1Þg represents

the actuator failure state and 0 � raci � raci with
raci � 1. The mathematical expectation and variance
of raci are baci and λaci, respectively.

Under the controller (10), the closed-loop platoon
system for t 2 ½tkhþ tk; tkþ1hþ tkþ1�, k ¼ 0; 1; 2; . . .
can be written in the following form:

_xðtÞ ¼ AxðtÞ þ BracKCrsxðtkhÞ;
¼ AxðtÞ þ BracKCrsxðtkhÞ þ nxðtkhÞ; (12)

where n ¼ BracKðrs � rsÞþBðrac� racÞKrs þ Bðrac�
racÞKðrs � rsÞ,

rac ¼ diag bac1; bac2; . . .; bacðn�1Þ
n o

¼
Xn�1

i¼1

baciL
i
ac;

rs ¼ diag bm
s1; b

m
s2; . . .; b

m
sðn�1Þ

n o
¼

Xn�1

i¼1

bm
si L

i
s;

E ðrac � racÞ2
� � ¼ diag λ2ac1; . . .; λ

2
acðn�1Þ

n o
;

E ðrs � rsÞ2
� � ¼ diag ðbm

s1Þ2; ðbm
s2Þ2; . . .; ðbmsðn�1ÞÞ2

n o
;

Lia ¼ diagð0; . . .; 0|fflfflffl{zfflfflffl}
i�1

; 1; 0; . . .; 0|fflfflffl{zfflfflffl}
n�1�i

Þ;

Lis ¼ diagð0; . . .; 0|fflfflffl{zfflfflffl}
i�1

; 1; 0; . . .; 0|fflfflffl{zfflfflffl}
n�1�i

Þ:

For the convenience of forthcoming discussion,
consider the following two cases:
Case 1: If tkhþ hþ ~t � tkþ1hþ tkþ1, where
~t ¼ maxtk, define a function tðtÞ as

tðtÞ ¼ t � tkh; t 2 ½tkhþ tk; tkþ1hþ tkþ1�; (13)

Clearly, following from (13) that

tk � tðtÞ � ðtkþ1 � tkÞhþ tkþ1 � hþ ~t: (14)

Case 2: If tkhþ hþ ~t< tkþ1hþ tkþ1, consider the fol-
lowing intervals:

½tkhþ tk; tkhþ hþ t� and ½tkhþ jhþ tk; tkhþ jhþ hþ t�:

Since tk � t, it can be easily shown that there exists
diM such that

tkhþ dMhþ t � tkþ1hþ tkþ1 � tkhþ dMhþ hþ t:

Moreover, xðtkhÞ and tkhþ jh with j= 0, 1, …, dM
satisfy (8):

Let

I0 ¼ ½tkhþ tk; tkhþ hþ t�;
Ij ¼ ½tkhþ jhþ tk; tkhþ jhþ hþ t�
IdM ¼ ½tkhþ dMhþ ti; tkþ1hþ tkþ1�;

;

8<
: (15)

where j= 0, 1,…,dM � 1, one can get

½tkhþ tk; tkþ1hþ tkþ1� ¼ [j¼dM

j¼0
Ij:

Define tðtÞ ¼
t � tkh; t 2 IdiM
t � tkh� jh; t 2 Ij
t � tkh� dMh; t 2 IdM

;

8<
: (16)

Then, we have

tk � tðtÞ< hþ t; t 2 I0
tk � t � tðtÞ � hþ t; t 2 Ij
tk � t � tðtÞ � hþ t; t 2 IdM

;

8<
: (17)

Table 1. Complete set of sensor and actuator.
On-board sensor and actuator Failure phenomenon

Wheel speed sensor Lost velocity information
GPS Lost position information
Accelerometer Lost acceleration information
Throttle actuator Platoon break-up
Brake actuator Rear-end collision
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where the third row in (10) holds because
tkþ1hþ tkþ1 � tkhþ ðdM þ 1Þhþ t. Obviously,

0 � ti � tiðtÞ � hþ ti , tim; t 2 ½tkhþ tk; tkþ1hþ tkþ1�:
(18)

In Case 1, for t 2 ½tkhþ tk; tkþ1hþ tkþ1Þ, define
ekðtÞ ¼ 0; in Case 2, define

rsekðtÞ ¼
0; t 2 I0
rsxðtkhÞ � rsxðtkhþ jhÞ; t 2 Ij
rsxðtkhÞ � rsxðtkhþ dMhÞ; t 2 IdM

:

8<
:

(19)

From (19) and the triggering algorithm (8), it can be
easily seen that, for t 2 ½tkhþ tk; tkþ1hþ tkþ1�,

eTk ðtÞrTs VrsekðtÞ � mxTðt � tðtÞÞrT
s
Vrs~xðt � tðtÞÞ: (20)

According to (19), we can deduce that

ekðtÞ ¼
0; t 2 I0
xðtkhÞ � xðtkhþ jhÞ; t 2 Ij
xðtkhÞ � xðtkhþ dMhÞ; t 2 IdM

:

8<
: (21)

Utilizing tðtÞ and ekðtÞ, the closed-loop platoon sys-
tem (12) can be rewritten as

_xðtÞ ¼ AxðtÞ þ BracKrs½xðt � tðtÞÞ þ ekðtÞ�
þn½xðt � tðtÞÞ þ ekðtÞ�; (22)

where t 2 ½tkhþ tk; tkþ1hþ tkþ1�.

