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ABSTRACT
4-pole hybrid electromagnetic systems have a potential usage in many industrial areas, such as
clean room design, transportation, semi-conductor manufacturing due to providing mechanical
contact-free operation with considerably low energy consumption. However, the main problem
of magnetic levitation process: it has highly nonlinear nature and even if it can be linearized, it
has unstable pole(s), which makes the system vulnerable in terms of stability. In this paper, to
overcome the instability issue and track the desired references for each degree of freedom, a
modified PID controller (so called I-PD) design technique based on coefficient diagram method
(CDM) has been proposed. CDM is an algebraic design applied to polynomial structure of the
system on the parameter space, where a specific diagram is used to present and interpret the
essential data. It is quite simple to apply with a visual support, requires basic mathematical
computations for field engineers, and offers a good equilibrium in terms of simplicity, stability,
minimum overshoot and robustness, which are crucial specifications for maglev applications.
The effectiveness and feasibility of CDM-based I-PD controller have been compared with CDM-
based classical PID controller over an experimental set-up.
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4-pole hybrid electromagnet;
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1. Introduction

U-type electromagnets have been commonly utilized in
many industrial applications to suspend ferromagnetic
objects. However, control applications including more
than one degree of freedom cannot be possible using a
standard U-type electromagnet [1]. To deal with this
issue, 4-pole U-type electromagnet structure has been
proposed by many researches [2–4]. This new electro-
magnet structure has control capacity in multi-degree
of freedom with full redundancy. Each pole can gener-
ate electromagnetic force that is necessary for magnetic
levitation. Energizing poles in a specific configuration
allows any ferromagnetic object to move in a different
axis of motion. So that, it has been used in many
engineering applications requiring more than one
degree-of-freedom movement, such as transportation
systems, tool machines, frictionless bearings, space
vehicle design, clean room design, semi-conductor
manufacturing, etc. [4].

Using permanent magnets in the electromagnet struc-
ture has some crucial advantages, such as a minimized
volume and a more compact structure [5,6]. Further-
more, the essential force for levitation of ferromagnetic
material can be generated by only the permanent mag-
net(s), which means, by using hybrid electromagnets,
magnetic levitation can be achieved with low energy con-
sumption in pre-determined limits [7–9]. However, the
system still needs to be stabilized [10–13]. In this study,

the zero-power control is not conducted, since the main
concern is to directly control the levitation gap clearance,
therefore the permanent magnets are used only as addi-
tional current-source equivalents.

Stabilization for position control can partially be
achieved by using a PD-type controller. However,
employment of a PD controller is a primitive approach
since this type of controller adds a zero to the closed-
loop transfer function which makes the system positive
phase. When a system becomes positive phase, it
amplifies all high-frequency inputs to the infinity. Fur-
thermore, tracking performance of a PD-type control-
ler is not satisfying. Because of these reasons, a more
qualified controller structure is needed [14,15].

There are other types of controller structures that
may be applicable to resolve the outlined issues. Even
though sliding-mode-based controllers may be seen as
one of the good alternatives [16], it suffers from the
chattering effect. For magnetic levitation systems,
robust control strategies, such as super-twisting algo-
rithm of second-order sliding mode control or back-
stepping sliding mode control, can greatly weaken the
system chattering [17,18]. However, these algorithms
mostly reduce the linearized working space of the mag-
lev system and require high-frequency sampling time
with precise measurements.

To investigate possible advantages and disadvan-
tages of using sliding mode control for 4-pole hybrid
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electromagnet, a simulation study about first-order inte-
gral sliding mode control of a magnetically levitated 4-
pole hybrid electromagnet was conducted by our
research team [19]. For reference tracking performance,
it was observed that high overshoot and settling time
occurred, while the system became robust against
unmodelled uncertainties and external disturbances.
Noise rejection is another problem for highly nonlinear
maglev applications. Even though simulations may give
excellent noise rejection outputs, experimental results
mostly do not show the same performance.

Lack of well-organized techniques and demand for
high computation capacity are the drawbacks of fuzzy
logic originated approaches [20–23]. Adaptive and
optimal robust control techniques require high mathe-
matical skills and are not eligible for field engineers,
since the industry is still inclined towards classical con-
trol design [10,24–27]. The main reason of this situa-
tion is that the new methods including adaptive and
optimal robust control approaches are still being
improved and need more time to be valid for magnetic
levitation-based industrial applications.

The well-known PID controller structure can stabi-
lize the system with relatively satisfying tracking per-
formance, but employment of classical PID structure
on the forward path transfer function introduces a
closed-loop zero near the origin, which results in a
large overshoot appearing at the output [28–30]. This
problem can be eliminated by using the I-PD configu-
ration of PID structure.

