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ABSTRACT

The main aim of this paper is to present stability region analysis for a closed-loop system with
the second-order model with a time delay and continuous-time fractional-order proportional-
derivative (PD) controller. The model of the plant used in the paper approximates the dynamics
of a simplified motor-rotor model of multirotor's propulsion system. The controller tuning
method is based on Hermite-Biehler and Pontryagin theorems. The tracking performance is
also analysed in the paper by observing the integral of absolute error and integral of squared
error indices. The presented results are expected to be useful in future when comparing

simulation with experimental results.

1. Introduction

Fractional-order systems, can be considered as a gener-
alization of integer-order ones [1]. In the last years,
increased interest in fractional-order (FO) systems can
be noted. From the mathematical point of view,
research in this subject can still present new results,
and one can easily present the advantages of using FO
systems or non-integer systems in many specific areas,
e.g. chemical analysis of aqueous solutions or quantum
mechanical calculations. They also appear in control
theory of dynamical systems where controlled plants
can be of integer or non-integer order and the control-
ler can also be of integer or non-integer order. This
leads to FO differential equations and the necessity to
solve these type of equations.

A non-integer order system is used where appropri-
ate classical mathematical methods fail. It is possible to
apply a FO system in control engineering theory [2,3]
and in practical implementations [4-6], approximating
it with appropriately high-order discrete-time systems.
From the authors’ point of view, it is worth noting that
to design e.g. a controller for a system with a time
delay, a FO controller can be used, instead of applying
classical methods, such as approximating the plant
with a first-order inertia, see e.g. [7]. Classification of
dynamic systems can be performed with respect to
their orders, and the similar holds for the controllers,
giving four possible combinations of integer- and FO-
components in the closed-loop system [8]. Many con-
trol plants are fractional by nature, thus this approach
seems most appealing and, in addition, it is often cited
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that a FO controller can always outperform an integer-
order controller [8-10]. Of course, there is a problem
with tuning these controllers, as well as with their
implementation. Tuning can be performed offline,
even by genetic or particle swarm optimization (PSO)
algorithms [11], and implementation usually requires
a number of past samples of signals stored in the con-
troller’s memory, to perform suitable approximations
of the FO controller operations.

In this paper, the FO calculus is used to analyse the
stability region of a second-order plant with time delay
and the use of fractional-order proportional-derivative
(FOPD) controller. FO control is being currently and
increasingly used in order to achieve better performance
of control systems in comparison with classical control.
Tuning of FO controllers is challenging, since in, e.g.
the general framework of an FOPD controller there are
three parameters to tune. Many approaches to tune FO
controllers are available in the literature, nevertheless
they present either simplifying approaches, such as the
Ziegler-Nichols methods, or require an in-depth knowl-
edge of the model of the plant, such as in the Bode
approach. Other methods may require, e.g. genetic
algorithms to be used, which cannot be easily applied
due to their computational complexity in real-time
regime.

According to Shah and Agashe [12], three main
categories of approaches to controller-tuning can be
distinguished, ie. rule-based methods, analytical
methods, numerical methods and, in addition, classical
adaptive control methods. An increasing number of
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papers report the applications of FO controllers.
In [13], a FO controller design for a mini DC motor
that gives a step response of the closed-loop system
with overshoot independent of payload changes, con-
sidering analogue implementation of FO operators,
using operational amplifiers is given. The paper [14]
introduces two fractional-order PI (FOPI) controllers
for a class of FO systems, with tuning constraints
imposed on closed-loop systems, taking care of perfor-
mance and robustness. Simulation and experimental
results are presented in these papers. Experimental
results are carried out in a hardware-in-the-loop sys-
tem in dynamometer control system. The authors of
[15] propose the use of FO controllers to reduce the
sensitivity of the closed-loop system to parameter var-
iations, with the performance compared by means of
Matlab simulations with a system with a well-tuned
proportional-integral (PI) controller for an AC motor
system.

