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ABSTRACT
The control algorithm incorporates a process feedback path of pure proportional type (only for
integral-type or unstable processes), a process model of second order plus time delay and a
realizable second-order internal controller which has not a tuning filter time constant as usual
in the classical IMC design, but a tuning gain with standard value 1, that can be used by the
human operator to get a strong or weak control action. The model parameters (steady-state
gain, time delay and transient time) can be easily experimentally determined and can be online
verified and corrected. The algorithm is practical and quasi-universal because it is easily
tunable, has a unique form and can be applied to almost all process types: stable proportional
processes (with or without time delay, with or without overshoot, of minimum or nonminimum
phase), integral processes and even some unstable processes. The proposed algorithm is better
than the proportional-integral-derivative (PID) algorithm (which is also quasi-universal and
practical) due to its robustness, high control performance (especially for processes with time
delay) and simple experimental procedure for determining the controller parameters. Some
applications are presented to highlight the main features of the algorithm and the tuning
procedure for all process types.
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1. Introduction

The internal model control (IMC) approach involves a
process model embedded in the controller structure. In
its standard and advanced variants, the IMC was intro-
duced and thoroughly studied in 1982 by Garcia and
Morari [1] and in 1986 by Rivera et al. [2], but similar
concepts have been used previously by other researchers
[3,4]. The classical IMC method offers advanced control
procedures that can be applied with very good perfor-
mance to any process with known model, but the found
particular control algorithm cannot be used for other
processes. Thus, the controller complexity depends
mainly on the complexity of the process model and the
control system performance stated by the designer [5–
10]. For these reasons, the control algorithms of IMC
type are not widely used in current industrial practice.

On the other hand, hundreds of significant papers
have been written in the last decades on the propor-
tional-integral-derivative (PID) control algorithm,
which is the most widely used in practice. It is well
known that the IMC design can provide robustness
and control performance better than the PID design,
especially for processes with large time delay. For some
particular processes of low order, without time delay
or with time delay approximated by a low-order series
expansion, the IMC design can lead to a PID controller
structure (or an ideal PID controller cascaded with a
first- or second-order filter) and an intuitive procedure
for tuning the PID controller [11–16]. Certainly, an

IMC-based PID algorithm leads to weaker control per-
formance than a genuine IMC algorithm. This is the
first starting point of our paper.

The configuration of a standard IMC system is
shown in Figure 1 [1–5], where GP(s) is the process
transfer function, GM(s) – process model transfer func-
tion, Gi(s) – internal controller transfer function, Y(s) –
controlled variable, U(s) – control variable, R(s) – ref-
erence (setpoint) variable, E(s) – error variable and V
(s) – disturbance variable. For both equivalent dia-
grams A and B, the transfer function between the con-
trolled variable Y and the reference variable R has the
expression

GYR ¼ GPGi

1þ GP � GMð ÞGi
; (1)

while the transfer function between the controlled vari-
able Y and the disturbance variable V is

GYV ¼ 1� GYR ¼ 1� GMGi

1þ GP � GMð ÞGi
: (2)

Under the assumption that the internal controller gain
is the inverse of the model gain, that is

Gi 0ð Þ ¼ 1
GM 0ð Þ ; (3)

it follows that

GYR 0ð Þ ¼ 1; GYV 0ð Þ ¼ 0: (4)
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According to this result, even if the process model is
imperfect, the steady-state value of the controlled vari-
able y is equal to the steady-state value of the reference
r whatever the steady-state value of the disturbance v.
In addition, it is possible to design an overall IMC con-
troller without concern for the closed-loop system sta-
bility, but only for the control performance [1,4,5].

An ideal control system suppresses completely the dis-
turbance effect on the controlled variable and forces it to
track instantaneously the reference. This is possible if and
only if the transfer function of the internal controller Gi(s)
is the inverse of the model transfer function GM(s), i.e.

Gi sð Þ ¼ 1
GM sð Þ : (5)

Indeed, if this condition is satisfied, then

GYR sð Þ ¼ 1; GYV sð Þ ¼ 0; (6)

therefore, y(t) = r(t) for any reference r(t) and disturbance
v(t). Thus, to design an ideal control system, it is not nec-
essary to have a perfect model. Unfortunately, no control-
ler can perfectly invert the process dynamic model.
Therefore, the classical IMC design methodology seeks to
find a more accurate process model and an approximate
proper inverse of the process model. As a consequence,
the control algorithms designed by this methodology
have a form which depends on the process model.