In [29], PID and I-PD control structures were com-
pared for two-translational-axis motion of a 4-pole
hybrid electromagnet driven by three-phase AC long sta-
tor L-PMSM. And it was proven that minimized over-
shoot could be well achieved with I-PD control structure.

The key of PID and I-PD design is dependent on the
controller parameters, proportional, integral and deriv-
ative gains. From the practical realization point of
view, the pure derivative should be avoided. Hence, the
derivative term is incorporated to a low-pass filter.

There are quite a few approaches to determine the
feasible PID and I-PD gains. However, classical
approaches using root locus, frequency-domain meth-
ods and so on require relatively long trial-and-error
steps to reach good balance of stability, tracking per-
formance and robustness.

In this study, PID and I-PD controller gains have
been chosen according to “coefficient diagram
method” (CDM) for reference tracking and distur-
bance rejection on three different motion axes (one
translational axis and two rotational axes) of 4-pole
hybrid electromagnet. CDM is an algebraic design
applied to polynomial structure of the system on the
parameter space, where a specific visual diagram is
used to present and interpret the essential data. The
basic idea of this method is to use the stability index
and the equivalent time constant derived from the

characteristic polynomial as the design basis [31]. The
performance specification, stability index g and equiv-
alent time constant t are defined in the transfer func-
tion of the closed-loop system and related to the
controller parameters algebraically in explicit form.
The design methodology is quite simple and provides a
good equilibrium among those of stability, tracking
performance and robustness [32–34]. The advantages
of CDM can be summarized as follows [35]:

� The whole controller design is quite systematic
and useful. Hereby, the controller polynomials
can be determined more easily than those of exist-
ing methods, such as Ziegler–Nichols method.

� Visual diagram of CDM provides an explicit
interpretation of settling time, stability and
parameter tuning.

� The determination of the settling time at the
beginning for characteristic equations having
high-order polynomials.

� Uncertainty and disturbance dynamics can be
repressed with CDM without much difficulty.

� CDM can provide multi-objective design
requirements.

There are two different approaches for determining
CDM indices, Manabe canonical form and Kessler
canonical form. Previously, by our research team, syn-
thesizing polynomial coefficients of a zero-power con-
troller was investigated for 4-pole hybrid electromagnet’s
position control and the comparison between these two
approaches was conducted [36,37]. Consequently, it was
proven that Manabe’s approach provides lower settling
time, overshoot and energy consumption.

Because of the proven success of CDM-based Man-
abe approach for synthesizing zero-power controller
polynomial coefficients, the same approach has also
been used for PID and I-PD controller polynomial
coefficients in this study. The main difference between
our previous study and this study is that the previous
study focused only the comparison between Manabe
and Kessler approaches on a zero-power control
scheme, whereas this study investigates the usefulness
of CDM-based Manabe approach on PID and I-PD
control of a 4-pole hybrid electromagnet. Therefore,
PID and I-PD control goals do not include “zero-
power” aim.

The rest of the study is organized as follows: in Sec-
tion 2, hybrid electromagnet dynamics are introduced.
In the Section 3, PID and I-PD controller syntheses
based on CDM are given, and the superiority of I-PD
controller over PID controller is proven with zero-pole
maps and bode magnitude plots. In Section 4, the
details of the experimental set-up are conducted. In
Section 5, the experimental results obtained by using
both PID and I-PD controllers are given with the dis-
cussions. Finally, Section 6 concludes the paper.
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2. Hybrid electromagnet dynamics

The electromagnet consists of four poles combined
together around an iron core. Each pole consists of a
coil to control the magnetic flux by means of generat-
ing an external voltage and a permanent magnet with
static magnetic flux as shown in Figure 1.

In the analysis of a single coil, magnetic resistance,
and the hysteresis of the iron core, eddy currents, flux
leakage and fringing effects are assumed to be negligi-
ble. So that, the electromagnetic force for vertical direc-
tion is obtained as follows:

Fe ¼ k
iþ Im

z þ Lm=mr

� �2

(1)

where k is the configuration parameter of the electro-
magnet, i is the coil current, z is the equivalent gap, Lm is
the length of permanent magnets, mr is the relative per-
meability of the permanent magnet and Im is the equiva-
lent current representation of the permanent magnet.

In Figure 2, highly nonlinear behaviour of Equation
(1) is shown for the system parameters Im = 13.44 A,
Lm = 3 mm, k = 6.84 £ 10¡6 N2A2 and mr = 0.004 H.

