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ABSTRACT
In this article, the authors have studied combination projective synchronization using active
backstepping method. The main contribution of this effort is realization of the projective
synchronization between two drive systems and one response system. We relax some
limitations of previous work, where only combination complete synchronization has been
investigated. According to Lyapunov stability theory and active backstepping design method,
the corresponding controllers are designed to observe combination projective synchronization
among three different classical chaotic systems, i.e. the Lorenz system, R€ossler system and
Chen system. The numerical simulation examples verify the effectiveness of the theoretical
analysis. Combination projective synchronization has stronger anti-attack ability and anti-
translated ability than the normal projective synchronization scheme realized by one drive and
one response system in secure communication.
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synchronization; active
backstepping design;
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1. Introduction

Chaos systems are nonlinear dynamical systems that
are highly sensitive to initial conditions. Modelling the
dynamics of chaotic systems is a challenging problem
with important real-world application, such as weather
forecast [1–3], road traffic [4,5], stock market returns
[6], etc. Chaotic systems are likely to lead completely
different trajectories because of slight errors. There-
fore, chaotic systems may require synchronization. In
the late twentieth century, when the computational
techniques became an important scientific tool, many
scientists focused their efforts on developing determin-
istic methods to synchronize chaotic systems. Synchro-
nization means two or more systems adjust each other
to give rise to a common dynamical behaviour. As a
key technique of secure communication, chaos syn-
chronization has been extensively studied in recent
decades and different notations have been proposed
and studied, such as complete synchronization [7–9],
generalized synchronization [10,11], phase synchroni-
zation [12,13], anti-phase synchronization [14–16]
and projective synchronization [17–20].

Among them, the most preferred one for synchroni-
zation is projective synchronization. It has been success-
fully used to extend binary digital to M-nary digital for
achieving fast communication. Projective synchroniza-
tion is a recently discovered intriguing phenomenon
which characterized by a scaling factor that the drive

and the response systems synchronize proportionally.
So far, the projective synchronization model of chaotic
systems has mainly been limited to one drive system
and one response system [18–20]. In secure communi-
cation, the typical approach is to transmit the informa-
tion signal by means of one chaotic system.

However, since the transmitter is only one, this pat-
tern is relatively easier to be attacked or decoded in the
process of transmission. In order to ensure safer com-
munication, combination synchronization, which has
two drive systems (or three drive systems, or four drive
systems) and one response system, has been proposed
by Luo in 2011 [21]. This synchronization method has
advantages over the usual drive-response synchroniza-
tion within one drive system and one response system,
such that it can provide greater security in secure com-
munication. Because the transmitted signals can be
split into two parts, each part is loaded in different
drive systems or at different intervals. The signals in
different intervals could be loaded in different drive
systems. Thus, the transmitted signals can have stron-
ger anti-attack ability and anti-translated capability
than those transmitted by the usual transmission
model. In the past three years, some researchers have
been interested in the combination synchronization
[21–27] for safer communication. In Ref. [22], combi-
nation synchronization among fractional-order chaotic
systems was observed. Sun et al. investigated
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combination-combination synchronization between
two drive systems and two response systems in a finite
time [23]. Combination synchronization of chaotic
systems is an open topic.

Until now, combination synchronization mainly
focuses on the combination complete synchronization
[21], however, little attention has been paid to the com-
bination projective synchronization. Combined projec-
tive synchronization becomes combined synchronization
as scaling factor equals to 1. Compared to the normal
projective synchronization scheme realized by one drive
and one response system, combination projective syn-
chronization has stronger anti-attack ability and anti-
translated ability in secure communication. There are
only a few papers on the combination projective syn-
chronization [28,29]. On the other hand, the active con-
trol scheme [30–32] and backstepping design [33,34]
have been widely recognized as two powerful design
methods to control chaotic systems in recent years. The
active control method is easier to manipulate so that it is
used widely to control chaotic systems. Backstepping
design represents a powerful and systematic technique
that recursively interlaces the choice of the Lyapunov
function. Consequently, in this paper, we use the active
backstepping design [35–37] to achieve combination
projective synchronization. It is a systematic design
approach and consists of a recursive procedure by design
a virtual control via Lyapunov stability theory.