On the other hand, for a perfect model, it follows
from Equation (1) that

GYR sð Þ ¼ GP sð ÞGi sð Þ; (7)

hence,

GUR sð Þ ¼ Gi sð Þ: (8)

The paper presents a quasi-universal and practical
approach of the IMC method, in which the model has

a unique structure (of second order plus time delay)
irrespective of the controlled process type. This is pos-
sible because the model addresses the compensated
process, which is always stable and of proportional
type (with the steady-state gain finite and nonzero or,
equivalently, with no pole and zero at the origin). Such
a control technique based on process compensation
has been introduced in [17] for unstable processes
(under the name of “modified IMC”), in [18] for inte-
gral-type processes, and in [19] for unstable integral
processes.

The proposed algorithm is quasi-universal because
it has a unique form and can be used to control almost
all process types: stable processes of proportional type
(with or without time delay, with or without overshoot,
of minimum or nonminimum phase), integral pro-
cesses and unstable processes. The model parameters
(steady-state gain, time delay and transient time) can
be experimentally determined from the compensated
process response to a step input, and can be verified
and adjusted online; in addition, by setting a suitable
tuning gain K, the control performance can be good or
very good even if the model parameters have no accu-
rate values. The use of the tuning gain K (with stan-
dard value 1) instead of a filter time constant (as usual)
is also a practical feature of the presented algorithm.

Using MATLAB/SIMULINK environment, six
numerical applications for different process types are
presented to show the performance and the tuning
procedure of the control algorithm.

2. Primary form of the control algorithm

A model of second order with two lag time constants
plus time delay has the transfer function

GM sð Þ ¼ KMe�tMs

T1sþ 1ð Þ T2sþ 1ð Þ ; (9)

where KM is the model steady-state gain, tM is the
model time delay, and T1 and T2 are the model time
constants satisfying

T1 ¼ gT2; 0� g � 1:

For g = 1, the two lag time constants are equal to each
other [20], whereas for g = 0, the model becomes of
first order. In this paper, we will consider the middle
case with g = 1/2.

For a stable proportional-type process with the step
response y(t) monotonic and finite (called P1-type),
the model parameters KM, tM, T1 and T2 can be easily
experimentally determined as follows:

KM � KP; tM � tP; (10)

T1 ¼ TtrM

8:4
� TtrP

8:4
; T2 ¼ 2T1: (11)

Figure 1. IMC system structure.
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where KP is the process steady-state gain, tP – the pro-
cess time delay, and TtrP – the transient time of the
response y(t) (which does not include the time delay);
more precisely,

TtrP ¼ t1 � tP; (12)

where t1 is the settling time (when the response is
approximately 98% of its steady-state value):

y t1ð Þ � 0:98y 1ð Þ: (13)

Note that a first-order plus time delay model is too
simple to describe with sufficient accuracy the process
sluggishness, whereas a third-order plus time delay
model is too complicated to be used to increase the
model accuracy. For the internal controller, we have
chosen the inverse of the model transfer function

Gi sð Þ ¼ T1sþ 1ð Þ T2sþ 1ð Þ
KM T3sþ 1ð Þ T4sþ 1ð Þ ; (14)

where the filter time constants T3 and T4 are introduced
to make the internal controller realizable (with a num-
ber of poles equal to the number of zeros). These time
constants need to be lower bounded to avoid excessive
noise amplification and to accommodate to the model-
ling error. In the classical IMC design, these filter time
constants are equal to each other and considered as tun-
ing parameter (used by the process human operator to
modify the intensity of the control action).

Using the substitution

T3 ¼ T1ffiffiffiffi
K

p ; T4 ¼ T2ffiffiffiffi
K

p ¼ 2T3; (15)

a new practical tuning parameter (the gain K with the
standard value 1) is introduced. Thus, the internal con-
troller (14) becomes

Gi sð Þ ¼ T1sþ 1ð Þ T2sþ 1ð Þ
KM

T1ffiffiffi
K

p sþ 1
� �

T2ffiffiffi
K

p sþ 1
� � : (16)

Because

Gi 0ð Þ ¼ 1
KM

¼ 1
GM 0ð Þ ; (17)

the relation (3) is satisfied, therefore the steady-state
error is zero for a step reference or disturbance. On the
other hand, since GM(s) and GP(s) are strictly proper, it
follows from Figure 1 that the initial value u(0+) of the
closed-loop control system response u(t) to a unit step
reference is

u 0þð Þ ¼ Gi 1ð Þ ¼ K
KM

: (18)

Also, since the steady-state error is zero, the final value
of u(t) is equal to the inverse of the process steady-state
gain:

u 1ð Þ ¼ 1
KP

: (19)

Therefore, the magnitude coefficient M of the closed-
loop control system response u(t) to a unit step refer-
ence, defined as the ratio between the initial value u
(0+) and the final value u(1), has the expression

M ¼ u 0þð Þ
u 1ð Þ ¼

KP

KM
¢K: (20)

When the human operator increases/decreases the
tuning gain K, the control action becomes stronger/
weaker.

According to (10) and (11), one may consider that
the model parameters are the gain KM, the time delay
tM and the transient time TtrM.