In this paper, the stabilizing solution to the control
system is found (with stability areas described) by the
use of FO calculus, FOPD controller and continuous-
time plant model. The plant model originates from the
model of a propulsion unit of a quadrotor, namely
with AXI 2814/12 GOLD LINE brushless direct-
current (BLDC) motor from Model Motors company
with three-bladed propeller GWS-HD9050x3-SW 9x5”
[16]. In our next work, it will enable us to obtain a sta-
bilizing FOPD controller in a real-world system. The
test stand presented in Figure 1 has been used to obtain
the time characteristics presented in the further part
of the text.

Electrical drive units of multirotor unmanned aerial
vehicles (UAVs) have simple mechanical construction
and possibilities hidden in their control. In addition,
by using appropriate drive units [17] with proper
dimensions, placement, orientation, and ensuring
appropriate torque and thrust control, by controlling
the rotational speeds of the UAV’s rotors, this hidden
potential can be exploited [18,19]. The problem of
rotational speed control of propellers is not frequently
addressed, but by keeping the real rotational speed of a
particular propeller in accordance with a reference
value of this speed, full stability and complete control

Figure 1. Test stand of a real propulsion unit.
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over the multirotor at minimum energy consumption
can be achieved [20].

The need to control rotational speed originates from
the fact that the true thrust forces and torques gener-
ated by the blades of the driving units can, in general,
be different or can be other as specified by the manu-
facturer. This usually results from the precision of
quality of the production process, improper fitting
(backlash), natural wear and ageing of high-speed
drives or due to possible damages caused to the struc-
ture of the blades due to contact with obstacles (falls,
scratches, etc.). These differences are observed espe-
cially during stabilization phase of the UAV in flight,
when all the units should theoretically have an equal
rotational speed, and as a result, equal thrust forces
and torques, to keep the robot in the air, holding it still,
despite the weather conditions. Due to the characteris-
tics of controlling a UAYV, every additional correction
of its position or orientation, resulting from lack of
balance between the forces, is connected with an addi-
tional energy expense, limited by the battery capacity,
and may result in reducing the time of flight. This is
the reason the authors propose to introduce an addi-
tional feedback loop to track the rotational speed in a
multirotor UAV control loop, to ensure the control
system can reserve a set of rotational speed and thrust
force values of the output of the driving units [21].

Nowadays, in increasingly, widely applicable and
professional multirotor flying robots [22,23], there
dominates a multilayer control architecture (see
Figure 2). The first layer is an outer control loop of the
robot position, and together with the second layer
(middle control loop of robot orientation) is com-
monly used in various configurations, e.g. when using
quaternion-based logic [24], which aims at eliminating
the gimbal lock phenomenon. Every such implementa-
tion of a multilayer control system is aimed at increas-
ing the precision of positioning and maintaining high
precision of orientation of the robot in 3D space.

Rotational speed control of a propulsion unit, the
innermost control loop, in multirotor flying robots is a
part of the majority of small-sized UAVs. This control
problem is addressed, e.g. [25]. The sample advantages
of a rotational speed control have already been men-
tioned in the previous section. It is not a demanding
problem, since the mathematical model of the system
is fairly simple, and the electronic speed control
module, responsible for driving the DC motor by
appropriate pulse-width modulation (PWM) modula-
tion does the task.

Introduction of the fastest internal control loop of
rotational speed that would be easily implementable
with the use of speed measurements gained from
counting of impulses generated by the marker placed
at the BLDC motor propeller, for each of the motors is
appealing. The latter is done, as mentioned above, in
order to improve the most important feature of the
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Figure 2. The block diagram of the propulsion unit of a quadrotor.

control system, i.e. stabilization of the robot by forcing
counterbalance of thrust and rotational torque of the
motors. To achieve this improvement, it is expected to
propose an efficient control algorithm that is tuned to
an adequate dynamics model (adequate model of the
motor).

