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ABSTRACT
The main contribution of this paper is to present the state-space model of an omnidirectional
drivetrain (Kiwi drive) for mobile robots. Holonomy or omnidirectional movement of mobile
robots is important in applications where navigation through tight space is required. Besides
the already available literature regarding either dynamic or kinematic models, this paper
presents the complex analysis of a mechatronic system and shows a coherent model that takes
into account both the kinematics and the dynamics of a coupled electromechanical system.
The model was developed based on two holonomic mobile robots: the Festo Robotino� and
the MOGI Ethon. A simulation software developed by the authors is also presented for
numerical evaluation of the model. The simulation results qualitatively confirm the model by
fulfilling the empirical requirements. Both the model and the simulation software are
expandable in order to improve the accuracy of the model describing actual mobile robots.
Compared to other models which are based only on the kinematics of the Kiwi drivetrain, in
accordance to one’s technical instinct, the presented model shows that there is a cross effect
between the motors of the drivetrain, where the motors affect each other.

KEYWORDS
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1. Introduction

Omnidirectional movement of mobile robots is widely
used in the field of mobile robotics. Different
approaches have been made through the last few years.
The possible drivetrains were analysed and compared
to each other in the literature several times [1,2].

In this paper, a mathematical model is presented for
an omnidirectional, holonomic mobile robot equipped
with the so-called Kiwi drivetrain based on three
omnidirectional wheels. The omnidirectional wheel is
similar to the Mecanum wheel [3,4], but the difference
between the two wheels is that the omnidirectional
wheel has a number of free rollers on the circumfer-
ence of the wheel and the axes of the rollers are tangen-
tially arranged to the wheel, while the axes of the
rollers of a Mecanum wheel have non-zero angle with
the tangent of the wheel. (see Figures 1 and 2).

The suggested model takes into account both the
kinematics and the dynamics of the drivetrain; further-
more, it contains the dynamics of the DC motors in
state-space representation.

The intention of creating this model is to further
improve the literature of the omnidirectional mobile
robots. Dynamic models from different drivetrains
already exist. The most commonly used drivetrain is the
differential drive which is a so-called quasi-holonomic
drivetrain. This drivetrain was already modelled and ana-
lysed in many studies; thus, it has the widest literature

ranging from kinematics, through dynamics and even
covering the control of vehicles equipped with differential
drive [6–9]. The four Mecanumwheel-based drivetrain is
also modelled and explained in several publications. It is
also widely used in different applications [10–13].
Another quasi-holonomic drivetrain is the active-caster
drivetrain, in which a number of casters are driven indi-
vidually by motors and the orientation of the casters can
be also adjusted electrically [14,15].

It is quite common to find models of the Kiwi drive
where only the kinematics of the drivetrain is consid-
ered, while the dynamics is neglected [16–19]. In Liu et
al. [20], a dynamical model was mentioned; however,
the focus was kept for path planning and path control.
In their publication, the equations of the current rates
of the DC motors were neglected. At that state-of-art,
neglecting the current rates was appropriate; however,
nowadays, hardware capabilities enable us to create
robotic applications based on more detailed models
and so to consider the equations of the current rates.

The subjects of our investigation are two omnidirec-
tional mobile robots, equipped with Kiwi drivetrain.
The Festo Robotino� and the Ethon, developed by the
Department of Mechatronics, Optics and Mechanical
Engineering Informatics (MOGI) of the Budapest Uni-
versity of Technology and Economics (BME) were
chosen for this purpose. The next section gives a brief
description of these robots.
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1.1. The Festo Robotino�

The Festo Robotino� is an omnidirectional mobile
robot equipped with three omni-wheels and designed
for educational use (see Figure 1).

In this paper, only the drivetrain and the mechani-
cal assembly of the Robotino� will be analysed. A com-
plete description of the robot can be found in [21].

In Figure 2, one driving block of the Robotino� is
shown. This block consists of a 24 V DC motor, an
incremental encoder, a toothed belt, a gear unit and
finally an all-way-roller also called omnidirectional
wheel or omni-wheel. The wheel is a common wheel
equipped with a number of free-running rollers, fitted
on the circumference of the wheel.

Figure 3 shows the arrangement of the above men-
tioned driving blocks. There are three driving blocks in
the Robotino�. All of them are equally spaced at 120�

around the vertical axle crossing the centre of mass of

the robot. In Figure 3, the driving blocks are noted as
M1, M2 and M3.