In the particular case K = 1, the internal controller
(16) is purely proportional:

Gi sð Þ ¼ 1
KM

: (21)

In this case, according to (18) and (19), the initial and
final values of the control response u(t) to a unit step
reference are u(0+) = 1/KM and u(1) = 1/KP. If KM

and KP are equal to each other, then u(0+) = u(1). In
addition, for a perfect model with GM(s) = GP(s), it fol-
lows from (8) and (21) that

GUR sð Þ ¼ 1=KM ¼ 1=KP;

therefore, the ideal control response uid(t) to a unit
step reference is a step function of magnitude 1/KP.

For a perfect model and K > 0, having in view (8)
and (16), the ideal control response uid(t) to a unit step
reference has the expression

uid tð Þ ¼ 1þ A1e�
ffiffiffi
K

p
t=T1 þ B1e�

ffiffiffi
K

p
t=T2

KM
; (22)

where

A1 ¼
ffiffiffiffi
K

p
� 1

� �
2

ffiffiffiffi
K

p
� 1

� �
; (23)

B1 ¼
ffiffiffiffi
K

p
� 1

� �
2�

ffiffiffiffi
K

p� �
: (24)

Figure 2 shows this ideal response for KM = 1 and
TtrM = 84, when

uid tð Þ ¼ 1þ A1e
� ffiffiffi

K
p

t=10 þ B1e
� ffiffiffi

K
p

t=20: (25)

The response uid(t) is increasing on (0, 1) for 0 <

K � 1, is decreasing on (0,1) for 1 � K � 4, and is
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decreasing on (0, t0] and increasing on [t0,1) for K >

4, where

t0 ¼ TtrM

4:2
ffiffiffiffi
K

p ln
4

ffiffiffiffi
K

p � 2ffiffiffiffi
K

p � 2
: (26)

For K = 1, the response uid(t) given by (22) is a step
function of magnitude 1/KM. Actually, due to the
model inaccuracy, the form of the closed-loop system
response u(t) to a step reference is not a perfect step
function. By comparing the response u(t) with the
ideal response in step form, the human operator can
verify online if the model parameters have appropriate
values, and can adjust these parameters to improve the
model accuracy. So, if the initial value u(0+) is larger/
smaller than its final value u(1), then the model gain
KM needs to be proportionally increased/decreased to
have KM � KP. Then, for KM � KP, analyzing the new
response u(t) to a step reference, if u(t) is larger/
smaller than u(0+) in a time range t > tM, then the
model parameter TtrM needs to be increased/decreased.

In its primary (standard) form, used to control sta-
ble proportional-type processes (with or without time
delay, with or without overshoot, of minimum or non-
minimum phase), the algorithm has four parameters:

– tuning gain K (with standard value 1);
– model steady-state gain KM;
– model time delay tM;
– transient time of the model step response TtrM.

The discrete-time equivalent of the continuous
model (9) with T2 = 2T1 has the discrete transfer func-
tion

G0
M zð Þ � KM 1� p1ð Þ 1� p2ð Þz�lM�1

1� p1z�1ð Þ 1� p2z�1ð Þ ; (27)

where

p1 ¼ e�T=T1 ¼ e�8:4T=TtrM ; (28)

p2 ¼ e�T=T2 ¼ ffiffiffiffiffi
p1

p
; (29)

T is the sampling period, and lM is the integer value of
the ratio between the model time delay and the sam-
pling period; that is,

lM ¼ tM

T

h i
: (30)

The discrete-time equivalent of the continuous internal
controller (16) has the discrete transfer function

G0
i zð Þ � 1

KM
¢

ffiffiffiffi
K

p þ Az�1
� � ffiffiffiffi

K
p þ Bz�1
� �

1� p3z�1ð Þ 1� p4z�1ð Þ ; (31)

where

p3 ¼ e�T=T3 ¼ p
ffiffiffi
K

p
1 ; (32)

p4 ¼ e�T=T4 ¼ p
ffiffiffi
K

p
2 ¼ ffiffiffiffiffi

p3
p

; (33)

A ¼ 1� p3 �
ffiffiffiffi
K

p
; (34)

B ¼ 1� p4 �
ffiffiffiffi
K

p
: (35)

The discrete-time primary form of the control algo-
rithm has the equations

ek ¼ rk � yk

xk ¼ p1 þ p2ð Þxk�1 � p1p2xk�2 þ KMPuk�lM�1

fk ¼ ek þ xk

uk ¼ p3 þ p4ð Þuk�1 � p3p4uk�2 þ 1
KM

f

;

8>>>>>>><
>>>>>>>:

(36)

where

p1 ¼ e�8:4T=TtrM ; p2 ¼ ffiffiffiffiffi
p1

p
; (37)

p3 ¼ p
ffiffiffi
K

p
1 ; p4 ¼ ffiffiffiffiffi

p3
p

; (38)