2.4. The objective

Our objective of this paper is to design an event-trig-
gered-based controller for the platoon system to meet
the following criteria:

(i) Individual vehicle stability: the entire closed-
loop platoon system is exponentially mean
square stable (EMSS).

(ii) Steady-state performance: the relative velocity
errors DviðtÞ approach to zero for all vehicles.

(iii) String stability: the oscillations are not amplify-
ing with vehicle index due to any manoeuver of
the lead vehicle, namely kGðjwÞk � 1 for any w,
where GðsÞ ¼ diðsÞ=di�1ðsÞ with diðsÞ and
di�1ðsÞdenotes the Laplace transforms of the
spacing error diðtÞ and di�1ðtÞ, respectively.

Before giving the main results on the controller
design, we first give two definitions and two lemmas.

Definition 2.1 [22]: For a given function
V :Cb

F0ð½�tm; 0�;RnÞ � S; its infinitesimal operator G is
defined as FðVhðtÞÞ ¼ limD! 0þ½EðVðht þ DÞ j htÞ � VðhtÞ�.
Definition 2.2 [22]: System (18) and (19) is said to be
EMSS if there exist constants a > 0 and b > 0 such
that, for t � 0,

EðkxðtÞk2Þ � ae�btE sup
�tm � s � 0

k’ðsÞk2
( )

:

Lemma 2.1 [23]: For any vectors x, y 2 Rn, and posi-
tive definite matrix Q 2 Rn�n, the following inequality
holds:

2xTy � xTQx þ yTQ�1y:

Lemma 2.2 [23]: E1, E2 and V are matrices with
appropriate dimensions, tðtÞ is a function of t and
0 � tðtÞ � tM , then tðtÞE1 þ ðtM � tðtÞÞE2 þV< 0;
if and only if tME1 þV< 0, tME2 þV< 0.

3. Event-triggered controller design

One event-triggered controller for the platoon system
with sensor and actuator failures is derived in this sec-
tion. This controller is designed based on Lyapunov’s
second method.

We first give the EMSS condition for the platoon
system (22) in the following theorem:

Theorem 3.1: For the given scalars tM, bm
si , baci, λ

m
si ,

λaci, m 2 ½0; 1� and feedback gain K, the closed-loop pla-
toon system in (22) is EMSS, if there exist matrices
P> 0, Q> 0, R> 0, V> 0, N and M such that for
g ¼ 1, 2 and the following inequalities hold:

SðgÞ,

S11 þ Gþ GT Sg
12

ffiffiffiffiffiffi
tM

p
A
T

S14 S15

� �R 0 0 0

� � �R�1 0 0

� � � S44 0

� � � � S55

2
666664

3
777775< 0;

(23)
where
S1
12 ¼

ffiffiffiffiffiffi
tM

p
N; S2

12 ¼
ffiffiffiffiffiffi
tM

p
M;

G ¼ N M � N �M 0½ �;
A ¼ A BracKrs 0 BracKrs½ �;

Wij ¼ 2tmðb2aciðgm
sj Þ2 þ λ2aciðbm

sj Þ2 þ λ2aciðgmsj Þ2Þ;
S14 ¼ L1 L2 � � � Ln½ �;
Li ¼ LT

i1 LT
i2 � � � LT

iðn�1Þ
h i

;

Lij ¼
ffiffiffiffiffiffiffi
Wij

p
0 BLiacKL

i
s 0 0

� 	
;

S15 ¼ P1 P2 � � � Pðn�1Þ
� 	

;
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Pi ¼ PT
i1 PT

i2 � � � PT
iðn�1Þ

h i
;

Pij ¼
ffiffiffiffiffiffiffi
Wij

p
0 0 0 BLiacKL

i
s

� 	
;

S44 ¼ S55 ¼ diag �R�1;�R�1; . . .;�R�1
� �

;

S11 ¼

PAþ ATP þ Q � � �
rsK

TracB
TP

Xn�1

i

mðbmsi Þ2ðLisÞTVLis � �
0 0 �Q �
0 0 0 �

Xn�1

i

ðbm
si Þ2ðLisÞTVLis

2
666666664

3
777777775
:

Proof: See Appendix 1.