2. Statement of the problem

2.1. Model of the propulsion unit, simplified linear
model of the plant

Models of propulsion units with BLDC motors (used
in driving systems of multirotor flying robots, UAVs),
as remarked, have been developed in great variety.
Linear models with time delay are described in [16],
and non-linear models in [26]. The linear model is
used in the paper as it has been already proven that
one can propose a FO controller (in general, in FO
proportional-integral-derivative (PID) structure) that
would result in better control quality [27]. At the Insti-
tute of Control, Robotics and Information Engineer-
ing, the designed multirotor flying robots have the
following motor in the speed control loops: AXI 2814/
12 GOLD LINE BLDC (see the Introduction). From
the tests of a real motor-rotor on a test bench [27], it
has been found that maximum thrust (approx. 19.1 N)
of the tested propulsion unit is observed at 77% PWM,
with 8893 rotations per minute (RPM), and with a
maximum speed of 9039 RPM with 75% PWM.
In Figure 3 (from http://part.put.poznan.pl), the instal-
lation place of the real propulsion unit is presented.

Figure 3. The propulsion unit installed on the UAV.

The step response of the real propulsion unit has
been presented in Figure 4 together with a proposition
of a simplified model, namely the second-order inertia
model with a time delay, where the unity gain corre-
sponds to maximum useful rotational speed of the pro-
pulsion unit, namely approx. 9550 RPM.

Since mismodelling errors are inherently connected
with assuming any models, or the dynamics of the sys-
tems considered might be more complex that it is
thought of, a FO controller is proposed as an alterna-
tive to integer-order controller, to verify its applicabil-
ity in this field. From previous research carried out by
the authors, concerning velocity control of a servo sys-
tem, it has turned out that the FOPI controller enabled
obtaining better control quality in comparison with an
integer-order controller [28]. The expected improve-
ment in control quality should be a good reason to
take a possible increase in complexity of the controller
into account. This increase is connected to the approx-
imation of FO operations by their integer-order dis-
crete-time representatives, which is not a problem, as
this is not a computationally demanding task, and can
be easily encoded into the microcontroller driving the
UAV.

In a further part of the paper, a simplified model of
the plant is described by the transfer function:

bo _
G(S) ) € STOa (1)
s“t+ais+a
where
b() = K, a = 2T, ap = TZ. (2)
1.4 - -
—Real propulsion unit
1.0k —Simplified model
1k
_ 0.8
g
0.6
0.4r
0.2-
0

0 005 0.1 0.15 sz 025 03 035 04

Figure 4. The step response of a real propulsion unit and a
proposition of a simplified model.
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It is assumed that all coefficients are known, where K is
a gain of the model, T is a time constant and T is a
time delay [7]. The selected approximation results
from the previous research of the authors [29,30] and
rises naturally from observation of second-order-like
behaviour of the step response of a propulsion unit.
The model is simple enough to enable conducting the
calculations, and complex enough to approximate the
above-mentioned response.

Since the values of inertia time and delay time are
only estimates, and the selected model has been
shown by time analysis to be valid, the rest of the
paper will be based on the parameters’ values rounded
to the nearest integer. This part of the paper is
devoted not to experimental validation now, but to
presenting the possibility to both evaluate the perfor-
mance of the system and to describe the range of con-
troller parameters that yields a stable closed-loop
system. The same approach could be applied to the
obtained estimates of model parameters in the prox-
imity of the rounded values, but would not change
the presented methodology.

2.2. Fractional-order PD controller

The fractional PD* controller is described by the
transfer function:

C(s) = K, + Kys". (3)

The block diagram of such a control system is pre-
sented in Figure 5.