P ¼ 1� p1ð Þ 1� p2ð Þ; (39)

f ¼ Kfk þ
ffiffiffiffi
K

p
Aþ Bð Þfk�1 þ ABfk�2: (40)

Example 2.1: Consider the proportional process with
the transfer function

GP sð Þ ¼ 2 sþ 1ð Þe�5s

4sþ 1ð Þ 8sþ 1ð Þ 10sþ 1ð Þ :

From the process unit step response in Figure 3, it fol-
lows the process model parameters

KM ¼ 2; tM ¼ 6; TtrM ¼ t1 � tP ¼ 60� 6 ¼ 54:

Figures 4 and 5 show the closed-loop system
responses y(t) and u(t) to a unit step reference for K =
0.5, 1, 2.5, 8. A good control performance is achieved
for K = 2.5. The control response u(t) is too strong for

Figure 2. Control response uid(t) to a unit step reference for
KM = 1, TtrM = 84 and K = 0.5, 1, 4, 8, 12.
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K = 8, when

u 0þð Þ ¼ K=KM ¼ 4; u 1ð Þ ¼ 1=KP ¼ 0:5;

and too weak for K = 0.5, when

u 0þð Þ ¼ 0:25; u 1ð Þ ¼ 0:5:

For K = 1, the response u(t) is close to a step function;
this confirms that the model parameters have been
suitably chosen. Note that the closed-loop system is
stable for all positive K < 3600.

Figures 6–8 show the closed-loop system responses
y(t) to a unit step reference for K = 2.5 and different

values of the model gain KM, model time delay tM and
model transient time TtrM, respectively. All these
responses show that the control performance is robust
with respect to the model parameters KM, tM and TtrM.
The closed-loop control system is respectively stable
for KM > 0.54, for all tM > 0, and for TtrM > 6.

Figures 9–11 show the closed-loop system responses
y(t) to a unit step reference for the best values of the
tuning parameter K and various values of the model
parameters KM, tM and TtrM, respectively. The control
performance remains good even for wrong values of the
model parameters. Moreover, we claim that the control

Figure 4. Closed-loop system responses y(t) to a unit step ref-
erence for K = 0.5, 1, 2.5, 8.

Figure 5. Control responses u(t) to a unit step reference for K =
0.5, 1, 2.5, 8.

Figure 6. Control system responses y(t) to a unit step reference
for KM = 1.5, 2, 2.5.

Figure 7. Control system responses y(t) to a unit step reference
for tM = 3, 6, 9.

Figure 8. Control system responses y(t) to a unit step reference
for TtrM = 40, 54, 70.

Figure 3. Process response to a unit step input.
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performance is better for KM > KP than for KM < KP,
for tM > tP than for tM < tP, and for TtrM > TtrP than
for TtrM < TtrP.

The response A in Figure 9 shows that for the
wrong value KM = 2.5, if the process-operator selects
K = 11, then the control system performance is even
better than the one obtained for KM = 2 and K = 2.5
(response B). The closed-loop system with KM = 2.5 is
stable for K < 4600.

Figure 10 shows that for the wrong value tM = 9, by
choosing K = 25 (response A), the control system per-
formance is better than the one obtained for tM = 6
and K = 2.5 (response B). Note that the closed-loop
system with tM = 9 is stable for K < 240.

Figure 11 shows that for the wrong value TtrM = 70,
if the process-operator chooses K = 7 (response A),

then the control system performance is comparable
with the one obtained for TtrM = 54 and K = 2.5
(response B). The closed-loop system with TtrM = 70 is
stable for K < 3400.

Using the designed controller, the control perfor-
mance is better than the one achieved using a PI con-
troller with the transfer function

GPI sð Þ ¼ KR 1þ 1
Tis

� �
:

This follows immediately from Figure 12, where are
depicted the responses y(t) to a unit step reference for
KR = 0.1, 0.2, 0.3 and the best values of the integral
time constant Ti, namely Ti = 6.2, 10, 16, respectively.

Remark 2.1: The proposed algorithm can be also used
to control stable proportional-type processes with
overshoot. Let P be a such process, whose input step
response has the maximum value at the time t0. In
order to choose the model parameters, this process
(with or without oscillations) is approximated by a
process ~P of P1 type (with the unit step response
monotonic and finite), whose step response ~y tð Þ
remains constant (at its maximum value) for t � t0
(Figures 13 and 16). From the step response ~y tð Þ, we
can easily choose the steady-state gain ~KP, the time
delay tP and the transient time

~TtrP ¼ t0 � tP: (41)

Thus, the model parameters are

KM ¼ ~KP; tM ¼ tP; TtrM ¼ ~TtrP: (42)

Since ~KP >KP, the closed-loop system response u(t) to
a step reference has a smaller initial value, namely

u 0þð Þ ¼ K=KM ¼ K=~KP <K=KP; (43)

which reduces the overshoot of the closed-loop system
response y(t).