Remark 3.1: Theorem 3.1 supplies a sufficient condi-
tion for the platoon system to be EMSS, implying that
the control objective (i) and (ii) can be achieved. We
now proceed to give a reliable controller design
method through selecting a constant a to minimizePn�1

i¼1 ðai � aÞin the following theorem:

Theorem 3.2: For the given scalars tM, bm
si , baci, λ

m
si ,

λaci, e> 0 and m 2 ½0; 1�, the closed-loop platoon system
in (22) with controller gain K = YX¡1 is EMSS if there
exist matrices X> 0, ~Q> 0, ~R> 0, V> 0, ~N ~M and Y
such that for g ¼ 1, 2, and the following inequalities
hold:

~S11 þ ~Gþ ~G
T ~S

g
12

ffiffiffiffiffiffiffi
tiM

p ~A
T

0 ~S15

� �~R 0 0 0

� � �2eX þ e2~R 0 ~S35

� � � ~S44 0

� � � � ~S55

� � � � �
� � � � �
� � � � �
� � � � �

0 0 ~S18
~S19

0 0 0 0

0 0 0 0
~S46 0 0 0

0 ~S57 0 0
~S66 0 0 0

� ~S77 0 0

� � ~S88 0

� � � ~S99

2
666666666666666664

3
777777777777777775

< 0;

(24)

where

~S11 ¼
AX þ XAT þ ~Q aBdacY 0 aBdacY

� m~V 0 0

� � �~Q 0

� � � �~V

2
6664

3
7775;

~S
1
12 ¼

ffiffiffiffiffiffi
tM

p ~N; ~S
2
12 ¼

ffiffiffiffiffiffi
tM

p ~M;

~G ¼ ~N ~M � ~N � ~M 0
� 	

;

~A ¼ AX aBracY 0 aBracY½ �;

~S15 ¼
BdacY BdacY 0 0

0 0 ds � aI 0

0 0 0 0

0 0 0 ds � aI

2
6664

3
7775;

~S18 ¼
0 � � � 0

L1s � � � Ln�1
s

0 � � � 0

0 � � � 0

2
6664

3
7775; ~S19 ¼

0 � � � 0

0 � � � 0

0 � � � 0

L1s � � � Ln�1
s

2
6664

3
7775;

~S35 ¼ ffiffiffiffiffiffi
tM

p
BracY 0 0 0½ �;

~S44 ¼ diagf�2eX þ e2~R; . . .;�2eX þ e2~R|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2ðn�1Þ2

g;

~S55 ¼ diag �X;�X;�X;�Xf g;
~S46 ¼ ~L1

~L2 � � � ~Ln�1

� 	
;

~Li ¼ 01�ði�1Þðn�1Þ ~C
T
ji 0ðn�1�iÞðn�1Þ�1

h iT
;

~S57 ¼ ~D1
~D2 � � � ~Dn�1

� 	
;

~Di ¼ ~Li; ~C
T
ji ¼

ffiffiffiffiffiffiffi
Wji

p
YTL1acB

T � � � YTL1acB
T

� 	
;

~S66 ¼ Q77 ¼ Q88 ¼ Q99 ¼ diagf�X; . . .;�X|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ðn�1Þ2

g

Furthermore, a candidate controller gain can be
given by K = YX¡1.

Proof: See Appendix 2.

Remark 3.2: The proposed Theorem 3.2 gives upper
bounds t� for the delay which guarantee the stability
of the individual vehicle. This means that the theorem
can help us to evaluate the wireless network used in
the platoon systems.

4. String stability

In the above section, considerations have been focused
primarily on the EMSS of all the individual vehicles in
the platoon system. This section is concerned with the
issue of string stability, which is associated with objec-
tives (iii) given in Section 2. Here, we first give a result
on string stability, and then derive an additional set of
constraints to guarantee zero steady-state velocity
error. The analysis and results are based on the event-
triggered controller (7) obtained above and assume all
vehicles have the same fault parameters, namely rdsi ¼
rvsi ¼ rasi ¼ r�s and raci ¼ r�ac.

Consider the ith following vehicle under the control
of the presented event-triggered controller. By using
Equation (1), we can have the following equation about
its spacing error:

d⃛iðtÞ ¼ _ai�1ðtÞ � _aiðtÞ: (25)

Substituting (11) into (4), we have

_aiðtÞ ¼ � 1
&
aiðtÞ þ 1

&
kiyi:
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Combining with (25) and considering the faults
in (11), the equation about spacing error can be written
as

&d⃛iðtÞ ¼ �€diðtÞ � r�s ½kpdiðt � tÞ � kv _diðt � tÞ
�ka€diðt � tÞ � kvl _diðt � tÞ � kal€diðt � tÞ
þkpdi�1ðt � tÞ þ kv _di�1ðt � tÞ
þka€di�1ðt � tÞ�r�ac: (26)

Taking the Laplace transform of Equation (26), we
can get

GðsÞ ¼ diðsÞ
di�1ðsÞ

� r�s ðkp þ kvsþ kas2Þr�ace�ts

&s3 þ s2 þ r�s ½kp þ ðkv þ kvlÞsþ ðka þ kalÞs2�r�ace�ts
:

(27)

Based on this transfer function, we have the follow-
ing result on string stability:

Theorem 4.1: for the platoon-spacing error system
(26), j diðjwÞ=di�1ðjwÞ j � 1 holds for anyw> 0, if the
following conditions are satisfied:

ðaÞ &kp=r�s r�ac � kv � kvl � 0;

ðbÞ kal þ ka ¼ &ðkv þ kvlÞ=r�s r�ac;
ðcÞ k2vl þ 2ðkvkvl � kpkalÞ � 2kp � 0;

ðdÞ 1� k2a þ 2tð&kp=r�s r�ac � kv � kvlÞ � 0:

8>>>><
>>>>:

(28)