The experimental set-up used in this study is able to
achieve the levitation process in a limited working
range due to the power consumption concerns occur-
ring in large levitation gaps. So that the linearization
approach is applied to Equation (1) around z0 =
6.8 mm and i0 = 0 A as follows:

Kz ¼ � @Fe
@z

¼ 2k
iþ Imð Þ2

z þ Lm
mr

� �3 for z ¼ z0 and i ¼ i0 (2)

Ki ¼ @Fe
@iz

¼ 2k
iz þ Imð Þ
z þ Lm

mr

� �2 for z ¼ z0 and i ¼ i0 (3)

Kz is the gap constant and Ki is the current constant.
Therefore, Equation (1) becomes

Fe ffi KzDz þ KiDiþ Feðz0; i0Þ (4)

According to Newton’s second law, the rate of
change of momentum of the levitated mass on vertical
axis can be written as follows:

m
d2z
dt2

¼ Fe �mg � Fd (5)

For the linearized equation,

m
d2Dz
dt2

¼ KzDz þ KiDi� Fd (6)

where m is the mass of the levitated object, g is the
gravitational acceleration and Fd is the disturbance
occurred due to the air viscosity.

And the system’s electrical dynamics is given as fol-
lows:

dDi
dt

¼ �Kz

Ki

dDz
dt

� R
L
Diþ 1

L
DV (7)

where V is the applied voltage, L is the inductance and
R is the resistance of the drive circuit. Combining
Equation (6) (without gravitational and disturbance

Figure 1. (a) View-1, (b) View-2.

Figure 2. Nonlinear behavior of electromagnetic attraction
force on vertical motion.
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force) with Equation (7), the open-loop system
dynamic for a single coil can be written as follows:

GðsÞ ¼ DZðsÞ
DVðsÞ ¼

Ki

mLs3 þmRs2 � RKz
(8)

The characteristic equation of the transfer function
given in Equation (8) has one unstable pole. Thus, the
overall system is unstable and needs to be stabilized.

The process of energizing each coil can be seen in
Figure 3. Three virtual winding currents are defined as
iz, ia, ib. These parameters represent a kind of average
current working for only one axis. This assumption
gives an opportunity for controlling each degree of free-
dom while controlling i1, i2, i3 and i4 independently.

In the second row of Figure 3, it is implied that bold
and bigger characters are the energized coils; however,
the system behaves as if coils are being energized with
some virtual winding currents as shown in the first
row of Figure 3.

Controlling 4-pole hybrid electromagnet for the
translational movement z, i1, i2, i3 and i4 have to be
positive and their average value is calculated as follows:

iz ¼ 1
4

i1 þ i2 þ i3 þ i4ð Þ (9)

Controlling 4-pole hybrid electromagnet for the
rotational movement a, i1 and i4 have to be negative,
while i2 and i3 have to be positive and their average
value is calculated as follows:

ia ¼ 1
4
ð�i1 þ i2 þ i3 � i4Þ (10)

Controlling 4-pole hybrid electromagnet for the
rotational movement b, i1 and i2 have to be negative,
while i3 and i4 have to be positive and their average

value is calculated as follows:

ib ¼ 1
4
ð�i1 � i2 þ i3 þ i4Þ (11)

Equations (9)–(11) are represented in matrix form
as follows:

i1
i2
i3
i4

2
6664

3
7775 ¼

1 �1 �1

1 1 �1

1 1 1

1 �1 1

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
H

iz
ia
ib

2
4

3
5 (12)

Considering the movements of all poles, vertical dis-
placement parameter of the system along Z-axis is z,
rotational displacement parameters of the system
around X- and Y-axes are a and b, respectively. z1 is
the vertical displacement of pole-1, z2 is the vertical
displacement of pole-2, z3 is the vertical displacement
of pole-3, z4 is the vertical displacement of pole-4. 2b is
the magnet core width as given in Figure 1. The geo-
metric relations are given as follows:

z ¼ 1
4

z1 þ z2 þ z3 þ z4ð Þ (13)

a ¼ 1
2b

z2 þ z3
2

� z1 þ z4
2

� �
(14)

b ¼ 1
2b

z3 þ z4
2

� z1 þ z2
2

� �
(15)

And now, Equation (8) can be redefined for three
different motion axes of the system. The transfer func-
tion for the vertical motion of the system has been
given in Equation (16). Vz is the sum of applied vol-
tages for each coil, Lz is the equivalent inductance and

Figure 3. Energizing coils for the movement on different axes.
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Rz is the equivalent resistance for the vertical motion
along Z–axis:

GzðsÞ ¼ DZðsÞ
DVzðsÞ ¼

Ki

mLzs3 þmRzs2 � RzKz
(16)

And the linearization process given in Equations (2)
and (3) can be applied to rotational motions as well.
Ta is the applied torque around X-axis. Ka is the gap
constant, Kia is the current constant for rotational
movement around X-axis. Tb is the applied
torque around Y-axis. Kb is the gap constant, Kib is
the current constant for rotational movement around
Y-axis:

Ta ¼ KaDaþ KiaDia (17)

Tb ¼ KbDbþ KibDib (18)

Therefore, the transfer function for the rotational
motion of 4-pole hybrid electromagnet around X-axis
is

GaðsÞ ¼ DaðsÞ
DVaðsÞ ¼

Kia

IaLas3 þ IaRas2 � RaKa
(19)

The transfer function for the rotational motion of 4-
pole hybrid electromagnet around Y-axis is

GbðsÞ ¼ DbðsÞ
DVbðsÞ ¼

Kib

IbLbs3 þ IbRbs2 � RbKb
(20)

Ia is the moment of inertia of 4-pole hybrid electro-
magnet around X-axis and Ib is the moment of iner-
tia of 4-pole hybrid electromagnet around Y-axis. La
is the equivalent inductance and Ra is the equivalent
resistance for the rotational motion around X-axis.
Lb is the equivalent inductance and Rb is the
equivalent resistance for the rotational motion
around Y-axis.

In this study, all gap and current constants have
been obtained over the test bench by several experi-
ments and analysis.

3. PID and I-PD controller synthesis based on
CDM

Classical PID controller adds a zero around the origin
of s-plane when combined with the hybrid electromag-
net transfer function given in Equation (8), which
means that this situation leads to undesired excessive
overshoot. To overcome this issue, PID structure has
been rearranged and I-PD structure has been attained.
However, in the practical sense, the realization of pure
derivative term is almost impossible, owing to unde-
sired sensor noise and effect of derivative kick. At this
point, a pseudo-derivative term with a low-pass filter
has been proposed. For each motion axis, an indepen-
dent controller is assigned. The controller parameter
notations for each motion axis have been given in
Table 1. KP is the proportional gain, KI is the integral
gain, KD is the derivative gain and t is the equivalent
time constant.

Because of the fact that all loop configurations are
identical for three different motion axes, I-PD and PID
structures for only the translational motion along Z-
axis are given in Figure 4, and in Figure 5 to avoid
unnecessary detailed information. The closed loops
shown in Figures 4 and 5 are fifth-order LTI systems.

For Figure 4, the transfer function between zref
and z is

Table 1. The controller parameter notations.
Controller parameter/axis z a b

KP KP,z KP,a KP,b
KI KI,z KI,a KI,b
KD KD,z KD,a KD,b
t tz ta tb

ZðsÞ
Zref ðsÞ ¼

s 0:001KI;zKi
� �þ KI;zKi

s5ð0:001mLzÞ þ s4 0:001mRz þmLzð Þ þ s3ðmRzÞ þ s2 KD;zKi þ 0:001KP;zKi � 0:001KzRz
� �þ s KP;zKi � KzRz þ 0:001KI;zKi

� �þ KI;zKi

(21)

Figure 4. I-PD controller structure for translational motion along Z-axis.
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When the pseudo-derivative term in Figure 4 is
neglected, the transfer function between zref and z
becomes

ZðsÞ
Zref ðsÞ ¼

KI;zKi

s4ðmLzÞ þ s3 mRzð Þ þ s2 KDKið Þ þ s KP;zKi � KzRz
� �þ KI;zKi

(22)

For Figure 5, the transfer function between zref
and z is

When the pseudo-derivative term in Figure 5 is
neglected, the transfer function between zref and z
becomes

ZðsÞ
Zref ðsÞ ¼

s2 KD;zKi
� �þ s KP;zKi

� �þ KI;zKi

s4ðmLzÞ þ s3 mRzð Þ þ s2 KD;zKi
� �þ s KP;zKi � KzRz

� �þ KI;zKi

(24)

The physical realization of I-PD controllers for
three different axes is given in Figure 6. T matrix is the
pseudo-inverse of Hmatrix given in Equation (12).

To obtain PID and I-PD controller gains for each
motion axis, the characteristic equation of each
closed-loop system has to be analysed using CDM.
For simplicity, PID and I-PD controller gains are syn-
thesized by using the characteristic equations given
with Equations (22) and (24), because the pseudo-
derivative term has a minor contribution on the over-
all system dynamics except blocking the effect of
derivative kick.