By suitably modifying the tuning gain K, a good con-
trol system response to a step reference can be obtained.

Figure 9. Control system responses y(t) to a unit step reference
for A: KM = 2.5, K = 11; B: KM = 2, K = 2.5; C: KM = 1.5, K = 0.4.

Figure 10. System responses y(t) to a unit step reference for A:
tM = 9, K = 25; B: tM = 6, K = 2.5; C: tM = 3, K = 0.75.

Figure 11. System responses y(t) to a unit step reference for A:
TtrM = 70, K = 7; B: TtrM = 54, K = 2.5; C: TtrM = 40, K = 0.16.

Figure 12. Control loop-system responses y(t) to a unit step
reference for a PI controller with A: KR = 0.1, Ti = 6.2; B: KR =
0.2, Ti = 10; C: KR = 0.3, Ti = 16.
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Example 2.2: Consider the following non-oscillatory
process with overshoot

GP sð Þ ¼ 1:5 24sþ 1ð Þe�5s

4sþ 1ð Þ 8sþ 1ð Þ 9sþ 1ð Þ :

From the process unit step response ~y tð Þ in Figure 13,
it follows that

~KP ¼ 1:98; tP ¼ 5;
~TtrP ¼ t0 � tP ¼ 24� 5 ¼ 19;

therefore,

KM ¼ ~KP ¼ 1:98; tM ¼ tP ¼ 5;

TtrM ¼ ~TtrP ¼ 19:

The closed-loop system responses y(t) and u(t) to a
unit step reference are shown in Figures 14 and 15 for
K = 0.25, 1, 4. The control variable u(t) is too strong
for K = 4 – when u(0+) = K/KM � 2, and too weak for
K = 0.25 – when u(0+) = K/KM � 0.125. Note that the
system is stable for all K > 0.

Example 2.3: Consider the oscillatory process with
overshoot

GP sð Þ ¼ 1:5 2sþ 1ð Þe�5s

3sþ 1ð Þ 4sþ 1ð Þ 6s2 þ 3sþ 1ð Þ :

From the process unit step response in Figure 16, it fol-
lows that

~KP ¼ 1:98; tP ¼ 7;
~TtrP ¼ t0 � tP ¼ 29� 7 ¼ 22;

therefore,

KM ¼ ~KP ¼ 1:98; tM ¼ tP ¼ 7;

TtrM ¼ ~TtrP ¼ 22:

The closed-loop system responses y(t) and u(t) to a
unit step reference for three different values of the tun-
ing gain K are shown in Figures 17 and 18. The control
response u(t) is too strong for K = 0.4 – when u(0+) �
0.2, and too weak for K = 0.1 – when u(0+) � 0.05. The
control system is stable for K < 2.5.

Figure 14. Control system responses y(t) to a unit step refer-
ence for K = 0.25, 1, 4.

Figure 15. Control system responses u(t) to a unit step refer-
ence for K = 0.25, 1, 4.

Figure 13. Process response to a unit step input.

Figure 16. Process response to a unit step input.

Figure 17. Control system responses y(t) to a unit step refer-
ence for K = 0.4, 0.2, 0.1.
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Remark 2.2: The proposed algorithm can be also used
to control stable proportional-type processes of non-
minimum phase. To control a stable nonminimum-
phase process, we will consider that the process time
delay includes the interval where the sign of the pro-
cess step response is opposite to the sign of the final
value.

Example 2.4: Consider the nonminimum-phase process

GP sð Þ ¼ 2 1� 4sð Þe�2s

4sþ 1ð Þ 8sþ 1ð Þ 10sþ 1ð Þ :

From the process unit step response shown in Figure 19,
it follows the model parameters

KM ¼ 2; tM ¼ 11;

TtrM ¼ t1 � tP ¼ 65� 11 ¼ 54:

Figures 20 and 21 show the closed-loop system
responses y(t) and u(t) to a unit step reference for three
values of the tuning gain K. The best response is
achieved for K = 10. The closed-loop system is stable
for K < 36.6.

3. Extended form of the control algorithm

The algorithm can be extended to control integral-type
processes and unstable processes. The main idea is to
turn the original process into a stable process of

proportional type (called the compensated process) by
means of a feedback path of pure proportional type, as
shown in Figure 22.

As a rule, for an integral-type process, the step
response of the compensated process has zero over-
shoot for small values of the feedback gain Kf, and non-
zero overshoot for large values of Kf. A suitable variant
is to choose the gain Kf as large as possible such that
the overshoot of the step response of the compensated
process remains zero. Then, for selected Kf, the model
parameters KM, tM and TtrM are determined from the
compensated process response y(t) to a step change of
the input c. If K = 1 and the model parameters have
appropriate values, then the closed-loop control system
response c(t) to a step reference is close to a step
function.