1.2. The MOGI Ethon

The latest development from the MOGI of the BME is
Ethon, the ethologically inspired service robot (see
Figure 4). The Ethon has an omnidirectional drive-
train, with three independent DC servo motors and
associated powertrain elements. This drivetrain enables
the robot to move freely on a planar surface and also to
rotate around its vertical axis. The motors are con-
trolled individually by custom-developed embedded
hardware and software. The control algorithms of the
robot are implemented on a PC. The personal com-
puter (PC) is located on the robot, thus making the
autonomous movement of the robot possible [16].

Figure 1. The Festo Robotino�.

Figure 2. Driving block of the Robotino�. (1) Motor, (2) Incre-
mental encoder, (3) Omni-wheel, (4) Gear unit, (5) Toothed
belt [5].

Figure 3. Drivetrain assembly of the Robotino�, where the
driving blocks are noted as M1, M2 and M3 [5].

Figure 4. MOGI Ethon.
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The MOGI Ethon is used in etho-robotics research
where ethologically inspired mobile robots are created
and continuously investigated by researchers from
robotics, mechatronics, biology and ethology [22].

2. Development of the state-space model

In this section, the state-space model of the holonomic
drive is pursued. Although the kinematic model of the
Kiwi drivetrain can be found in the literature, in order
to build a coherent model including kinematics,
dynamics and the electrical part (DC motors), a new
kinematic model was developed based on unified
notation.

In the first approximation, some assumptions were
made regarding the mechanical construction of the
robot. Regarding the driving blocks, only the wheel
speeds and inertias are taken into account. All masses
and inertias of the elements in the driving blocks are
considered as parts of the mass and inertia of the
wheel. The gear ratio between the motor and the wheel
is also neglected.

The omni-wheel itself is considered as one rigid
body with the ability to produce tractive effort without
slipping on the ground. This corresponds to the rolling
constraint in case of a traditional wheel. On the other
hand, the centre point of the wheel could have an axial
velocity which is produced by the other two wheels.
The axial velocity of the centre of mass of the wheels
exists because of the free-running rollers. The rolling
direction of the rollers is parallel to the shaft of the
wheels (see Figure 2).

It is assumed that the axes of the shafts of each
wheel cross each other at one point, and one point
only, and this point is the centre of mass of the robot
(see Figure 3).

2.1. Kinematics of the omnidirectional drivetrain

Former paper of the authors includes the kinematics of
the omnidirectional drivetrain and can be found in
[21], only the main steps are highlighted in this sec-
tion. The following assumptions were made in order to
derive the relationship between the wheel speeds and
the coordinate velocities of the robot body:

� Each wheel contacts the ground at a single point,
at a given time.

� All wheels roll on the ground without slipping.

First three Cartesian coordinate systems were fixed
to the wheels (F i; where i ¼ 1; 2; 3), one coordinate
system to each wheel (see Figure 5). In the coordinate
systems (F i), the normal axis ni is parallel to the shaft
of the wheels, the binormal direction bi is parallel to
the vertical direction and the tangential direction ti is
perpendicular to both the above-mentioned directions.

The lower index i represents the driving blocks. The
upper index ½i� denotes a coordinate system in which
the variable is considered.

Using the notation of Figure 5, the angular velocities
of the wheels can be expressed as

½i� _’i.t/ ¼ _’ni tð Þ 0 0½ �Tnitibi ; (1)

where _’ni.t/ denotes the angular velocity for each
wheel in the normal direction in their own coordinate
systems, produced by their corresponding motors.

Since there is no sliding in any direction, the follow-
ing expression can be written for the velocity of the
contact point:

½i�vpi tð Þ ¼ _ni.t/ 0 0½ �Tnitibi ; (2)

where _ni.t/ is a constraint velocity, produced by the
other two wheels, looking from the coordinate system
of a given wheel.

Using the velocity transformation inside the rigid
body, the translational velocity of the centre point of
each wheel can be expressed as

½i� _Si.t/ ¼ ½i�vPi þ ½i� _’i.t/� ½i�rw; (3)

where ½i�rw is the vectorial form of the radius of the
wheels and r is the radius of the wheels:

½i�rw ¼ 0 0 r½ �Tnitibi : (4)

Applying (3) to each wheel, the velocity of the cen-
tre of mass of each wheel has the following form:

½i� _Si.t/ ¼ _ni tð Þ �r _’ni tð Þ 0½ �Tnitibi (5)

Based on the assembly detailed in Figure 3, a func-
tional outline of the idealized omnidirectional drive

Figure 5. Side view of an idealized omni-wheel, showing the
coordinate systemF i Si; ni; ti; bif g attached to the wheel.
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system can be created as shown in Figure 6. A Carte-
sian coordinate system, F 4 S; ξ; h; zf g is considered
as the robot coordinate system that is attached to the
centre of mass of the robot body. Another Cartesian
coordinate system, F 5 O ; x; y; zf g is introduced as the
global coordinate system that is fixed in space. The
goal is to develop the relationship between the wheel
speeds and the coordinate velocities of the robot body
in F 5, becauseF 5 is the reference coordinate system.