Proof: First, we write j diðjwÞ=di�1ðjwÞ j as

GðjwÞ ¼ j diðjwÞ
di�1ðjwÞ j ¼

ffiffiffiffiffiffiffiffiffiffiffi
a

aþ b

r
;

where
a ¼ ðkp � kaw

2Þ2 þ k2vw
2;

b ¼ ½k2vl þ 2ðkvkvl � kpkalÞ � 2kpcosðtwÞ�w2

þ2ð&kp=r�s r�ac � kv � kvlÞsinðtwÞw3

þ½1þ k2al þ 2kakal þ 2½ðkal þ kaÞ
�&ðkv þ kvlÞ=r�s r�ac�cosðtwÞ�w4

�2&ðkal þ kaÞ=r�s r�acsinðtwÞw5 þ ð&=r�s r�acÞ2w6

Since a> 0, j diðjwÞ=di�1ðjwÞ j � 1 holds true,
i.e. the platoon is string stable, if b � 0: From (28(a))
and the fact that sinðhwÞ � tw, we have for w> 0
that

2ð&kp=r�s r�ac � kv � kvlÞsinðtwÞw3

� 2tð&kp=r�s r�ac � kv � kvlÞw4: (29)

Using the condition (28(b)), we have

b � ½k2vl þ 2ðkvkvl � kpkalÞ � 2kpcosðtwÞ�w2

þ½1þ k2al þ 2kakal þ 2tð&kp=r�s r�ac � kv � kvlÞ�w4

�2&ðkal þ kaÞ=r�s r�acsinðtwÞw5 þ ð&=r�s r�acÞ2w6:

Since &, kp, ka and kal are all positive, and the fact
that cosðtwÞ, sinðtwÞ � 1, one can get

b � ½k2vl þ 2ðkvkvl � kpkalÞ � 2kp�w2 þ ½1� k2a

þ 2tð&kp=r�s r�ac � kv � kvlÞ�w4: (30)

Thus, if the conditions (28(c,d)) hold, then
b � 0: This completes the proof.

Remark 4.1: It should be noted that the conditions for
achieving platoon control require combining Theo-
rems 3.2 and 4.1. This produces an upper bound for
the time delay, that is,

t � 1� k2a
2ðkv þ kvl � &kp=r�s r�acÞ

; t�

 �

: (31)

5. Simulations

For the numerical simulations, we consider the pla-
toon-control system in Figure 1, each of which consists
of 10 vehicles, which run in a virtual environment
established using a system-build software package in
MATLAB. Comparisons are made between the pro-
posed controller and the method in [15]. The following
parameters are used in the simulations: minimum
vehicle distance d0 ¼ 3m, length of the vehicle Li ¼ 4
m and the engineer time constant &i ¼ 0:25. The other
parameters used in the simulations are the same as
[17], namely specific mass of the air s ¼ 1:2kg=m3,
cross-sectional area of vehicle Ai ¼ 2:2m2, drag coeffi-
cient cdi ¼ 0:35, vehicle mass mi ¼ 1464kg and
mechanical drag dmi ¼ 5N.

In the simulation, we suppose that the sensor’s fail-
ure rs1 ¼ rs2 ¼ � � � ¼ rs9 ¼ diag 0:8; 0:8; 0:8f g, with
λds1 ¼ λds2 ¼ � � � ¼ λds9 ¼ 0:15, λvs1 ¼ λvs2 ¼ � � � ¼ λvs9 ¼ 0:3,
λas1 ¼ λas2 ¼ � � � ¼ λas9 ¼ 0:15 and the actuator’s failure
rac ¼ diag 0:65; 0:65; 0:65; 0:65; 0:65; 0:65; 0:65;f 0:65;
0:65g with λac1 ¼ λac2 ¼ � � � ¼ λac9 ¼ 0:15, a ¼ 18:06,
e ¼ 1. The sampling period is h ¼ 0:2ms;the corre-
sponding parameter m= 0.03. The probabilistic sensor
and actuator failures for the first vehicle are shown in
Figure 3(a,b), respectively. Then, from Theorems 3.2 and
4.1, we can get the upper bound of the time delay
tM ¼ 0:9486. By setting the delay t ¼ 0:9, the controller
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gains are obtained as

K ¼ diag Kif g91;
¼ 9:001 0:2110 3:000 14:214 0:6068½ �

5.1. Lead vehicle’s rapid acceleration and
deceleration scenario

In this scenario, it is assumed that all vehicles in the
platoon are running at the same initial speed of 10 m/s
with desired spacing as 1 m. At 5 s, the lead vehicle
accelerates at 2m=s2 from 10 to 45 m/s and at 19 s, the
preceding car decelerates at the acceleration of
¡3m=s2 from 45 to 17 m/s. All the following vehicles
are controlled to follow it by using the proposed con-
troller and the algorithms in [15]. The results are
shown in Figures 4 and 5, respectively.