Note that the steady-state error is zero for a step and
even for a ramp disturbance added to the process
output.

Figure 19. Process response to a unit step input.

Figure 20. Control system responses y(t) to a unit step refer-
ence for K = 10, 5, 1.

Figure 21. Control system responses u(t) to a unit step refer-
ence for K = 10, 5, 1.

Figure 22. Closed-loop system with compensated process.

Figure 18. Control system responses u(t) to a unit step refer-
ence for K = 0.4, 0.2, 0.1.
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According to Equations (36)–(40) and the con-
troller structure in Figure 22, the discrete-time con-
trol algorithm has the following equations:

ek ¼ rk � yk

xk ¼ p1 þ p2ð Þxk�1 � p1p2xk�2 þ KMPck�lM�1

fk ¼ ek þ xk

ck ¼ p3 þ p4ð Þck�1 � p3p4ck�2 þ 1
KM

f

uk ¼ ck � Kf yk � y0ð Þ

;

8>>>>>>>><
>>>>>>>>:

(44)

where y0 is the value of y just before switching to
automatic mode. Notice that for Kf = 0, the extended
control algorithm (44) reduces to the primary form
(36).

Let u0 and e0 be the values of u and e before switch-
ing to automatic mode, and

x0 ¼ KMu0: (45)

To have a bumpless transfer only for e0 = 0, the fol-
lowing settings are needed to be made before switching
to automatic mode:

ck�1 ¼ ck�2 ¼ � � � ¼ ck�lM�1 ¼ u0 (46)

xk�1 ¼ xk�2 ¼ x0; fk�1 ¼ fk�2 ¼ x0: (47)

To have a bumpless transfer for any e0 6¼ 0, it needs
in addition to replace the equation fk = ek + xk in (44)
with

fk ¼ ek � e0ð Þ þ xk:

In automatic mode, a bumpless transfer should be
achieved whenever the human operator changes a
parameter of the control algorithm.

A practical controller needs to have three operating
modes: AUTOMATIC, MANUAL and COMPENSA-
TORY. In COMPENSATORY and MANUAL modes,
the human operator can directly set any value for the
compensated process input c and the controlled process
input u, respectively. Before switching to COMPENSA-
TORY mode (from MANUAL or AUTOMATIC
mode), the variable c should be set to the value of u. For
Kf = 0, the MANUAL and COMPENSATORY modes
are the same.

Example 3.1: Consider the integral-type process

GP sð Þ ¼ sþ 1ð Þe�5s

10s 2sþ 1ð Þ 5sþ 1ð Þ :

Using a negative feedback path with 0 < Kf < 0.65, the
integral-type process turns into a compensated process
of proportional type whose response y to a unit step

input c is monotonic and bounded (Figure 23). Choos-
ing Kf = 0.6, it follows that

KM ¼ 1:67; tM ¼ 7;

TtrM ¼ t1 � tP ¼ 82� 7 ¼ 75:

For Kf = 0.6 and K = 1, 3, 8, the closed-loop control
system responses y(t), c(t) and u(t) to a unit step refer-
ence are shown in Figures 24–26. The control variables
c(t) and u(t) are too strong for K = 8, when

u 0þð Þ ¼ c 0þð Þ ¼ K=KM � 4:79;

Figure 23. Compensated process responses y(t) to a unit step
input c = 1(t) for Kf = 0.5, 0.6, 0.8.

Figure 24. Control system responses y(t) to a unit step refer-
ence for Kf = 0.6 and K = 1, 3, 8.

Figure 25. Control system responses c(t) to a unit step refer-
ence for Kf = 0.6 and K = 1, 3, 8.
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and too weak for K = 1, when

u 0þð Þ ¼ c 0þð Þ ¼ K=KM � 0:599:

For K = 1, the control response c(t) is close to a step
function. The closed-loop system is stable for K <

1140.
For Kf = 0.6 and K = 3, the closed-loop system

response y(t) to the ramp disturbance v(t) = t/10 is
shown in Figure 27.

For Kf = 0.5, from the compensated process
response to a unit step input in Figure 23, it follows
that

KM ¼ 1:925; tM ¼ 7; TtrM ¼ 100� 7 ¼ 93:

Setting K = 25, the system response y(t) to a unit step
reference (Figure 28) is even better than the response
obtained for Kf = 0.6 and K = 3 (Figure 24). The
closed-loop system is stable for K < 4500.