The characteristic equation of a single closed-loop
system can be described as

PðsÞ ¼ ans
n þ � � � þ ais

i þ � � � þ a0 (25)

Equation (25) can be described as canonical form of
Manabe for an nth-order polynomial as well:

PðsÞ ¼ a0�
Xn
i¼2

Yi�1

j¼1

1

g
j
j�1

 !
ðt�sÞi

( )
�t�sþ 1

" #
(26)

where ai > 0, for i = 0,…, n are the polynomial
coefficients.

g is defined as the stability index for i = 1,…,.n¡1,
an+1 = 0 and gn = g0 =1:

g i ¼
a2i

aiþ1ai�1
(27)

g� is defined as the stability limit:

g�
i ¼

1
g i�1

þ 1
g iþ1

(28)

The equivalent time constant is

t ¼ a1
a0

(29)

Now, the problem is here how to choose the appro-
priate controller parameters in terms of stability, mini-
mum overshoot and robustness. According to Lipatov–
Sokolov theorem on CDM [38], the following inequality
ensures the stability, minimum overshoot and robust-
ness for any LTI system, that is fourth or higher order:

g i> 1:12375g�
i (30)

Figure 5. PID controller structure for translational motion along Z-axis.

ZðsÞ
Zref ðsÞ ¼

s2 0:001KP;zKi þ KD;zKi
� �þ s KP;zKi þ 0:001KI;zKi

� �þ KI;zKi

s5ð0:001mLzÞ þ s4 0:001mRz þmLzð Þ þ s3ðmRzÞ þ s2 KD;zKi þ 0:001KP;zKi � 0:001KzRz
� �þ s KP;zKi � KzRz þ 0:001KI;zKi

� �þ KI;zKi

(23)
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Manabe proposed that g1 should equal to 2.5, g2,
and g3 should be equal to 2 to ensure the stability of
fourth-order closed-loop systems [39].

To avoid unnecessary detailed information, the
numerical computation of CDM controller synthesis is
given for only Z-axis.

The coefficients of the characteristic equations of
the closed-loop systems given with Equations (22)
and (24):

a4 ¼ mLz (31)

a3 ¼ mRz (32)

a2 ¼ KD;zKi ¼ a23
a4g3

¼ mRzð Þ2
mLzð Þg3

¼ mR2
z

Lzg3
(33)

a1 ¼ KP;zKi � KzRz ¼ a22
a3g2

¼
mR2

z
Lzg3

� �2
mRzg2

¼ mR3
z

L2zg
2
3g2

(34)

a0 ¼ KI;zKi ¼ a21
a2g1

¼
mR3

z
L2zg

2
3g2

� �2
mR2

zg1
Lzg3

¼ mR4
z

g3
3g

2
2g1L3z

(35)

By using Equations (33)–(35), the controller gains
can be written as follows:

KD;z ¼ mR2
z

KiLzg3
(36)

KP;z ¼ L2zg
2
3g2RzKz þmR3

z

L2zg
2
3g2Ki

(37)

KI;z ¼ mR4
z

g3
3g

2
2g1L3zKi

(38)

And the equivalent time constant is

tz ¼ a1
a0

¼ g3g2g1
Lz
Rz

(39)

As can be seen from the equations given above, the
controller gains have to be chosen to meet Lipatov–
Sokolov and Manabe criterions, and the equivalent
time constant is dependent on the system parameters,
Lz and Rz. For the experimental set-up created in this
study, the controller parameters are found as Kp,z =
3050.9, KI,z = 10714, KD,z = 48.75 for tz = 0.1 for g1,z =
2.5, g2,z = 2 and g3,z = 2.

The implementation of Lipatov–Sokolov theorem
and Manabe theorem into the same characteristic
equations of Equations (22) and (24) gives Figure 7.

In Figure 7, the red line and the green line should
not intersect each other and blue line should be convex
according to CDM, otherwise stability condition
becomes violated. This situation is the most advanta-
geous property of CDM. The stability condition can be
achieved not only with a mathematical approach, but

Figure 6. Physical realization of I-PD controllers.

Figure 7. CDM parameters for ensuring stability.
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also with a visual design support. The stability condi-
tion shown with Figure 7 can also be seen in Figure 8.
The roots of the closed loop are located on the left side
of the imaginary axis.

An example of stability violation situation is shown
in Figure 9. Instead of g1,z = 2.5, g2,z = 2 and g3,z = 2 as
Manabe theorem proposed, g1,z = 1, g2,z = 1 and g3,z =
1 are used as stability index parameters. Therefore, sta-
bility index and stability limit parameters have inter-
section points, at the first index and at the third index,
which means that the closed loop is not stable.

The instability condition shown with Figure 9 can
also be seen in Figure 10. Two roots, 28.97 + 89.16j
and 28.97 ¡ 89.16j, of the closed loop are located on
the right side of the imaginary axis.

The stability index parameters according to Manabe
theorem are given for three different motion axes in
Table 2.

The physical parameters of the experimental set-up
are given in Table 3.