In Figure 6, the coordinate systems attached to the
wheels are also shown. The black rectangles in Figure 6
represent the driving blocks.

The robot coordinate system (F 4) is fixed in such a
way that ξ maintains equal angular spacing between n1
and n3. Let b be the angle between ξ and n1 and also ξ
and n3. Since the driving blocks are equally spaced by
120� in both robots, b is constant 60�; however, b is
kept as a constructional parameter in the model that
enables the model to handle other symmetrical con-
structions.

Using the notations of Figure 6, transformation
matrices can be considered to transform vectors from
one coordinate system to another. Essentially the
transformation matrices between (F 1;F 2;F 3) and F 4

are given as

R1 ¼ RT
3 ¼

cos bð Þ �sin bð Þ 0

sin bð Þ cos bð Þ 0

0 0 1

2
4

3
5; (6)

R2 ¼ diag �1; � 1; 1ð Þ; (7)

The R1 and R3 matrices are simple rotation matrices
around the bi axis of the coordinate systems of the
respective wheels by a constant b angle.

Finally, the transformation between F 4 and F 5 was
considered as

RG ¼
cos.’z.t// �sin.’z.t// 0

sin.’z.t// cos.’z.t// 0

0 0 1

2
664

3
775; (8)

where ’z.t/ is the angle between ξ andx, hence the
angle between F 4 and F 5. Here, it is noted that zand z
are parallel and pointing to the same direction.

In order to get the desired relationship between the
coordinate velocities of the robot and the angular
velocities of the wheels, the following equations must
be solved for i ¼ 1; 2; 3:

½5� _Si.t/ ¼ ½5� _S.t/þ ½5� _’.t/� ½5�rSSi: (9)

The vectors ½5� _Si.t/ are the velocities of the wheels
described in F 5.

½5� _S.t/ is the velocity of the robot body described
inF 5, in the following form:

½5� _S.t/ ¼ _x.t/ _y.t/ 0½ �Txyz: (10)

½5� _’.t/ is the angular velocity of the robot body
in F 5:

½5� _’.t/ ¼
0

0

_’z.t/

2
4

3
5
xyz

þ RG

X3
i¼1

Ri
½i� _’i.t/; (11)

and ½5�rSSi are the vectors pointing from the
centre of mass of the robot to the centre of mass of
each wheel:

½5�rSS1 ¼ RG lcos.b/ lsin.b/ 0½ �T ; (12)

½5�rSS2 ¼ RG �l 0 0½ �T ; (13)

½5�rSS3 ¼ RG lcos.b/ �lsin.b/ 0½ �T ; (14)

where lis the radius of the pitch circle of the wheels.
Combining (9) to (14) yields for i ¼ 1; 2; 3:

RGRi
½i� _Si.t/ ¼ ½5� _S.t/þ ½5� _’.t/� ½5�rSSi: (15)

Solving for _x tð Þ; _y tð Þ; _’z tð Þ; _n1 tð Þ; _n2 tð Þ; _n3 tð Þ, the
three vector equations obtained by rearranging (15) to
zero and expounding the coordinate velocities of the
centre of mass of the robot can be expressed in the fol-
lowing form:

Figure 6. Top view of the idealized omnidirectional drive sys-
tem, showing the coordinate systems attached to the wheels
(F 1;F 2;F 3), the robot coordinate system (F 4) and the global
coordinate system (F 5).
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_x tð Þ
_y tð Þ
_’z tð Þ

2
4

3
5 ¼ Trobot

_’n1 tð Þ
_’n2 tð Þ
_’n3 tð Þ

2
4

3
5: (16)

Here, Trobot is the pursued relationship between the
angular velocities of the wheels and the coordinate veloc-
ities of the robot body. Trobot is described in Appendix 2.