Example 3.2: Consider the unstable process

GP sð Þ ¼ sþ 1ð Þe�2s

2 1þ 3sð Þ 1� 6sð Þ :

Using a feedback path with Kf = ¡2.13, the unstable
process turns into a stable compensated process whose

response y to a unit step input c is monotonic and
bounded (Figure 29). From this compensated process
response, it follows that

KM ¼ �7:7; tM ¼ 3;

TtrM ¼ t1 � tP ¼ 83� 3 ¼ 80:

The closed-loop system responses to a unit step refer-
ence are shown in Figures 30–32 for K = 1, 4, 8. The
control responses c(t) and u(t) are too strong for K = 8,
when

u 0þð Þ ¼ K=KM � �1:04;

and too weak for K = 1, when

u 0þð Þ ¼ K=KM � �0:13:

If K = 1, then the control response c(t) is close to a
step function. The closed-loop system is stable for
K < 460.

Remark 3.1: A similar but simpler control algorithm
can be obtained by replacing the second-order internal
controller (16) with the first-order controller

Gi1 sð Þ ¼ TM1sþ 1

KM
TM1
K sþ 1

� � ; (48)

Figure 26. Control system responses u(t) to a unit step refer-
ence for Kf = 0.6 and K = 1, 3, 8.

Figure 27. Control system responses y(t) to the ramp distur-
bance v(t) = t/10 for K = 3.

Figure 28. Control system responses y(t) to a unit step refer-
ence for Kf = 0.5 and K = 1, 8, 25.

Figure 29. Compensated process responses y(t) to input c = 1
(t) for Kf = ¡2.08,¡ 2.13,¡ 2.5.
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where

TM1 ¼ TtrM

4
� TtrP

4
: (49)

For a perfect model, the ideal control response
uid1(t) to a unit step reference has the expression

uid1 tð Þ ¼ 1þ K � 1ð Þe�4Kt=TtrM

KM
: (50)

The response uid1(t) is monotonic for all K > 0
(increasing for K < 1, decreasing for K > 1, in step
form for K = 1).

The discrete-time equivalent of the internal control-
ler has the transfer function

G0
i1 zð Þ ¼ 1

KM
¢K þ 1� r1 � Kð Þz�1

1� r1z�1
; (51)

where

r1 ¼ e�KT=TM1 ¼ e�4KT=TtrM : (52)

The discrete-time control algorithm has the following
equations:

ek ¼ rk � yk

xk ¼ p1 þ p2ð Þxk�1 � p1p2xk�2 þ KMPck�lM�1

fk ¼ ek þ xk

ck ¼ r1ck�1 þ K
KM

fk þ 1� r1 � K
KM

fk�1

uk ¼ ck � Kf yk � y0ð Þ

:

8>>>>>>>>>><
>>>>>>>>>>:

(53)

Based on many real-time control simulations on
software and physical processes (in laboratory and two
refineries), we may state that the robustness and con-
trol performance of this algorithm are comparable
with the ones of the control algorithm with second-
order internal controller.

4. Summary of rules for choosing the
controller parameters

For a proportional process of P1 type (with the step
response monotonic and finite), the model parameters

Figure 30. Control system responses y(t) to a unit step reference for Kf = ¡2.13 and K = 1, 4, 8.

Figure 31. Control system responses c(t) to a unit step refer-
ence for Kf = ¡2.13 and K = 1, 4, 8.

Figure 32. Control system responses u(t) to a unit step refer-
ence for Kf = ¡2.13 and K = 1, 4, 8.
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(steady-state gain KM, time delay tM and transient time
TtrM) can be easily determined from the process step
response (always starting from an initial steady-state
behaviour). These parameters can be verified and cor-
rected online by analyzing the deviation of the control-
ler response u(t) to a reference step for K = 1 from the
step shape. So, if the initial value u(0+) is greater/smaller
than its final value u(1), then KM needs to be propor-
tionally augmented/diminished. Then, for KM � KP,
analyzing the new response u(t) to a step reference, if u
(t) is greater/smaller than u(0+) in a time range t > tM,
then TtrM needs to be augmented/diminished.

For a proportional process with overshoot (with or
without oscillations) or of nonminimum phase, the
model parameters are determined by approximating
the process with one of P1 type. For a process with
overshoot, if the step response has the maximum value
at time t0, then the response is assumed to remain con-
stant at its maximum value for t � t0. For a nonmini-
mum-phase process, we assume that the time delay
includes the time interval where the sign of the process
step response is opposite to the sign of the final value.

For an integral or unstable process, the model
parameters are determined by turning the process into
a compensated process of P1 type, using a suitable
feedback process gain Kf. For an integral-type process,
it is recommended to choose the gain Kf as large as
possible such that the step response of the compen-
sated process has zero overshoot. Then, for selected Kf,
the model parameters KM, tM and TtrM are determined
from the compensated process response y(t) to a step
change of the input c. If K = 1 and the model parame-
ters have appropriate values, then the form of the
closed-loop system response c(t) to a step reference is
close to a step shape.