The controller gains and the equivalent time con-
stants for X(a) and Y(b) axes are calculated in the
same way as calculated for Z-axis before. By using the
values given in Table 3, CDM parameters for all three
axes are calculated and given in Table 4.

For comparison between PID and I-PD controllers
synthesized according to CDM-based Manabe
approach, the zero-pole maps and the bode magnitude

Figure 8. The roots of the closed loop for g1,z = 2.5, g2,z = 2
and g3,z = 2.

Figure 9. CDM parameters for violating stability.

Figure 10. The roots of the closed loop for g1,z = 1, g2,z = 1 and
g3,z = 1.

Table 2. Stability index parameters.
Stability index parameter Value

g1,z 2.5
g1,a 2.5
g1,b 2.5
g2,z 2
g2,a 2
g2,b 2
g3,z 2
g3,a 2
g3,b 2

Table 3. Experimental set-up parameters.
Unit Value Unit Value Unit Value

m (kg) 10.8 z0 (mm) 6.88 a0, b0 (rad) 0.0
Ia,b (kg.m

2) 0.2 i0 (A) 0.0 ia0, ib0 (A) 0.0
k (N2/A2) 6.84 £ 10¡6 Kz (N/m) 19,811 Ka, Kb (Nm/rad) 58.10
Im (A) 13.44 Ki (N/A) 15.57 Kia, Kib (Nm/A) 1.36
Rz,a,b (V) 1.50 Lz,a,b (H) 0.016 Lm (mm) 3

Table 4. CDM parameters.
CDM gains Value

KP,z 3050.90
KI,z 10,714
KD,z 48.75
tz 0.1
KP,a 305.26
KI,a 2263.3
KD,a 10.30
ta 0.1
KP,b 305.26
KI,b 2263.3
KD,b 10.30
tb 0.1
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plots of the closed loops for each axis are given in
Figures 11 and 12, respectively. As can be seen from
Figure 11, PID controller of each axis adds zero close
to the origin, which can produce an excessive

overshoot at the output of the closed loop. And for
both X(a) axis and Y(b) axis, two zeros coincide.

For a closed-loop system, the overshoot occurring
during the step reference tracking can also be observed

Figure 11. Zero-pole maps.

Figure 12. Bode magnitude plots.
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from the increment of the magnitude value at 1 Hz fre-
quency on the bode magnitude plot. As can be seen
from Figure 12, the magnitude values of PID configu-
rations are higher than the magnitude values of I-PD
configurations at 1 Hz. These overshoots are clearly
shown in Section 5 as well.

4. Experimental set-up

The gap sensors produce analogue output, so that these
values are being processed in dSPACE processor by
means of the control algorithm designed in MATLAB/
Simulink environment. XPC-TARGET has been used
for rapid prototyping purpose. The functional struc-
ture of the experimental set-up can be seen in
Figure 13.

The overall experimental set-up can be seen in
Figure 14. It consists of 4-pole hybrid electromagnet,
Host PC, Target PC, dSPACE and power amplifiers.

The structure of 4-pole hybrid electromagnet and
gap sensors can be seen in Figure 15.Figure 13. The functional structure of the experimental set-up.

Figure 14. The overall experimental set-up.

Figure 15. The structure of 4-pole hybrid electromagnet poles and gap sensors.
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5. Experiments and results

5.1. Step reference tracking

The reference tracking performance of PID and I-PD
controllers is tested using step input references by
four different experiments. In the first experiment,
zref is a step input with 1 mm magnitude and 20 s
period, aref and bref are zero. In the second experi-
ment, aref is a step input with 0.01 rad magnitude
and 20 s period, zref and bref are zero. In the third
experiment, bref is a step input with 0.01 rad magni-
tude and 20 s period, zref and aref are zero. In the
fourth experiment, 3-dof reference tracking is con-
ducted. Each reference, aref, bref and zref, are chosen
step inputs varying at different periods for evaluating
both PID and I-PD performances under harsh condi-
tions, zref is a step input with 1 mm magnitude and
20 s period, aref is a step input with 0.01 rad

Figure 16. Reference tracking performances of CDM-based PID
and I-PD controllers along Z-axis.

Figure 17. z1, z2, z3 and z4 parameters occurring during Z-axis reference tracking for I-PD and PID controllers.

Figure 18. i1, i2, i3 and i4 parameters occurring during Z-axis reference tracking for I-PD and PID controllers.
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magnitude and 15 s period, bref is a step input with
0.01 rad magnitude and 10 s period.

The outputs of the first experiment are given in
Figures 16–19. As can be seen in Figure 16, PID control-
ler gives undesired excessive overshoots, whereas I-PD
controller performs almost a perfect tracking perfor-
mance for Z-axis.