2.2. Dynamics of the omnidirectional drivetrain

Former paper of the authors includes the dynamics of
the omnidirectional drivetrain and can be found in
[21]. In this paper, a different aim is given compared
to [21]. In this section, the relationship between the
wheel torques and the angular acceleration of the
wheels is pursued. The Lagrangian approach is used to
derive the equations of motion of the omnidirectional
drivetrain. In order to derive the equations of motion,
first the general coordinates and general coordinate
velocities are determined:

q tð Þ ¼ ’n1 tð Þ ’n2 tð Þ ’n3 tð Þ½ �T ;

_q tð Þ ¼ _’n1 tð Þ _’n2 tð Þ _’n3 tð Þ½ �T :
(17)

The Lagrangian approach to derive the equations of
motion is based on the definition of the Lagrange func-
tion:

L q tð Þ; _q tð Þð Þ ¼ T q tð Þ; _q tð Þð Þ�
U q tð Þ; _q tð Þð Þ; (18)

where T q tð Þ; _q tð Þð Þis the total kinetic energy, and U
q tð Þ; _q tð Þð Þ is the potential energy of the dynamic system.
The variable q.t/ denotes the configuration of the system,
which is the set of variables that can uniquely describe the
position of the system at a given time. For an uncon-
strained system, Lagrange’s equations of motion are
derived from the Lagrange function as follows:

d
dt

@L q tð Þ; _q tð Þð Þ
@ _q tð Þ � @L q tð Þ; _q tð Þð Þ

@q tð Þ ¼ Q tð Þ; (19)

where Q tð Þ is the vector of the generalized forces acting
on the system.

Only the case in which the robot is moving freely on
a flat surface is considered in this article. Thus, the
potential energy is constant and expounding (19), the
Lagrange’s equations of motion will not include any
portion of the potential energy function. Thus, let the
Lagrange function be constructed solely from the
kinetic energy terms:

L q tð Þ; _q tð Þð Þ ¼ T q tð Þ; _q tð Þð Þ: (20)

Although, formally, both the Robotino� and the
MOGI Ethon consist of four rigid bodies, i.e. three
driving blocks and a main body, only the kinetic
energy of the main body is considered in this chapter.

The properties of the driving blocks will be detailed in
Subsection 2.4. The kinetic energy of the main body is

T q tð Þ; _q tð Þð Þ ¼ 1
2
mr

½5� _S2.t/

þ 1
2
½5� _’T.t/½5�Qbody

½5� _’.t/; (21)

where ½5�Qbody is the inertia of the main body in F 5:

½5�Qbody ¼ mr�diag h2r þ 3R2
r

12
;
h2r þ 3R2

r

12
;
R2
r

2

� �
; (22)

and mr is the mass, hris the height and Rris the radius
of the robot.

Substituting (10), (11) and (22) into (21), the
following yields for the kinetic energy of the robot:

T q tð Þ; _q tð Þð Þ ¼ 1
2
mr _x

2 tð Þ

þ 1
2
mr _y

2 tð Þ þ 1
4
mrR

2
r _’

2
z tð Þ:

(23)

Using (16) for substituting _x.t/; _y.t/; _’z.t/ with the
_q.t/ general coordinate velocities and performing the
derivatives of (19), the Lagrange’s equations of the
second kind takes the form:

M€q tð Þ ¼ Q tð Þ; (24)

where M 2 R3�3 is the mass matrix and €q tð Þ ¼
€’n1 tð Þ €’n2 tð Þ €’n3 tð Þð ÞT is the vector of the angular

acceleration of the wheels, i.e. the general coordinate
accelerations. M is described in Appendix 2. Further-
more, Q tð Þis the vector of the generalized forces, which
are acting on the system, and can be produced using
the principle of the virtual work [23,24]:

Q tð Þ ¼ @P tð Þ
@ _q tð Þ ; (25)

where P.t/ is the power of the driving blocks in F 5, i.e.
the power of the DC motors, which are attached to the
wheels and can be expressed as

P tð Þ ¼ RGR1

tn1 tð Þ
0

0

2
664

3
775�RGR1

_’n1 tð Þ
0

0

2
664

3
775þ

RGR2

tn2 tð Þ
0

0

2
664

3
775�RGR2

_’n2 tð Þ
0

0

2
664

3
775þ

RGR3

tn3 tð Þ
0

0

2
664

3
775�RGR3

_’n3 tð Þ
0

0

2
664

3
775

¼
X3
i¼1

tni tð Þ _’ni tð Þ;

(26)

and tn1; tn2; tn3 are the torques of the wheels.
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Combining (24), (25) and (26), the desired relation-
ship is obtained as

M

€’n1 tð Þ
€’n2 tð Þ
€’n3 tð Þ

2
4

3
5 ¼

tn1 tð Þ
tn2 tð Þ
tn3 tð Þ

2
4

3
5 (27)

2.3. Modelling the driving blocks

After modelling the mechanical part of the drivetrain
with the Lagrange’s method, the DC motors and cou-
pled parts must be also modelled, because the DC
motors are the power inputs of the system. The drive
systems including the DC motors have been modelled
together in the interest of unified view, however the
motor model is well known in the literature [25,26].