To have a stronger/weaker control action, the pro-
cess operator increases/decreases the tuning gain K
(with the standard value 1).

5. Future research

For many practical applications, it is not recommended
to use high values (larger than 10) of the tuning gain K,
which lead to a very sharp form of the controller output
to a step reference. Such situations can appear, for
instance, by using an inaccurate process model with KM

> KP (Figures 9) or tM > tP (Figure 10). To avoid such
cases, we propose as future research a more general con-
trol algorithm whose structure is illustrated in Figure 33,
where a 2 [0, 1] and

Gi a; sð Þ ¼ T1sþ 1ð Þ T2sþ 1ð Þ
KM

T1
K1
sþ 1

� �
T2
K1
sþ 1

� � ; (54)

K1 ¼ K
1�a
2 : (55)

The initial and final values of the closed-loop system
response c(t) to a unit step reference are the same as

those from the presented control algorithm (where a =
0), namely

c 0þð Þ ¼ K=KM; c 1ð Þ ¼ 1=KP: (56)

Note that for a = 1, the internal controller has the trans-
fer function Gi(1, s) = 1/KM.

We claim that for any fixed K, K > 1, the control
action is stronger for larger a. Therefore, in the case
a 6¼ 0, the best performance of the control system will
be achieved for a smaller value of the tuning gain K
than for a = 0. In our opinion, a = 0.2 is a suitable
value to get robust and high control performance.

6. Conclusions

The proposed quasi-universal practical algorithm
incorporates a process feedback block of pure propor-
tional type, a process model of second order plus time
delay, and a realizable internal controller of second
order. By means of the process feedback path, if the
original process is of integral-type or unstable, then it
is turned into a stable compensated process of propor-
tional type.

In its extended form, the proposed algorithm has
five parameters: three model parameters (the model
steady-state gain KM, the model time delay tM and the
transient time TtrM of the model response to a step
input), a tuning gain K with standard value 1 (which
can be easily used by the human process operator to
increase or decrease the magnitude of the control
action) and a process feedback gain Kf (which is zero
for stable processes of proportional type). The indus-
trial use of the proposed algorithm will have an
instructive effect on the process operators, who need to
know the main dynamic parameters of the processes
or compensated processes: the steady-state gain, the
time delay and the transient time of the step response.

If the model steady-state gain KM is equal to the
compensated process steady-state gain KP, then the
internal controller response c(t) to a step reference has
the initial value K times larger than its final value. Fur-
thermore, if the dynamic model of the compensated
process has a high accuracy, then the internal control-
ler response c(t) for K = 1 is close to a step form. By
analyzing the deviation of this response from the ideal
step form, the model parameters can be easily adjusted
online to improve the model accuracy.

Figure 33. General structure of the closed-loop system with
compensated process.
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The practical feature of the control algorithm fol-
lows from the following considerations:

– whatever the process to be controlled, the control
algorithm has the unique form (44);

– the algorithm has a tuning gain K (with stan-
dard value 1) instead of a tuning filter time
constant (as usual in the IMC design), which
achieves a natural trade-off between closed-
loop performance and robustness to model
uncertainties;

– the controller parameters can be easily deter-
mined from the step response of the process (or
compensated process), and can be verified and
adjusted online; in addition, due to the tuning
gain K, it is not necessary to estimate with high
accuracy the model parameters in order to have
good control performance (as shown in the simu-
lation Example 2.1, it is better to select KM > KP

than KM < KP, tM > tP than tM < tP, and TtrM >

TtrP than TtrM < TtrP);
– as the PID algorithm, the proposed control algo-
rithm is quasi-universal because it can be applied
to control almost all process types: proportional
processes (with or without time delay, with or
without overshoot, with or without oscillation, of
minimum or nonminimum phase), integral pro-
cesses, stable or unstable processes.

The main original contributions of the paper are the
following:

– an extension of the proposed algorithm to control
all or almost all industrial processes;

– an experimental procedure of tuning the control-
ler parameters much simpler than the procedures
used for the PID controllers;

– the use of a tuning gain with standard value 1
instead of a filter time constant that is usually
used in the classical IMC design;

– the use of the process transient time as model
parameter (together with the process steady-state
gain and process time delay);

– a design of the discrete-time control algorithm as
a set of difference equations which can be easily
implemented on a real time controller;

– a design of the conditions of bumpless transfer
between the three controller modes: MANUAL,
COMPENSATORY and AUTOMATIC;

– a proposal to generalize and improve the control
algorithm in order to avoid some unusual situa-
tions where the controller output to a step refer-
ence has a very sharp shape.

Due to its robustness, high control performance
(especially for the processes with time delay) and tun-
ing procedure simplicity, the proposed control

algorithm is better than the popular PID algorithm. In
addition, for integral-type processes, the proposed
algorithm achieves zero steady-state error for a ramp
disturbance added to the process output.
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