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ABSTRACT
Interconnection networks are introduced when dealing with the connection of a significant
number of processors in massively parallel systems. TM topology is one of the latest
interconnection networks to solve the deadlock problem and achieve high performance in
massively parallel systems. This topology is derived from a Torus topology with removing cyclic
channel dependencies. In this paper, we derive a mathematical model for TM topology under
uniform and hotspot traffic patterns to compute the average delay. The average delay is
formulated from the sum of the average delay of network, the average waiting time of the
source node and the average degree of virtual channels. The results obtained from the
mathematical model exhibit a close agreement with those predicted by simulation. In addition,
sufficient simulation results are presented to revisit the TM topology performance under
various traffic patterns.
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1. Introduction

High-performance computing is needed to solve a vari-
ety of well-known problems in many research areas,
such as the development of new materials and sources
of energy, development of new medicines and improved
health care, weather forecasting, and for scientific
research including the origins of matter and the uni-
verse. Nowadays, many studies have been conducted on
the critical topic of parallel computing, which provides
a solution for increasing processing power and compu-
tation speeds [1]. Parallel computing is employed in
advanced computing by integrating multiple computers
through an interconnection network. As message pass-
ing through an interconnection network is done by
multiprocessor communication, the interconnection
network is significant in massively parallel computers
consisting of tens or hundreds of processors [2–5].

Over the last decade, interest has increased in the
interconnection network as an essential component, so
it is important to have a better conception of its perfor-
mance. In such computers, with millions of nodes, the
performance of the entire system is also determined by
the main interconnection network [6]. In the intercon-
nection network, the network performance depends on
the characteristics of the network topology and the
employed routing within it. In previous studies [7–15],
different interconnect topologies, such as k-ary n-
cubes, are popular topologies that have been utilized.
Figure 1 illustrates the taxonomy of interconnection
networks. Mesh and Torus as k-ary n-cubes topologies

are included in strictly orthogonal topologies by having
at least one link in each dimension for each node.

To design a new network topology, an interconnec-
tion network comprises a complex connection of
switches and links that communicate among the pro-
cessors/cores and themselves. Moreover, developing
fast routers is a significant approach to provide low
delay and high throughput as well. A message selects
its network path from source to destination according
to its routing algorithm. As the routing decision is sig-
nificant to the performance of an interconnection net-
work, the routing decision process must be as fast as
possible to reduce network delay.

One of the related problems to interconnection
topologies and their routing scheme is deadlock. The
three deadlock strategies are deadlock prevention,
deadlock avoidance and deadlock recovery [16–18]. In
previous studies [19–22], two deadlock strategies out
of three strategies proposed a new scheme to reduce
resource utilization and remove the deadlock. Recently,
the proposed solution by Wang et al. [23] introduces a
new and simple topology for interconnection net-
works. It includes some of the advantages of both the
Mesh and Torus topologies by removing one link in
each row (column) of the Torus to split the cycles to
present TM. The cyclic channel dependencies of the
Torus make some deadlock-free algorithms unavail-
able. Since efficient routing is significant for the topol-
ogy performance, by removing one link in each row
and column in TM, the cycles are eliminated, and by
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using virtual channels (VCs), the routing algorithm
can be deadlock-free.

The goal of this paper is to present the mathemati-
cal model for TM topology and provide a detailed
comparative evaluation between the TM, Torus and
Mesh topologies under different traffic patterns. TM
topology is validated mathematically with considering
the deterministic routing algorithm in a different simu-
lation environment. We found a similar result with a
difference in the packet injection rate. Eventually, the
accuracy of the proposed mathematical model for TM
topology is proved by the simulation results.

2. TM topology

In [23], the idea is to remove the cycles of each dimen-
sion of the Torus to propose TM topology. TM is
derived from a Torus topology in which there is a link
between node a = (x, y) and node b = ((x + 1)mod k,
y), and a = (x, y) and b = (x, ((y ¡ 1 + k)mod k)). Then
the links (a, b) and (b, a) are removed along dimension
X, if (x + y + 1)mod k = 0. The links (a, b) and (b, a)
along dimension Y are removed if (x + y)mod k = 0. If
the original topology is rearranged, the node coordi-
nates will be changed to new coordinates. A node a =
(x, y) is mapped to (x, y) from the original topology to
the rearranged topology if (x + y) < k or else node a is
mapped to (x, y ¡ k). The TM topology can be divided
into two subnetworks – UpTriangle and DownTrian-
gle. A node belongs to the UpTriangle if its rearranged
coordinate along dimension Y is no less than 0. A
node belongs to DownTriangle if its rearranged coordi-
nate along dimension Y is no more than 0. Figure 2
draws TM topology with two subnetworks.