The linear graph modelling method was used to
model the dynamics of the driving blocks [25,27,28].
This method is based on the structural analysis of the
physical entity, which is modelled. Figure 7 is a so-
called functional outline, which is an extension of the
assembly of the driving block (Figure 2), that shows
all relevant parameters, inputs and outputs of the
driving block. Parameters include passive elements
and transducers also. Both the models of “MOGI
Ethon” and the “Festo Robotino�” mobile robots are
presented in this section. The two robots share the
same omnidirectional drivetrain: one DC motor, one
toothed belt drive and the omnidirectional wheel in
each driving block.

The Festo Robotino� has one more stage attached
between the belt drive and the wheel, namely a plane-
tary gear. Based on Figure 7, the linear graph of the
two robots can be produced as in Figure 8. Parameters
of the graph are summarized and explained in Appen-
dix 1. The flexibility of the toothed belt drive is not
modelled here, i.e. the toothed belt is considered as an

infinitely stiff, or a rigid body. It is considered that the
force necessary for flexible deforming of the belt is sig-
nificantly larger than the special force responsible for
the torque causing slip between the wheels and the
ground. In this case, the assumptions of Subsection 2.1
and thus the whole model would become invalid.
Therefore, this case will need further investigation,
which lies outside the scope of this paper. Further con-
sequence is that the vibration tendency of the toothed
belt drive is not relevant here. If the belt still vibrates,
then it is considered as a manufacturing defect and the
drivetrain should be reassembled with adequate ten-
sion applied on the belt.

Hereinafter, only the MOGI Ethon will be kept in
focus. In case of MOGI Ethon, the linear graph can be
reduced to one electrical part and one mechanical part
(Figure 9).

Based on the reduced graph and with the use of the
equations of the DC motor as an electromagnetic
transducer described in [25] and in [28], the differen-
tial equations, which describe the dynamics of the driv-
ing blocks can be formulated.

In Figure 7, the constant km represents the relation-
ship between the mechanical and electrical sides of the
DC motor and symbolizes two different numbers, the
relationship can be expanded as

t tð Þ ¼ km;t i tð Þ;
u tð Þ ¼ km;eV tð Þ; (28)

where t tð Þ is the torque, i tð Þ is the current, u tð Þ is the
voltage, V tð Þis the angular velocity of the motor, km;t

is the torque constant and km;e is the speed constant
(see Appendix 1).

Figure 7. Functional outline of one of the driving blocks.

Figure 8. Linear graph of one of the driving blocks.

Figure 9. Reduced linear graph of the driving blocks of MOGI
Ethon, parameters according to Table A1.
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For every driving block:

ui tð Þ ¼ Riii tð Þ þ Li
dii tð Þ
dt

þ km;ei

n1
Vni tð Þ

�n1tni tð Þ ¼ QSi
dVni tð Þ

dt
þ BSiVni tð Þ � km;tiii tð Þ:

(29)

Since Vni tð Þ is the angular velocity of each wheel, it
can also be expressed as Vni tð Þ ¼ d’ni tð Þ

dt ¼ _’ni tð Þ. The
torque tni.t/ is the active torque, which is trying to
block the movement of each wheel; on the other hand,
it is the torque that is required to accelerate the omni-
directional drivetrain in (27). Substituting tni.t/ for i
¼ 1; 2; 3 from (27) into (29), the angular acceleration
of the wheels and the current rates of the motors can
be expressed.

The BSi parameters represent the dissipation of the
driving blocks. Currently viscous dampers are used for
modelling the mechanical friction in the driving
blocks. In case of necessity, the parameters of these vis-
cous dampers can be substituted by special friction
models and describing functions (e.g. Sz�ell et al. [29]).

2.4. The state-space model of the omnidirectional
drivetrain

In this section, the state-space model is used for
describing the complete electromechanical drive system
including mechanical and electrical components since
the state-space model is the basis of digital simulation.
This formalism is widely used in control engineering
since it is the basis of advanced control theory (e.g. state
feedback, model-based control, predictive control etc.)

Considering the general form of the state-space
model of a linear, time-invariant dynamic system
[25,26,30]:

_x tð Þ ¼ A�x tð Þ þ B�u tð Þ;
y tð Þ ¼ C�x tð Þ þD�u tð Þ; (30)

where x.t/is a vector of the time-dependent state varia-
bles, _x.t/is the first derivative of x.t/. u.t/ is a vector of
the system inputs. y.t/ is a vector composed from the
required output variables of the system, i.e. output vec-
tor. A;B;C;D are constant coefficient matrices.