Motivated by the above discussions, the aim of this
paper is to study combination projective synchronization
between two drive systems and one response system
using active backstepping design. This paper is organized
follows. In Section 2, we define the combination projec-
tive synchronization. In Section 3, we first introduce a
brief description of the Lorenz system, R€ossler system
and Chen system. Second, we analyse the combination
projective synchronization among Lorenz system,
R€ossler system and Chen system via the design of the
active backstepping controllers based on the Lyapunov
stability theory. Third, numerical simulations are given
to confirm the validity of the proposed theoretical
approach. Conclusions are drawn in the last section.

2. The definition of combination projective
synchronization

The first drive system is given as follows:

_X ¼ F Xð Þ (1)

and the second drive system is given by

_Y ¼ G Yð Þ (2)

The response system under the controller U is
described by

_Z ¼ H Zð Þ þ U ; (3)

where X = (x1, x2, …, xn)
T 2 Rn, Y = (y1, y2, …, yn)

T 2
Rn and Z = (z1, z2, …, zn)

T 2 Rn are the state variables
of the systems (1)–(3), respectively; F, G, H 2 Rn are
continuous nonlinear functions; U = [u1, u2, …, un]

T 2
Rn is the controller to be designed.

Definition 2.1: For the drive systems described by
Equations (1) and (2), we call they have realized com-
bination projective synchronization with the response
system (3) if there exists a non-zero constant a, such
that the following condition:

lim
t! 1 k e k¼ lim

t! 1 k X þ Y � aZ k ! 0; (4)

can be achieved, where k ¢ k denotes the Euclidian
norm of a vector. It implies that the error dynamical
system between the drive systems and response system
is globally asymptotically stable, and we call a a “scal-
ing factor”.

Remark 2.1: If a = 1, then the combination projective
synchronization problem discussed in this paper
will be reduced to the combination complete
synchronization.

3. Combination projective synchronization

3.1. System description

In this paper, we consider Lorenz system which is
taken the following form:

_x1 ¼ a1 x2 � x1ð Þ
_x2 ¼ b1x1 � x2 � x1x3
_x3 ¼ x1x2 � c1x3;

8<
: (5)

where the system parameters are a1 = 10, b1 = 28 and
c1 ¼ 8

3 with which the system behaves chaotically; see
Figure 1(a).

Consider the R€ossler chaotic system described by
the following differential equations:

_y1 ¼ �y2 � y3
_y2 ¼ y1 þ a2y2
_y3 ¼ �c2y3 þ b2 þ y1y3;

8<
: (6)

which has a chaotic attractor as shown in Figure 1(b)
when a2 = 0.2, b2 = 0.2, and c2 = 5.7.

Consider the Chen system

_z1 ¼ a3 z2 � z1ð Þ
_z2 ¼ c3 � a3ð Þz1 þ c3z2 � z1z3
_z3 ¼ z1z2 � dz3;

8<
: (7)

where a3 = 35, c3 = 28, and d = 3 with which the system
behaves chaotically as shown in Figure 1(c).
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3.2. Design of the active backstepping controllers

In this section, we assume that the Lorenz system (5)
and R€ossler system (6) drive the Chen system (7).
Thus, we rewrite the response system (7) under the
controllers as follows:

_z1 ¼ a3 z2 � z1ð Þ þ u1
_z2 ¼ c3 � a3ð Þz1 þ c3z2 � z1z3 þ u2
_z3 ¼ z1z2 � dz3 þ u3;

8<
: (8)

where u1, u2 and u3 in Equation (8) are the control
functions to be designed for the purpose of the combi-
nation projective synchronization among systems (5),
(6) and (8).