3. Deadlock avoidance scheme

A deadlock-free routing scheme is important for a new
interconnect topology. The proposed deadlock avoid-
ance technique in [23] is the VC partitioning. In this
technique, the physical network is divided into a set of
independent directed-cycle free virtual networks. Two
VCs are required to direct a channel from left (right)
to right (left) and another channel down (up) to up

(down). The only difference between the Mesh
and TM is the VC selection for a packet. It is selected
according to the coordinates of the source and
destination.

According to the coordinates of the source and des-
tination nodes, the four partitions of TM topology in
Figure 3 are (1) x + y +, (2) x + y ¡, (3) x ¡ y +, and
(4) x ¡ y ¡. To avoid deadlock and deliver the packets
in TM topology when two nodes belong to the same
triangles, partition x ¡ y + is selected for xs less than xd
and partition x + y ¡ for xs greater than xd. If two
nodes do not belong to the same triangles, there are
two options. When ys is not greater than yd, partition x
¡ y + is selected while the source belongs to the
UpTriangle and destination belongs to the Down-
Triangle, or else partition x ¡ y ¡ is selected. Partition
x + y + is selected if the source belongs to the Down-
Triangle and destination belongs to the UpTriangle, or
else partition x + y ¡ is selected. After selecting the
compatible partition without deadlock, the routing
algorithm is employed in TM topology to identify the
path between packets from a source to a destination. It
specifies the path selection from the source to the desti-
nation with a message. The presented routing algo-
rithms in [23] are deterministic and a fully adaptive
algorithm. In the deterministic routing algorithm, a
single path is provided from the source to the destina-
tion, while there are different paths for packets in an
adaptive routing algorithm from the source to the des-
tination. The fully adaptive routing algorithm finds
any possible minimal path. In this article, we apply the
deterministic routing in Mesh, Torus and TM. It is a
fast algorithm and performs well under uniform traffic
assumption.

4. Mathematical model

To validate the TM, topology performance is the key
reason that induced us to propose a mathematical
model for TM topology in terms of the average delay
as the goal of this paper. The average delay for inter-
connection networks is the sum of the average delay of
network (S) and the average waiting time (W) of the
source node. Also, the average degree of VCs at each

Figure 1. Taxonomy of interconnection networks.
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Figure 2. (a) Rearranged TM topology, (b) UpTriangle, (c) DownTriangle [23].

Figure 3. VC partition in 8 £ 8 TM topology: (a) x + y +, (b) x + y ¡, (c) x ¡ y +, (d) x ¡ y ¡ [23].
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physical channel scaled by a parameter (V) influences
on the average delay [24]. Thus, Equation (1) shows

Average delay ¼ SþW
� �

V : (1)

4.1. Assumptions

The mathematical model for TM topology utilizes the
assumptions that are listed as follows:

� The model is restricted the attention to k-ary n-
cube networks which is referred to n as the
dimension of the cube and k as the radix. (N = kn

or n = logkN)
� Network size is assumed N = 8 £ 8. (k = 8 and
n = 2)

� Message length is L flits and each flit is transmit-
ted from source to destination in one cycle across
the network.

� The traffic is generated across the network nodes
independently and follows a Poisson process with
a mean rate (λ).

� A generated message with probability h = 20% is
directed to the hotspot node, and probability (1 –
h) used for the other nodes, while it refers to regu-
lar messages.

4.2. Model derivation

In general, topological properties such as degree, diam-
eter, average distance and cost are used to analyse an
interconnection network performance. Degree is the
number of links that are connected to a node. In trade-
off with degree, diameter is the maximum distance
between any two nodes and the average distance is the
minimum number of links between any two nodes in
the network. Cost is the number of communication
links that are required to build the network. The prop-
erties of Mesh, Torus and TM topologies have been
presented in Table 1.

Considering degree, diameter, average distance and
cost, TM topology provided better properties com-
pared with the Mesh. However, the Torus has better
average distance under the same evaluation compared
with the TM due to being the wraparound links in the
Torus. Furthermore, TM can be introduced as a cost-
effective topology because of removing several links at
specific locations of Torus. Consequently, TM topol-
ogy is considered to propose the mathematical model
in this paper.