During the acceleration stage, the maximum spac-
ing errors and velocities for all the following vehicles
in the platoon system under the proposed controller
are 1.48 m and 45.3m=s, respectively. As shown in

Figure 4, the whole platoon can achieve tracking con-
trol accuracies with a smooth control input. In this
same case, when the method suggested in [15] is used,
the system is string unstable (see Figure 5). The maxi-
mum spacing error and velocity are 2.8 m and
49.1m=s, respectively, which are much higher than in
our case as shown in Figure 5(a,b). During the deceler-
ation stage, it is found that the whole platoon can hold
string stability, and the maximum spacing error and
velocity are 0.74 m and 16.4m=s, respectively, as shown
in Figure 4. In contrast, as shown in Figure 5(a), the
maximum spacing error is ¡1.75 m, which means a
rear-end collision is happening, and the platoon is
string instability.

5.2. The platoon suffered unknown disturbances

Various types of disturbances typical for real operation
conditions have been considered. Figure 6(a) repre-
sents an illustration of the capabilities of the proposed
methodology to cope with noisy and measurement
errors. We assume zero initial conditions, using noisy
measurements of di, vi and ai, where the noise is
assumed to be white and zero mean with standard
deviations 0.02 m, 0.05 m/s and 0.02 m/s2, respectively.
In the stochastic case, the efficiency of the controller
described in Section 3 is obvious and the results show
that the maximum absolute spacing error does not
exceed 0.8 m. Figure 6(b) illustrates the situation when
the second and third vehicles lose the information of
the lead vehicle’s velocity and acceleration; vehicles 2
and 3 are obviously string unstable, but the rest of the
vehicles still meet the platoon-control objective (3) in
Section 2.
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Figure 3. (a) Sensor failures; (b) actuator failures.
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Figure 4. Ten-vehicle platoon system under proposed control-
ler: responses and spacing propagation characteristics: (a) spac-
ing errors; (b) velocities; (c) control input; (d) frequency
response 9w࿽ jGðjwÞ j � 1.
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Figure 5. Ten-vehicle platoon system under controller in [15]:
responses and spacing propagation characteristics: (a) spacing
errors; (b) velocities; (c) control input; (d) frequency
response 9w࿽ jGðjwÞ j > 1.
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6. Conclusions

In this paper, we have established an event-triggered
control scheme for the autonomous platoon control of
vehicles with sensor’s and actuator’s failure. To reduce
the negative effect of the failures, an event-triggered
control method based on the Lyapunov method was
proposed. The simulation results show the presented
method is in general superior to the existing result, and
a safer and smoother transient performance can be
achieved by properly choosing the design parameters.

An interesting future topic that merits this research is
how to improve the closed-platoon system performance
by using more than two vehicles’ information. In this
scheme, the wireless communication constraints should
be considered. These issues raise various open problems
that are worth investigating. One possibility is to apply
the method presented by Li and Dong [24,25] to auton-
omous vehicular platoon control.
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Appendix

Here, we present the proofs of Theorems 3.1 and 3.2.

A.1. Proof of Theorem 3.1

Define a Lyapunov function as

VðxtÞ ¼ xTðtÞPxðtÞ þ
Z t

t�tM

xTðsÞQxðsÞdsþ
Z t

t�tM

Z t

s
_xTðuÞR _xðuÞduds;

(A1:1)

where P, Q and R are positive-definite matrices with
appropriate dimensions.

According to Definition 2.1 for VðxtÞ and taking
expectation on it, one can derive

E CVðxtÞf g ¼ 2xTðtÞP AxðtÞ þ Bracprs½xðt � tðtÞÞf
þekðtÞ� þ xTðtÞQxðtÞ � xTðt � tMÞQxðt � tMÞ
þEftM _xTðtÞR _xðtÞg �

Z t

t�tM

_xTðsÞQ _xðsÞds
þG1 þ G2; (A1:2)

where

G1 ¼ 2ξTðtÞN½xðtÞ � xðt � tðtÞÞ �
Z t

t�tðtÞ
_xðsÞds� ¼ 0;

(A1:3)

G2 ¼ 2ξTðtÞM½xðt � tðtÞÞ � xðt � tMÞ �
Z t�tðtÞ

t�tM

_xðsÞds� ¼ 0;

(A1:4)

where Ni1 and Ni2 are matrices with appropriate
dimensions, and

ξTðtÞ ¼ xTðtÞ xTðt � tðtÞÞ xTðt � tMÞ wTðt � tðtÞÞ� 	
:

By Lemma 2.1, we have

�2ξTðtÞN
Z t

t�tðtÞ
_xðsÞds � tðtÞξTðtÞNR�1NTξðtÞZ t

t�tðtÞ
_xTðsÞR _xðsÞds; (A1:5)

�2ξTðtÞM
Z t�tðtÞ

t�tM

_xðsÞds � ðtM � tðtÞÞξTðtÞMR�1MTξðtÞ
Z t�tðtÞ

t�tM

_xTðsÞR _xðsÞds: (A1:6)

Notice that

E tM _xTðtÞR _xðtÞ� � ¼ EtM AxðtÞ þ BracKrsðxðt � tðtÞÞ½
þekðtÞÞþnðxðt � tðtÞÞ�TR AxðtÞ½
þBracKrsðxðt � tðtÞÞ þ ekðtÞÞ
þnðxðt � tðtÞÞ�

¼ tM AxðtÞ þ BracKrs½xðt � tðtÞÞ þ ekðtÞ�½ �TR AxðtÞ½
þBracKrs½xðt � tðtÞÞ þ ekðtÞ��

þ BracKrsekðtÞ

þ E tMx
Tðt � tðtÞÞnTRnxðt � tðtÞÞ� �

þ E 2tMx
Tðt � tðtÞÞnTRnekðtÞ

� �
þ E tMe

T
k ðtÞÞnTRnekðtÞ

� �
: (A1:7)

According to Lemma 2.2, the term 2tMxTðt � tðtÞÞ
nTRnekðtÞ in (A1.7) satisfies

2tMxTðt � tðtÞÞnTRnekðtÞ � tMxTðt � tðtÞÞnTRnxðt � tðtÞÞ
þtMeTk ðtÞnTRnekðtÞ:

(A1:8)

Then, we get

EftM _xTðtÞR _xðtÞg � tM AxðtÞ þ BracKrs½xðt � tðtÞÞ þ ekðtÞ�½ �TR

AxðtÞ þ BracKrs½xðt � tðtÞÞ þ ekðtÞ�½ �
þE 2tMx

Tðt � tðtÞÞnTRnxðt � tðtÞÞ� �
þE 2tMe

T
k ðtÞnTRnekðtÞ

� �
: (A1:9)

Recalling (12), we obtain

E2tMx
Tðt� tðtÞÞnTRnxðt� tðtÞÞg

¼ 2tME xTðt � tðtÞÞ;�
BracKðrs � rsÞ þ Bðrac � racÞKrs½
þBðrac � racÞKðrs � rsÞ�TR BracKðrs � rsÞ½
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þBðrac � racÞKrs þ Bðrac � racÞKðrs � rsÞ� xðt � tðtÞÞ

¼ 2tMx
Tðt � tðtÞÞ ðBracKðrs � rsÞÞT

h
RBracKðrs � rsÞ þ ðBðrac � racÞKrsÞTRBðrac
� racÞKrs þ ðBðrac � racÞKðrs � rsÞÞT

RBðrac � racÞKðrs � rsÞ�
xðt � tðtÞÞ: (A1:10)

Noting that

Ef2tMðBracKðrs � rsÞÞTRBracKðrs � rsÞg

¼
Xn�1

i¼1

Xn�1

j¼1

2tMb
2
aciðgm

sj Þ2ðBLiacKLjsÞTRBLiacKLjs;

(A1:11)

Ef2tMðBðrac � racÞKrsÞTRBðrac � racÞKrsg

¼
Xn�1

i¼1

Xn�1

j¼1

2tMλ
2
aciðbmsj Þ2ðBLiacKLjsÞTRBLiacKLjs;

(A1:12)

Ef2tMð2Bðrac � racÞKðrs � rsÞÞTRBðrac � racÞKðrs � rsÞÞg

¼
Xn�1

i¼1

Xn�1

j¼1

2tMλ
2
aciðgmsj Þ2ðBLiacKLjsÞTRBLiacKLjs: (A1:13)

Combining (A1.10, A1.13), we get

E2tMx
Tðt� tðtÞÞnTRnxðt� tðtÞÞg

¼
Xn�1

i¼1

Xn�1

j¼1

Wijx
Tðt � tðtÞÞðBLiacKLjsÞTRBLiacKLjsxðt � tðtÞÞ;

(A1:14)

whereWij ¼ 2tMðb2
aciðgm

sj Þ2 þ λ2aciðbmsj Þ2 þ λ2aciðgm
sj Þ2Þ.

Using the same method as (A1.14), we have

E2tMe
T
k ðtÞnTRnekðtÞg

¼
Xn�1

i¼1

Xn�1

j¼1

Wije
T
k ðtÞðBLiacKLjsÞTRBLiacKLjsekðtÞ: (A1:15)

Substituting (A1.3, A1.7, A1.14, A1.15) into (A1.2)
and combining (20), we can get

E CVðxtÞf g � 2xTðtÞP AxðtÞ þ Bracprs½xðt � tðtÞÞf
þekðtÞ� þ xTðtÞQxðtÞ � xTðt � tMÞQxðt � tMÞ

þ tM AxðtÞ þ BracKrs½xðt � tðtÞÞ þ ekðtÞ�½ �TR

AxðtÞ þ BracKrs½xðt � tðtÞÞ þ ekðtÞ�½ �
þ
Xn�1

i¼1

Xn�1

j¼1

Wijx
Tðt � tðtÞÞðBLiacKLjsÞTRBLiacKLjsxðt � tðtÞÞ

þ
Xn�1

i¼1

Xn�1

j¼1

Wije
T
k ðtÞðBLiacKLjsÞTRBLiacKLjsekðtÞ

þ 2ξTðtÞN½xðtÞ � xðt � tðtÞÞ

þ 2ξTðtÞM½xðt � tðtÞÞ � xðt � tMÞ

þ tðtÞξTðtÞNR�1NTξðtÞ þ ðtM
� tðtÞÞξTðtÞMR�1MTξðtÞ

þ m
Xn�1

i¼1

ðbm
sj Þ2xTðt � tðtÞÞðLjsÞTVLjsxðt � tðtÞÞ

þ
Xn�1

i¼1

ðbm
sj Þ2eTk ðtÞðLjsÞTVLjsekðtÞ

¼ ξTðtÞðQþ tðtÞÞNR�1NT þ ðtM
� tðtÞÞMR�1MTξðtÞ;