The state variables, the system inputs and outputs
were chosen as

x tð Þ ¼ qT tð Þ _qT tð Þ i1 tð Þ i2 tð Þ i3 tð Þ� �T
; (31)

u.t/ ¼ u1.t/ u2.t/ u3.t/½ �T ; (32)

and

y tð Þ ¼ xT tð Þ _ξ tð Þ _h tð Þ _’z tð Þ
� �T

; (33)

where _ξ.t/ and _h.t/ are the so-called coordinate
velocities and _’z.t/ is the angular velocity of the robot
body described in F 4. Thus, the state-space equation
of the omnidirectional drivetrain can be written in the
form of (30), with the following coefficient matrices.

A is called the system matrix, or the state transition
matrix:

A ¼
03x3 I3x3 03x3
03x3 A5 A6

03x3 A8 A9

2
4

3
5; (34)

where A5;A6 2 R3�3describe the effect of the angular
velocities and motor currents on the angular accelera-
tions, respectively. The matrices A8 ¼ diag
a74; a85; a96ð Þ and A9 ¼ diag a77; a88; a99ð Þ describe the
effect of the angular velocities and motor currents on
the derivative of the motor currents. Ais described in
Appendix 2.

Bis the input matrix:

B ¼ 06�3

B2

� �
; (35)

where B2 ¼ diag 1
L1
; 1
L2
; 1
L3

� 	
describes the effect of the

input voltages of the motors on the derivative of the
motor currents.

C is the output matrix:

C ¼
I3�3 03�3 03�3

03�3 I3�3 03�3

03�3 03�3 I3�3

03�3 C11 03�3

2
6664

3
7775; (36)

where C11 2 R3�3 describes the effect of the angular
velocities on the system outputs. C is described in
Appendix 2.

D matrix describes the effect of the input voltages
of the motors on the system outputs:

D ¼ 012�3 (37)

3. Simulation

In this section, a simulation software developed by the
authors is presented. This software is used to simulate
the dynamics of the complete omnidirectional drive-
train. The simulation software of the complete omnidi-
rectional drivetrain serves two purposes. First, it is
used to validate and later to experiment with the
model. Second, the simulation results and future meas-
urements taken from the compatible on-board control
system of the robot will be easily comparable using this
software. The software was developed in the National
Instruments LabVIEWTM, a graphical programing lan-
guage with the Control Design and Simulation Toolkit
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[31]. A complete description of the Control Design and
Simulation Toolkit can be found in [32].

The architecture of the simulation software is a sim-
ple state machine, with a user interface event-handling
structure. The software starts with an initialization
phase, where all inputs and outputs are initialized to
their default values. Parameters and their values (see
Appendix 1) are stored in a coma-separated spread-
sheet file, which is read during initialization. The soft-
ware can handle several different parameter files.
Switching between parameter files can be done in run-
time via a selector. After initialization, the software
switches to a continuously running loop, where the
user event-handling structure is operated.

The user interface is ordered by pages, where each
page displays different simulation results of the system.
The first and starting page is the Model construction,
where basic model-related details are presented, i.e. the
model parameters and numerical values, the parameter
file selector, states, inputs and outputs of the system
and the numerical representation of the model. The
representation of the model is also adjustable; the user
can switch between state-space, transfer function or
even zero-pole-gain representation.

The software waits until the Start button is pressed
and then creates the numerical state-space model
based on Subsection 2.4 (see Figure 10).

The controllability and observability matrices are
calculated automatically and boolean displays inform-
ing the user whether or not the system is controllable
and observable. The zero-pole map of the system is
also generated automatically, along with the indication
of the number of zeros and poles and stability of the
system.

Once the simulation software is running and the
model is created, the user can choose what the software
should calculate. Actual calculations take place once
the user clicks on one of the labels of the page selector.
The software is able to calculate the dynamic responses
of the system in the time domain on the Dynamic

Responses page, both step and impulse responses can
be calculated and presented. LabVIEWTM Control
Design and Simulation Toolkit calculates the step and
impulse responses of a multiple input–multiple output
dynamic system (MIMO) in such way that the step or
impulse excitation is applied only on one input and
the others are kept at zero, for all inputs separately.
Therefore, the effect of each input on each state and on
each output can be presented on separate graphs.

On the Frequency Domain page, the Bode plot
(magnitude and phase diagrams) and the Nyquist plot
(root locus) of the system are calculated and presented
for all states and outputs.