Define the error among systems (5), (6) and (8)

e1 ¼ x1 þ y1 � az1
e2 ¼ x2 þ y2 � az2
e3 ¼ x3 þ y3 � az3;

8<
: (9)

then we obtain the error dynamical systems from
Equation (9) as follows:

_e1 ¼ _x1 þ _y1 � a _z1
_e2 ¼ _x2 þ _y2 � a _z2
_e3 ¼ _x3 þ _y3 � a _z3

8<
: (10)

Substituting Equations (5), (6) and (8) into Equa-
tion (10) yields

_e1 ¼ a3e2 � a3e1 þ f1 � au1

_e2 ¼ c3e1 � a3e1 þ c3e2 � x1
a
e3 � y1

a
e3 � x3

a
e1

� y3
a
e1 þ e1e3

a
þ f2 � au2

_e3 ¼ x1
a
e2 þ y1

a
e2 þ x2

a
e1 þ y2

a
e1 � e1e2

a
� de3 þ f3

� au3;

8>>>>>>>>>><
>>>>>>>>>>:

(11)

where

f1 ¼ a1x2 � a1x1 � y2 � y3 � a3x2 � a3y2 þ a3x1 þ a3y1

f2 ¼ b1x1 � x2 � x1x3 þ y1 þ a2y2 � c3x1 � c3y1 þ a3x1

þ a3y1 � c3x2 � c3y2 þ x1x3
a

þ x1y3
a

þ y1x3
a

þ y1y3
a

f3 ¼ x1x2 � c1x3 � c2y3 þ b2 þ y1y3 � x1x2
a

� x1y2
a

� y1x2
a

� y1y2
a

þ dx3 þ dy3

8>>>>>>>>>>><
>>>>>>>>>>>:

(12)

It is obvious that our object is to design proper con-
trollers ui(i = 1, 2, 3) for stabilizing the error variables
of system (11) at the origin. In this paper, we use active
backstepping approach [35–37] which includes three
steps.

Step 1. Let v1 = e1, then we obtain its derivative

_v1 ¼ _e1 ¼ a3e2 � a3e1 þ f1 � au1; (13)

where e2 = k1(v1) can be regarded as a virtual control-
ler. For the design of k1(v1) and u1 to stabilize k1-sub-
system (13), consider the Lyapunov function L1 ¼ 1

2 v
2
1.

The derivative of L1 is

_L1 ¼ v1 _v1 ¼ v1 a3k1 v1ð Þ � a3v1 þ f1 � au1½ �: (14)

Then one can choose au1 = f1 ¡ a3v1 + v1 and k1(v1) =
0, such that _L1 ¼ �v21 < 0. It implies that the v1-sub-
system (13) is asymptotically stable. Since the virtual
control function k1(v1) is estimative, the error between
e2 and k1(v1) is v2 = e2 ¡ k1(v1). Then we can obtain
the following (v1, v2)-subsystem

_v1 ¼ a3v2 � v1

_v2 ¼ c3v1 � a3v1 þ c3v2 � x1
a
e3 � y1

a
e3 � x3

a
v1

� y3
a
v1 þ v1

a
e3 þ f2 � au2:

8>>>><
>>>>:

(15)

Figure 1. (a) Lorenz chaotic attractor, (b) R€ossler chaotic attractor, (c) Chen chaotic attractor.
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Consider e3 = k2(v1, v2) as a virtual controller to make
system (15) asymptotically stable.

Step 2. In this step, in order to stabilize the (v1, v2)-
subsystem (15), we can choose a Lyapunov function
defined by L2 ¼ L1 þ 1

2 v
2
2. The time derivative of L2 is

_L2 ¼ _L1 þ _v2v2

¼ a3v1v2 � v21 þ v2 c3v1 � a3v1 þ c3v2 � x1
a
k2

h

� y1
a
k2 � x3

a
v1 � y3

a
v1 þ v1

a
k2 þ f2 � au2�

¼ �v21 þ c3v1 þ c3v2 � x1
a
k2 � y1

a
k2 � x3

a
v1

�

� y3
a
v1 þ v1

a
k2 þ f2 � au2Þv2 (16)

If the control function u2 is chosen as
au2 ¼ c3v1 þ c3v2 � x3

a
v1 � y3

a
v1 þ f2 þ v2, and k2(v1,

v2) = 0, then _L2 ¼ �v21 � v22 < 0, which makes the (v1,
v2)-subsystem (15) asymptotically stable. Let v3 = e3,
one has the following (v1, v2, v3)-subsystem:

_v1 ¼ a3v2 � v1

_v2 ¼ �a3v1 � v2 � x1
a
v3 � y1

a
v3 þ v1

a
v3

_v3 ¼ �dv3 þ x1
a
v2 þ y1

a
v2 þ x2

a
v1 þ y2

a
v1 � v1v2

a

þ f3 � au3:

8>>>>>>><
>>>>>>>:

(17)

Step 3. We can choose a Lyapunov function L3 ¼
L2 þ 1

2 v
2
3 in order to make the (v1, v2, v3)-subsystem

(17) stable.
The derivative of L3 gives

_L3 ¼ _L2 þ v3 _v3

¼ �v21 � v22 þ v3
x2
a
v1 þ y2

a
v1 � dv3 þ f3 � au3

� �
:

(18)

We can choose au3 ¼ x2
a
v1 þ y2

a
v1 � dv3 þ f3 þ v3

so that _V3 ¼ �v21 � v22 � v23 < 0, which imply the (v1,
v2, v3)-subsystem (17) asymptotically stable. By using
the following properties: v1 = e1, v2 = e2, and v3 = e3,
we know that ei(i = 1, 2, 3) go to zero as t!1, which
implies that the two drive systems (5) and (6) will
achieve combination projective synchronization with
the response system (8).

In what follows, we give numerical experiments to
verify the effectiveness of our approach. The fourth-
order Runge–Kutta algorithm is used in all of our sim-
ulations with time step being equal to 0.001. The initial
values of the drive systems and the response system
are given by (x10, x20, x30) = ( ¡ 11.2, ¡8.4, 33.4), (y10,
y20, y30) = (3, 5, 2) and (z10, z20, z30) = (10.5, 20, 38).
The corresponding numerical results are shown in the
following.

Figure 2 shows the combination projective synchro-
nization among systems (5), (6), (8) with a = 2.

Figure 2. Combination projective synchronization between drive systems (5), (6) and response system (8) with a = 2. (a) Time
waveforms of the states x1 + y1 (solid) and z1 (dashed), (b) time waveforms of the states x2 + y2 (solid) and z2 (dashed), (c) time
waveforms of the states x3 + y3 (solid) and z3 (dashed).

298 C.-F. FENG ET AL.



Figure 2(a–c) show the time waveforms of the states
x1 + y1 and z1, x2 + y2 and z2, x3 + y3 and z3, respec-
tively. It can be easily seen that the phase angle
between the synchronized trajectories is zero. Figure 3
displays the orbits of synchronization error ei(t), i = 1,
2, 3, as t ! 1. From Figure 3, we can see that the
error vector e converges to zero as time t goes to

infinity. This shows that all the state variables achieve
the combination projective synchronization.

The same results with a =¡2 are shown in Figures 4
and 5. Figure 4(a–c) show the time waveforms of the
states x1 + y1 and z1, x2 + y2 and z2, x3 + y3 and z3,
respectively, where the phase angle between the syn-
chronized trajectories is p. Furthermore, Figure 5

Figure 3. Time waveforms of the combination projective synchronization errors ei(t)(i = 1, 2, 3) between drive systems (5), (6) and
response system (8) with a = 2.

Figure 4. Combination projective synchronization between drive systems (5), (6) and response system (8) with a = ¡2. (a) Time
waveforms of the states x1 + y1 (solid) and z1 (dashed), (b) time waveforms of the states x2 + y2 (solid) and z2 (dashed), (c) time
waveforms of the states x3 + y3 (solid) and z3 (dashed).
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shows that the error vectors ei(t), i = 1, 2, 3, eventually
converge to zero after the controllers are activated. It
implies that the drive systems (5), (6) and response
system (8) achieved the combination projective syn-
chronization with a = ¡2.

4. Conclusion

We have already analytically estimated and numeri-
cally simulated combination projective synchroniza-
tion using an active backstepping design. The
proposed control method is a systematic design
method and contains a recursive procedure to make
in-full range synchronization all state variables in a
proportional state. Based on the Lyapunov stability
theory, corresponding controllers to achieve combina-
tion projective synchronization are derived among
three different classical chaotic systems: Lorenz system,
R€ossler system and Chen system. The numerical simu-
lation results are conducted to illustrate the validity
and feasibility of the theoretical analysis. Combination
projective synchronization, including two drive sys-
tems, has stronger anti-attack ability and anti-trans-
lated ability than the projective synchronization in
extending binary digital to M-nary digital for achieving
fast communication.
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