In Figure 17, z1, z2, z3 and z4 parameters occurring
during Z-axis reference tracking are shown. These val-
ues are being measured by gap sensors and sent into T
matrix, shown in Figure 6, and T matrix produces z, a,
b values for feedback into the controller. Because of z
is arithmetic mean of z1, z2, z3 and z4, PID overshoots
shown in Figure 16 are arithmetic means of PID over-
shoots shown in Figure 17. The differences between z1,
z2, z3 and z4 parameters are caused by several reasons,
such as sensor noise, faults in mechanical structure,

Figure 19. iz, ia and ib parameters occurring during Z-axis reference tracking for I-PD and PID controllers.

Figure 20. Reference tracking performances of CDM-based PID
and I-PD controllers around X(a) axis.

Figure 21. z1, z2, z3 and z4 parameters occurring during X(a) axis reference tracking for I-PD and PID controllers.

158 K. ERKAN ET AL.



etc. However, their dimensions are very small. There-
fore, the differences do not affect the overall
performance.

In Figure 18, i1, i2, i3 and i4 parameters occurring
during Z-axis reference tracking are shown. These val-
ues are measured by the current sensors. During the
overshoots by PID controller given in Figure 16, the
system needs more energy; therefore, the overshoots of
the current values start occurring as well. The over-
shoots of the current values may harm the current sen-
sor board. Hereby, I-PD controller is more applicable.

In Figure 19, the global-axis currents for Z-axis ref-
erence tracking are shown. These values are calculated
in T matrix using i1, i2, i3 and i4 parameters. Because of
iz is arithmetic mean of i1, i2, i3 and i4, as given in
Equation (9), the overshoots shown in Figure 19 are
arithmetic means of the overshoots shown in Figure 18.

Figure 22. i1, i2, i3 and i4 parameters occurring during X(a) axis reference tracking for I-PD and PID controllers.

Figure 23. iz, ia and ib parameters occurring during X(a) axis reference tracking for I-PD and PID controllers.

Figure 24. Reference tracking performances of CDM-based PID
and I-PD controllers around Y(b) axis.
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And because of the movement is only along Z-axis, ia
and ib are measured around zero.

The outputs of the second experiment are given in
Figures 20–23. As can be seen in Figure 20, PID con-
troller gives undesired excessive overshoots, whereas I-
PD controller performs almost a perfect tracking per-
formance for X(a) axis.

In Figure 21, z2 and z3 increase, while z1 and z4
decrease for each positive edge of the step input, and z2
and z3 decrease while z1 and z4 increase for each nega-
tive edge of the step input. This geometric relation was
also given in Equation (14).

In Figure 22, i1, i2, i3 and i4 parameters occurring
during X(a) axis reference tracking are shown. i2 and
i3 increase while i1 and i4 decrease for each positive
edge of the step input, i2 and i3 decrease while i1 and i4
increase for each negative edge of the step input.

In Figure 23, the global-axis currents for X(a) axis
reference tracking are shown. Because of the move-
ment is only around X(a) axis, iz and ib are measured
around zero.

The outputs of the third experiment are given in
Figures 24–27. As can be seen in Figure 24, PID con-
troller gives undesired excessive overshoots, whereas

Figure 25. z1, z2, z3 and z4 parameters occurring during Y(b) axis reference tracking for I-PD and PID controllers.

Figure 26. i1, i2, i3 and i4 parameters occurring during Y(b) axis reference tracking for I-PD and PID controllers.
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I-PD controller performs almost a perfect tracking per-
formance for Y(b) axis.

In Figure 25, z3 and z4 increase while z1 and z2
decrease for each positive edge of the step input, and z3
and z4 decrease while z1 and z2 increase for each nega-
tive edge of the step input. This geometric relation was
also given in Equation (15).

In Figure 26, i1, i2, i3 and i4 parameters occurring
during Y(b) axis reference tracking are shown. i3 and
i4 increase while i1 and i2 decrease for each positive
edge of the step input, and i3 and i4 decrease while i1
and i2 increase for each negative edge of the step input.

In Figure 27, the global-axis currents for Y(b) axis
reference tracking are shown. Because of the move-
ment is only around Y (b) axis, iz and ia are measured
around zero.

The current values measured in Figures 22 and 23
are considerably close to each other, whereas the cur-
rent values measured in Figures 26 and 27 are not. The
main reason of this situation is the noise effect of the
current sensors occurring differently for each motion
axis.

After proving the superiority of I-PD controller over
PID controller for step reference tracking, the fourth
experiment is conducted for only I-PD controller. The
outputs of the fourth experiment are given in Figures
28–33. As can be seen from Figures 28–30, CDM-
based I-PD controllers perform almost a perfect track-
ing performance for each degree of freedom during 3-
dof motion. The oscillations after settling are caused
by the delay time between each step reference. There is

Figure 27. iz, ia and ib parameters occurring during Y(b) axis reference tracking for I-PD and PID controllers.