Up to this point, the state-space model presented
and evaluated in the previous sections was a continu-
ous model. On the Sampled Model page, the model can
be transformed into a discrete model. The user can
choose between different sampling methods, i.e. zero-
order-hold, Tustin approximation or Z-transformation
among others, and the sampling time is also adjustable.
The coefficients of the discrete model are immediately
recalculated if the sampling method or the sampling
time is changed by the user. The discrete model will be
used to design and study the effect of different discrete
controllers.

The last page of the simulation software is labelled
Continuous Simulation. On this page, arbitrary excita-
tions can be given onto the inputs of the model and
the responses are calculated immediately. This is made
by a separate, continuously running task in the back-
ground, using the so-called producer–consumer
architecture.

This architecture takes advantage of the multi-core
processing, where at least two independent tasks are
running in parallel and data between the tasks is sent
using inter-process communication techniques. Lab-
VIEWTM supports the multi-core processing by offer-
ing a great variety of libraries and functions. The
producer task (the user interface event handler) produ-
ces data (i.e. input values) and commands (i.e. start or
stop) for the consumer task, where the received com-
mands and data are processed (i.e. the simulation is
running with new parameters). The continuous simu-
lation can be stopped and restarted at will. If the con-
tinuous simulation is stopped, the task is not
terminated; it just becomes idle and waits for further
user interaction (i.e. restart or termination).

3.1. Simulation results

Simulations were done with nominal parameters (see
Appendix 1). Distance and mass properties were
adopted from the CAD model of the MOGI Ethon and
the parameters of the motors were adopted from the
datasheet. Although there could be differences between
the CAD model and the actual sizes, furthermore, the

Figure 10. The numerical representation of the state-space
model.
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motors could differ from each other and from the
datasheet also.

The aim of this simulation is to confirm the model.
Further refinements will be needed to relate the model
to the actual robot. This stands especially for the dissi-
pation. There were no measurements carried out to
validate the model quantitatively yet. The model is val-
idated qualitatively based on the following empirical
considerations and requirements:

� In F 4, the driving block M2 should not produce
any effect on _ξ tð Þ as _ξ tð Þ is produced only by the
driving blocks M1 and M3.

� The rotational coordinate velocity _’z tð Þ ¼ v tð Þ is
produced with equal proportions by all driving
blocks.

Basic results indicate that the developed model is
controllable and observable.

Simulation results in the time domain, in case of a
step response, confirm the two orders of magnitude
difference between the time constants of the mechani-
cal and electrical parts (see Figures 11 and 12).

This difference is commonly known and often
results in neglecting the electrical part of the DC motor
model. In this paper, the electrical parts of the DC
motors will be kept for further research.

In case of impulse response simulation, the results
show the same difference between the time constants
of the mechanical and electrical parts. A so-called cross
effect can also be observed (Figure 13), where the
angular velocity of one motor changes while the corre-
sponding control voltage is kept at zero level. This
effect is caused by the omnidirectional drivetrain itself.
The magnitude of this cross effect is about 10% of the
main effects (angular velocity change caused by the
corresponding control voltage change), that seems
negligible, but a precise motion control system needs
to be designed to calculate this effect. This effect can
also be observed on Figure 12, in case of step response
simulation.

Simulating the system with equal corresponding
parameters of each driving block (see Appendix 1)
leads to a completely symmetric drivetrain. In Figures
12 and 13, the graphs of the main effects run together,
and the graphs of the cross effects run together also.
Although the drivetrain is symmetric (neglecting the
manufacturing inaccuracies), measuring the actual
motors may lead to different numeric values of the cor-
responding parameters; thus, the model would become
asymmetric.

Therefore, the use-case where the motors are indi-
vidually controlled by a position or speed controller
with identical control parameters is not the best prac-
tice, not even when the controllers are tuned
individually.

Finally, the outputs of the system can be seen in
Figure 14, where the coordinate velocities are shown in
case of step response simulation.

The coordinate velocities are defined in F 4 coordi-
nate system (see Figure 5). Figure 14 demonstrates the
following results. In Figure 14, v_xi(u2) curve is at con-

Figure 11. Step response graph of the motor currents.

Figure 12. Step response graph of the angular velocities of the
wheels.

Figure 13. Impulse response graph of the angular velocities of
the wheels.
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stant zero level (u2 is the control voltage for M2 driving
block and v_xi() denotes _ξ tð Þ). Hence, _ξ tð Þ is produced
by the driving blocks M1 and M3 only. In Figure 14,
curves named omega(u1), omega(u2), omega(u3) over-
lap each other completely; thus, the rotational coordinate
velocity is produced in equal proportions by all driving
blocks (omega() denotes _’z tð Þ in the simulation). Thus,
the simulation confirms the model qualitatively based
on the empirical considerations and requirements
defined earlier is this subsection.