(A1:16)

where Q ¼ C11 þ Gþ GT þ A
T
RA with

C11 ¼

PAþ ATP þ Q � � �
rsK

TracB
TP Dþ

Xn�1

i¼1

mðbm
si Þ2ðLjsÞTVLjs � �

0 0 �Q �
rsK

TracB
TP 0 0 D�

Xn�1

i¼1

mðbmsi Þ2ðLjsÞTVLjs

2
666666664

3
777777775

D ¼
Xn�1

i¼1

Xn�1

j¼1

WijðBLiacKLjsÞTRBLiacKLjs;

G ¼ N M � N �M 0½ �:

By using Lemma 2.2, we can conclude from (A1.1)
that there exists a constant # such that

E CVðxtÞf g � � #EðkxðtÞk2Þ; (A1:17)

where # ¼ min #minSðgÞf g. Define a new function as

WðxtÞ ¼ eetnðxtÞ: (A1:18)

Its infinitesimal operatorC is given by

CWðxtÞ ¼ eeetnðxtÞ þ eetCnðxtÞ:

Then, we can get

EWðxtÞ � EWðx0Þ

¼
Z t

0
eeetE VðxtÞf gds

þ
Z t

0
eetE CVðxtÞf gds: (A1:19)

By using the method in [23], we know that there
exists a positive number asuch that for t � 0
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E VðxtÞf g � a sup|{z}
�tM � s � 0

e�esE kcðsÞk2� �
: (A1:20)

Since VðxtÞ � λminðPÞxTðtÞxðtÞ, then for t � 0,
from (A1.20), we can obtain

E xTðtÞxðtÞ� � � a sup|{z}
�tM � s � 0

e�esE kcðsÞk2� �
;

(A1:21)

where a ¼ a=λminðPÞ. The proof is completed.

A2. Proof of Theorem 3.2

Proof: Defining X ¼ P�1 and separating rac with rac
�aI and aI, then from (A1.2), we can get

SðgÞ þ
PBdacK

04�1ffiffiffiffiffiffi
tM

p
BracK

02ðn�1Þ2�1

2
6664

3
7775 0 ds � aI 01�½2ðn�1Þ2þ2�
h i

0

ds � aI

0½2ðn�1Þ2þ4��1

2
64

3
75þ KTracB

TP 01�4
ffiffiffiffiffiffi
tM

p
KTracB

T 01�2ðn�1Þ2
h i

PBdacK

0½2ðn�1Þ2þ5��1

" #
01�3 ds � aI 01:�2ðn�1Þ2

h i
þ

03�1

ds � aI

02½ðn�1Þ2þ1��1

2
64

3
75

KTracB
T 01�½2ðn�1Þ2þ5�

h i
�

PBracK

04�1ffiffiffiffiffiffi
tM

p
PracK

0½2ðn�1Þ2þ2��1

2
66664

3
77775X

PBracK

04�1ffiffiffiffiffiffi
tM

p
PracK

0½2ðn�1Þ2þ2��1

2
66664

3
77775

þ
0

ds � aI

0½2ðn�1Þ2þ4��1

2
64

3
75X�1

0

ds � aI

0½2ðn�1Þ2þ4��1

2
64

3
75
T

þ PBdacK

0½2ðn�1Þ2þ5��1

" #
X

PBdacK

0½2ðn�1Þ2þ5��1

" #T

þ
03�1

ds � aI

02½ðn�1Þ2þ1��1

2
64

3
75X�1

03�1

ds � aI

02½ðn�1Þ2þ1��1

2
64

3
75
T

; (A2:1)

where SðgÞ is derived from SðgÞ(g = 1, 2) by replacing
PBracKrs, rsK

TracB
TP,

ffiffiffiffiffiffi
tM

p
BracKrsand

ffiffiffiffiffiffi
tM

p
rsK

Trac
BT by aPBracK , aKTracB

TP, a
ffiffiffiffiffiffi
tM

p
BracKand

a
ffiffiffiffiffiffi
tM

p
KTracB

T , respectively.

SðgÞ þ
Xn�1

i¼1

0½6þðn�1Þ2þði�1Þðn�1Þ��1�
Cji

0ðn�1�iÞðn�1Þ�1

2
64

3
75 01�3 L2s 01�2½ðn�1Þ2þ1�
h i8><

>:
01�3

L2s
01�2½ðn�1Þ2þ1�

2
64

3
75 01�½6þðn�1Þ2þði�1Þðn�1Þ� C

T
ji 01�ðn�1�iÞðn�1Þ

h i

þ
Xn�1

i¼1

0½6þði�1Þðn�1Þ�1�
Cji

0ðn�1Þð2n�2�iÞ�1

2
64

3
75 0 L2s 01�½4þ2ðn�1Þ2�
h i8><

>:
þ

0

L2s
0½4þ2ðn�1Þ2��1

2
64

3
75 01�½6þði�1Þðn�1Þ� CT

ji 01�½2ðn�1Þ2�iðn�1Þ�
h i

� SðgÞ þ
Xn�1

i¼1

0½6þðn�1Þ2þði�1Þðn�1Þ��1�
Cji

0ðn�1�iÞðn�1Þ�1

2
64

3
75

8><
>:

X

0½6þðn�1Þ2þði�1Þðn�1Þ��1�
Cji

0ðn�1�iÞðn�1Þ�1

2
64

3
75
T

01�3

L2s
01�2½ðn�1Þ2þ1�

2
64

3
75X�1

01�3

L2s
01�2½ðn�1Þ2þ1�

2
64

3
75
T

g

þ
Xn�1

i¼1

0½6þði�1Þðn�1Þ�1�
Cji

0ðn�1Þð2n�2�iÞ�1

2
64

3
75X 0½6þði�1Þðn�1Þ�1�

Cji

0ðn�1Þð2n�2�iÞ�1

2
64

3
75
T8><

>:
þ

0

L2s
0½4þ2ðn�1Þ2��1

2
64

3
75X�1

0

L2s
0½4þ2ðn�1Þ2��1

2
64

3
75
T

; (A2:2)

where SðgÞ is derived from SðgÞ(g = 1, 2) by deleting B
LiacKL

j
s and its transposes from the last (n¡1)2 columns

and rows, and

Cji ¼
ffiffiffiffiffiffiffi
Wji

p BL1acK

..

.

BLn�1
ac K

2
664

3
775:

Combining (A1.2, A2.1, A2.2) and applying Schur
complement, we can get

Q11 þ Gþ GT Sg
12

ffiffiffiffiffiffiffi
tiM

p
Â
T

0 Q15

� �R 0 0 0

� � �PR�1P 0 Q35

� � � Q44 0

� � � � Q55

� � � � �
� � � � �
� � � � �
� � � � �

0 0 Q18 Q19

0 0 0 0

0 0 0 0

Q46 0 0 0

0 Q57 0 0

Q66 0 0 0

� Q77 0 0

� � Q88 0

� � � Q99

2
666666666666666664

3
777777777777777775

< 0;

(A2:3)

where Q11 ¼
PAþ ATP þ Q aPBdacK 0 aPBdacK

�
Xn�1

i

mðbm
si Þ2ðLisÞTVLis 0 0

� � �~Q 0

� � �
Xn�1

i

ðbm
si Þ2ðLisÞTVLis

2
6666666664

3
7777777775
;

g

g

g
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Â ¼ PA a
ffiffiffiffiffiffi
tM

p
PBracK 0 a

ffiffiffiffiffiffi
tM

p
PBracK½ �,

Q15 ¼
PBdacKX PBdacKX 0 0

0 0 ds � aI 0

0 0 0 0

0 0 0 ds � aI

2
6664

3
7775,

Q18 ¼
0 � � � 0

L1s � � � Ln�1
s

0 � � � 0

0 � � � 0

2
6664

3
7775, Q19 ¼

0 � � � 0

0 � � � 0

0 � � � 0

L1s � � � Ln�1
s

2
6664

3
7775,

Q35 ¼ ffiffiffiffiffiffi
tM

p
BracKX 0 0 0½ �;

Q44 ¼ diagf�PR�1PR; . . .;�PR�1P|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2ðn�1Þ2

g,

Q55 ¼ diag �X;�X;�X;�Xf g;

Q46 ¼ L̂1 L̂2 � � � L̂n�1

h i
,

~Li ¼ 01�ði�1Þðn�1Þ X~C
T
ji 0ðn�1�iÞðn�1Þ�1

h iT
,

Q57 ¼ D̂1 D̂2 � � � D̂n�1

h i
, D̂i ¼ L̂i,

Q66 ¼ Q77 ¼ Q88 ¼ Q99 ¼ diagf�X; . . .;�X|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ðn�1Þ2

g.

Since ðR� e�1PÞR�1ðR� e�1PÞ � 0, we have

�PR�1P � � 2eP þ e2R: (A2:4)

Substituting �PR�1P and �2eP þ e2R into (A2.3),
we get

Q11 þ Gþ GT Sg
12

ffiffiffiffiffiffiffi
tiM

p
Â
T

0 Q15

� �R 0 0 0

� � �2eP þ e2R 0 Q35

� � � Q̂44 0

� � � � Q55

� � � � �
� � � � �
� � � � �
� � � � �

0 0 Q18 Q19

0 0 0 0

0 0 0 0

Q46 0 0 0

0 Q57 0 0

Q66 0 0 0

� Q77 0 0

� � Q88 0

� � � Q99

2
666666666666666664

3
777777777777777775

< 0;

(A2:5)

where Q̂44 ¼ diagf�2eP þ e2R; . . .;�2eP þ e2R|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2ðn�1Þ2

g.

Multiplying both sides of (A2.5) by

diagfX; . . .;X|fflfflfflfflffl{zfflfflfflfflffl}
2ðn�1Þ2þ6

; I; . . .; Ig, and denoting ~V ¼ X½Pn�1
i

ðbmsi Þ2ðLisÞTVLis�X, ~Q ¼ XQX, ~R ¼ XRX ~N ¼ XNX,
~M ¼ XMX and Y ¼ KX. Then Equation (24) can be
obtained, which completes the proof.
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