Figure 28. Reference tracking performance of CDM-based I-PD
controller along Z-axis for 3-dof motion.

Figure 29. Reference tracking performance of CDM-based I-PD
controller around X(a) axis for 3-dof motion.
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3 s delay time between zref and aref, and 6 s delay time
between zref and bref.

In Figure 31, z1, z2, z3 and z4 parameters occurring
during 3-dof reference tracking are shown.

In Figure 32, i1, i2, i3 and i4 parameters occurring
during 3-dof reference tracking are shown.

In Figure 33, the global-axis currents for 3-dof refer-
ence tracking are shown. Because of 3-dof motion, iz, ia
and ib are non-zero values.

5.2. Disturbance rejection case

The disturbance rejection case is conducted for only I-
PD controlled system. This case investigates the refer-
ence tracking performance of the system under a
mechanical disturbance. And the desired references,
aref, bref and zref are zero. The load shown in Figure 34

Figure 30. Reference tracking performance of CDM-based I-PD
controller around Y(b) axis for 3-dof motion.

Figure 31. z1, z2, z3 and z4 parameters occurring during 3-dof
reference tracking for CDM-based I-PD controller. Figure 34. The load as an external disturbance.

Figure 33. iz, ia and ib parameters occurring during 3-dof refer-
ence tracking for CDM-based I-PD controller.

Figure 32. i1, i2, i3 and i4 parameters occurring during 3-dof ref-
erence tracking for CDM-based I-PD controller.
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Figure 35. The exact position of the applied load.

Figure 36. External disturbance compensation performance of CDM-based I-PD controller for Z-axis.

Figure 37. External disturbance compensation performance of CDM-based I-PD controller for X(a) and Y(b) axis.
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is applied as an external disturbance on the system.
The exact position of the applied load can be seen in
Figure 35.

So that, the moment value occurred around the X-
axis is 0.63 Nm and the moment value occurred
around the Y-axis is 0.88 Nm.

In Figure 36, it can be seen that when the load is
applied at the fifth second, a deflection starts occurring
for 2 s, and then the system is getting stabilized. When
the applied load is removed from the system at the
13th second, another deflection starts occurring for 2 s

to the opposite direction, and then the system is getting
stabilized again. The same situations occur at 23rd and
27th seconds as well.

In Figure 37, the inclinations of a- and b-axes when
the load is applied are shown. The stabilization time is
2 s for both a- and b-axes.

In Figure 38, z1, z2, z3 and z4 parameters occurring
during the external disturbance can be seen. The rea-
son of the difference between z1, z2, z3 and z4 parame-
ters is the moment occurring due to the position of the
load.

Figure 38. z1, z2, z3 and z4 parameters occurring during the external disturbance.

Figure 39. i1, i2, i3 and i4 parameters occurring during the external disturbance.
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In Figure 39, i1, i2, i3 and i4 parameters occurring
during the external disturbance are shown. The reason
of the difference between i1, i2, i3 and i4 parameters is
the moment occurring due to the position of the load.

In Figure 40, the global-axis currents are shown. As
can been seen, ia and ib values follow the same pattern,
the main reason of this situations is that the moment
value around the X(a) axis, 0.63 Nm, and the moment
value around the Y(b) axis, 0.88 Nm, are close to each
other.

6. Conclusion

In this study, it has been proven that the outlined
CDM for synthesizing I-PD and PID controller coeffi-
cients is a suitable and relatively easy, and applicable
for controlling 3-dof motion of 4-pole hybrid electro-
magnetic systems.

Reference tracking performances of both I-PD and
PID controllers for each axis have been tested and eval-
uated using step reference inputs. I-PD controller per-
forms almost a perfect reference tracking ability for
each axis of 4-pole hybrid electromagnet.

Reference tracking performance of I-PD controller
for each axis has also been tested and evaluated for a
disturbance rejection case. It has been proven that
robust reference tracking control can be achieved with
the proposed I-PD controller.

A review has been conducted between the proposed
control method and other control methods popularly
used for magnetic levitation applications, such as slid-
ing mode control, fuzzy logic control. It has clearly
been stated that the proposed method is more appro-
priate for industrial applications in terms of

computational simplicity, visualization of controller
dynamics and easy-tuning.

The proposed technique has an appropriate potential
to apply any kind of magnetic motion control system
without sacrificing a good balance point among simplic-
ity, robustness, stability and speed of response via visual
design support. The experimental results validate effec-
tiveness of the proposed controller design method for
motion control of 4-pole hybrid electromagnet.
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