The average number of nodes along one dimension
is defined as k that it is multiplied with number of
dimensions, n, for the whole network and it is defined
as d. Based on [25], the average number of nodes in a
topology is introduced average distance, which can be
different depends on the used topology. The number
of nodes across the TM topology can be computed
according to Equation (2), where k is the average dis-
tance of TM:

d ¼ n� k ¼ n� 3k
4

� �
: (2)

Under uniform traffic patterns, the received injec-
tion rate of messages for each channel, λu, can be found
using

λu ¼ 1
2
� λ� 3k

4

� �
: (3)

In the presence of hotspot traffic pattern, the injec-
tion rate divided to the rate of regular messages and
hotspot messages. This is because of message distribu-
tion that is not uniformly across the network. The
injection rate for regular messages, λr gains by

λr ¼ 1
n
� 1� hð Þ � λ� d
� �

: (4)

For hotspot messages, hλ messages are generated
with phj probability in a cycle which shows the proba-
bility of using the channel to reach the hotspot node.
To compute phj, the combinatorial theory has been
applied to find the following theorem.

Theorem 4.1: [24] The number of channels that are j
nodes away from a given node in the k-ary n-cube is

Cj ¼
Xn�1

l¼0

Xn�1

t¼0

�1ð Þt n� lð Þ n
l

� � n� l
t

� �
j� t k� 1ð Þ � 1

n� l � 1

� �
:

(5)

Theorem 4.1 is used to find the probability of using
messages where Cj is the total number of channels, l is
the omitted channel and t is the number of nodes with-
out the channel. The rate of hotspot traffic for each
channel, which is j nodes away from the hotspot nodes,
is λh. Therefore, the injection rate for hotspot messages
is given by

λhj ¼ h� N � λphj 1� j� n k� 1ð Þð Þ: (6)

Finally, the injection rate of messages along network
at each channel is equal to the message length at the
beginning under uniform traffic pattern. Under hot-
spot traffic, it is equal to the sum of the rates for regu-
lar and hotspot messages. The average delay of
network is the sum of the average network delays Sr
and Sh for regular messages and hotspot messages,

Table 1. Various topological properties.

Topology Degree Diameter
Cost (Degree £

Diameter)
Average
distance

Mesh Between n
and 2n

2k Between (n £ 2k)
and (2n £ 2k)

k

Torus 2n k (2n £ k) k
2

TM n or 2n k (n £ k) or (2n £ k) 3k
4
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respectively. In [24], the used notations to determine
the quantities of Sr and Sh have been provided. Con-
sidering the average delay for messages, the average
delay of network is

S ¼ 1� hð ÞSr þ hSh : (7)

The waiting time (W) for a message under traffic
pattern is computed as

Wj ¼
λ
V S

2
j 1þ Sj�Sj�1ð Þ2

S2j

� �

2 1� λ
V Sj

� � : (8)

W is a function of the average waiting time of the
different possible values (1 � j � n(k ¡ 1)) and it is
used to compute the average delay. However, there is a
probability for each node that is j hop away from a hot-
spot node and it is multiplied to the waiting time to
findW under hotspot traffic pattern.

Then the probability for each node that is j hop
away from a hotspot node should be considered for
the average degree of virtual channels, V . It should
be noted, pvj is the probability to determine that
the VCs are busy at the physical channel by using a
Markovian model [26]. The bandwidth is shared to
multiple VCs in each physical channel. The average
of all the possible values at a given physical channel is
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Figure 4. Delay curve of simulation and mathematic under the different traffic pattern.
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computed by

V ¼
Xn k�1ð Þ

j¼1

PVC
v¼1 v

2pvjPVC
v¼1 vpvj

: (9)

Therefore, we presented all the equations for the
mathematical model and this model is used to evaluate

the performance of TM topology for minimum num-
ber of VCs.

5. Performance evaluation

In this section, we present mathematical and simula-
tion results to evaluate the TM topology performance.
Attention has been paid to the TM topology which is
validated with mathematical model. This topology has
considerable advantages to transfer packets and is bet-
ter than the Mesh in average delay and throughput in
the presence of different traffic patterns. The traffic
patterns used are uniform and hotspot. In uniform
traffic, a node sends the packet to another node with
the same probability. For hotspot traffic, the pattern

Table 2. Simulation set-up.
Parameter Value

Network size 8 £ 8 (k=8, n=2)
Virtual channels 2 VCs
Buffer depth 2 flits
No. of flits per packet 8 flits
No. of cycles 10,000 cycles
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Figure 5. Delay curve under the different traffic pattern.
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used directs the source node to each hotspot node with
h probability. In the following sections, the mathemati-
cal and simulation results have been discussed.