4. Conclusions

In this paper, the development of the state-space model
of an omnidirectional drivetrain (Kiwi drive) for
mobile robots was presented. Two holonomic mobile
robots were used as examples, the Festo Robotino�

and the MOGI Ethon. Detailed mathematical descrip-
tion was given with a coherent system of symbols for
both the kinematics and dynamics of the omnidirec-
tional drivetrain. Results from the kinematics and
dynamics were then used to formulate the state-space
model including the DC motors and associated power-
train elements.

The model is particularly useful when the mobile
robot is rolling on a flat surface. The model includes
basic dissipative elements, which can be replaced with
more accurate dissipation models if needed.

Self-developed simulation software was also pre-
sented for numerical evaluation of the developed
model. The simulation software was developed in Lab-
VIEWTM graphical programing language, and uses
built-in functions to simulate the model. The impact of
the change of each model parameter can be evaluated
with this software. The software gives a good base to
evaluate different control algorithms.

Basic simulation results confirm the model, but fur-
ther evaluation is needed to improve the accuracy of
the model describing actual mobile robots. Measure-
ments for quantitative verification of the model are in
progress.

The long-term aim is to give new, more precise
motion control systems for mobile robots using omni-
directional drivetrains. Future plans are to implement
and evaluate different control algorithms based on the
model in real-time software environment.

With a real-time control system, the electric torque
of the motors could be controlled via current control;
thus, current consumption could be optimized result-
ing in maximization of battery lifetime of the robots.

Final results can also be used in higher education
and research in the field of mobile robotics in order to
develop professional precision control systems for
position control of robots.
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Appendices

Appendix 1. Nomenclature

Appendix 2. Description of matrices

Trobot ¼
t11 t12 t13
t21 t22 t23
t31 t32 t33

2
4

3
5; (B1)

The elements of Trobot are detailed in the Supplemen-
tary file.

M ¼
m11 m12 m13

m21 m22 m23

m31 m32 m33

2
4

3
5; (B2)

The elements of M are detailed in the Supplementary
file.

A ¼

03�3 I3�3 03�3

03�3

a44
aden

a45
aden

a46
aden

a54
aden

a55
aden

a56
aden

a64
aden

a65
aden

a66
aden

a47
aden

a48
aden

a49
aden

a56
aden

a58
aden

a59
aden

a67
aden

a68
aden

a69
aden

03�3

a74 0 0

0 a85 0

0 0 a96

a77 0 0

0 a88 0

0 0 a99

2
6666666666666664

3
7777777777777775

;

(B3)

The elements of A are detailed in the Supplementary
file.

C ¼

I3�3 03�3 03�3

03�3 I3�3 03�3

03�3 03�3 I3�3

03�3

c104 0 c106

c114 c115 c116

c124 c125 c126

03�3

2
666666664

3
777777775
; (B4)

The elements of C are detailed in the Supplementary
file.

Table A1. List of parameters.
Parameter Unit Value Description

l [m] 0.294 Radius of the pitch circle of the
wheels

b �½ � 60 Half angle between every two shaft of
the wheels

r [m] 0.051 Radius of the wheels
mr [kg] 40 Mass of the robot
Rr [m] 0.270 Radius of the robot
hr [m] 0.800 Height of the robot
mwheel [kg] 0.238 Mass of the wheel
g m

s2
� �

9.81 Gravitational acceleration
L1 H½ � 0.000201 Inductance of the motors
L2 0.000201
L2 0.000201
R1 V½ � 1.7 Resistance of the motors
R2 1.7
R3 1.7
km;t1

Nm
A

� �
0.0222 Torque constants of the motors

km;t2 0.0222
km;t3 0.0222
km;e1 V

rpm

h i
0.0023 Speed constants of the motors

km;e2 0.0023
km;e3 0.0023
n1 1½ � 0.127 Gear ratio of the toothed belt
n2 Gear ratio of the planetary gear

(Robotino� only)
Qm kgm2� �

Inertia of
the
motor
QG2 Inertia of the belt drive
QG3 Inertia of the planetary gear
QS1 0.024 Resultant inertia of the driving blocks
QS2 0.024 QSi ¼ Qm þ 1

n21
QG2

QS3 0.024
Bm kgm2

s

h i
Attenuation of the motor

BG2 Attenuation of the belt drive
BG3 Attenuation of the planetary gear
BS1 1 Resultant attenuation of the driving

blocks
BS2 1 BSi ¼ Bm þ 1

n21
BG2

BS3 1
Vm

rad
s

� �
Angular velocity of the motor

VGi Angular velocity of the small wheel of
the toothed belt drive of each
driving block
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