5.1. Mathematical results

The mathematical model can be introduced as a practi-
cal evaluation tool due to the simplicity of model. In
the mathematical model, we analyse the Torus and
TM topologies for different traffic patterns which is
the main goal of this research. The mathematical
model in this paper has been validated through the
simulation. Similar assumptions are used for both sim-
ulation and model.

The mathematical model used to present the accu-
racy of the simulation performance TM topology. The
obtained results in Figure 4(a) and (b) depict predicted
average delay by the model against the simulator for
Torus and TM topologies under uniform and hotspot
traffic patterns.

From the figure, it is clear that the results produced
by mathematical model are extremely close to the
results produced by the simulator for both Torus and
TM topologies. The saturation times for both simula-
tion and model are similar when the packet injection
rate is approximately 0.01 and 0.001 under uniform
and hotspot traffic patterns, respectively. It demon-
strates the validation for Torus and TM topologies
using mathematical model.
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5.2. Simulation results

We simulate the Mesh, Torus and TM under uniform
and hotspot traffic patterns. For router design, the
dimension-order routing algorithm as deterministic
routing has been selected. It is popular in massively
parallel computers because of the minimal hardware
requirements and its speed, as to be as fast as possible
is important for the routing decision to reduce the net-
work delay:

Th ¼ Total received flits
Number of nodes� Total cycles

(10)

D ¼ 1
K

¢
XK
i¼1

Di (11)

Network throughput and average delay are pre-
sented as two performance metrics for simulation in
Equations (10) and (11). They measure in flits/node/
cycle for each traffic pattern. In the figures, the x-axis
stands for the packet injection rate in flits/node/cycle
and the y-axis stands for the average delay (D) in cycles
or the throughput (Th) in flits/node/cycle.

We revisit the simulation of TM topology in different
traffic patterns by Booksim2.0 [27]. It is a cycle-accurate
interconnection network simulator that supports a wide
range of topologies. The inputs of the simulator
have been listed in Table 2.

Figures 5 and 6 show the results obtained, while a
deterministic routing scheme has been implemented in
the Mesh, Torus and TM topologies. The simulation
results in Figure 5(a) are obtained under uniform traf-
fic. The average delay is reduced in the TM to less than
10% compared to the Mesh and Torus. TM topology is
saturated at the similar and lower packet injection rate
compared to the Mesh and Torus. Figure 6(a) shows
that the average throughput is extremely close to each
other and Mesh network performs poorly compared
with the Torus and TM.

In hotspot traffic, a particular link experiences a
much greater number of requests than the rest of the
links. The obtained results under hotspot traffic are
shown in Figures 5(b) and 6(b). The improvement is
clear in the average delay and throughput for TM
topology. In this traffic, TM has comparable average
delay when the packet injection rate is 0.001 and
higher. TM performs better than the Mesh in this
injection rate. This improvement in the network is
mainly from the short average distance and diameter,
and the easement of the congestion in the hotspot area.

6. Conclusion

This paper presents a mathematical model for a new
interconnection topology, TM. It is derived from a
Torus by removing the cycles of each dimension with

the virtual network partitioning scheme. The mathe-
matical model is validated with the simulation results
of TM topology in terms of the average delay under
uniform traffic and non-uniform traffic which is intro-
duced as hotspot. The TM was proven to be an attrac-
tive deadlock-free topology for the interconnection
network. In this direction, we revisited TM topology
with a lower injection rate in a new simulation envi-
ronment as well. The topology was evaluated by pro-
posing low average delay and improved throughput.

This research has been carried out to show the per-
formance improvement of the network by reducing the
average delay with a lower injection rate. The findings
enhance our understanding of the benefits of the low
diameter in the interconnection networks. For further
research, a new topology is proposed to improve the
performance of Torus and TM topologies and develop
an efficient routing scheme. We will explore such a
topology by sharing a number of nodes and strongly
believe that our interconnection topology will improve
the network performance. For evaluation, mathematical
model will be used as well to validate the performance
improvement in terms of the average delay.
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