3. Shaping the desired closed-loop response
3.1. Time delay vs. stability

The main problem in time-delayed systems is that the
transport delay may cause instability. Time delays
exist in every physical system which make control a
difficult task. The problem is the inability to describe
the system with a characteristic polynomial for the
pole-placement method due to the presence of expo-
nential function. Nevertheless, the time delay itself for
small transport delays can by approximated with a
first-order transfer function [7], making the pole-
placement analysis possible to achieve. Similarly, one
can perform the analysis via quasi-polynomials and

r(t) + _e(t) u(t) y(t)
C(s) G(s)

PD* controller plant

Figure 5. Block diagram of the considered control system
(second-order model with time delay) and fractional-order PD
controller.
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FO models. This approach will be adopted in the next
section.

3.2. Tuning the FOPD controller

The closed-loop characteristic equation of the system
in Figure 5 with C(s) given in Equation (3) is

8(s) = (bOKpf + bode““) e Ls

+ (s2 + a1s+ ao). (4)

It is necessary to rewrite the 8(s) quasi-polynomial
as

§*(s) = boK, + boKys" + (s> + ais + ag)e"* =
n(s) +d(s)e’,
(5)

where p implies # < 1 and L > 0 must be verified.
Hermite-Biehler theorem
Let § be a complex function of w and be described
by the equation:

8" (joo) = &, () +j5; (@), (6)

where §*,(w) and §"(w) represent the real- and imagi-
nary-parts of §*(jw). The §*(jw) is stable when

(1) §"(w) and §"(w) have only simple real and inter-
laced roots; ’

(2) & (w) 8 (w)-8"(w) 8] (w) >0, for some w = w
in ( — 0o, +00),

where 8,*(0)) and 8;* (w) are the derivatives of §";(w)
and §*,(w) with respect to w.

An important step is to ensure that §"(w) and
8" (@) have only real roots. This one can be achieved
by applying the Pontryagin theorem.

Pontryagin theorem

Let 8%(s) be described by the following equation
assuming that s = jo holds:

8" (jw) = &; () +j6; (). 7)

To assure that §";(w) = 0 and §*,(w) = 0 have only real
roots, it must be assured that in intervals

=2+ nw=2lr+nl=1,2,3, .. (8)

8" (w) and §" (w) have exactly 4IN + M roots. For situa-
tions where the characteristic equation is of FO, the
5*(w) and 8" (w) must have 4I([N] + 1) + [M] + 1
roots, where [ - ] denotes the integer part, and N and
M are taken as degrees of the numerator and denomi-
nator polynomials of the integer part, respectively.
Proofs can be found in [1,31].
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Assuming that u = ¢/b, Equation (5) can be rewrit-
ten as

8*(s) = [boKast + boK,, + (s> + ars + a), €*].  (9)

By putting f = Ls, the quasi-polynomial takes the
form:

Cc

8 (f) = boKdG)EeroKer <(§)2+a1(§> +a0>ef .

(10)

Then, for f = jw, 8" (jw) becomes
: 2
o { () () () )]
(11)

Replacing ¢ with cos (@) + jsin (w), the real 8" ()
and imaginary §",(w) parts become

c <
57 (0) = 22K |Re(1)b b + boK, — 2 cos()
—%alsir(w) + apcow),

boKg .. - o 12
57 (@) = Tz tm(j)b]|b|sign(w) — 5 sin(w)
- %alco:(a)) + apsifw).

(13)

The factor ji has b complex solutions, but the solu-
tion which must be considered in the characteristic
equation is the common one with the smallest positive
phase.

According to Pontryagin theorem, §*,(w) = 0 and
8"(w) = 0, the set of parameters K, and K; can be
found and described by the equations:

(4 sin(w) + ¢ arcos(w) — agsin(w) | L/

[Tm ()|t sign () bo

K; =

i

(14)

boKy i i w? o .
K, = ——<|Re| /7 |||@°] + —5 cos(w) +-aysin(w) —agcos(w).
L; L L

(15)

Since §*j(w) is an odd function, it always has a root
at w = 0; thus, for w = wy = 0,

55 () = boK, + ap. (16)

In order to verify the interlace property between the
roots of 8" (w) and §*;(w), one must impose

_ao

87(w) >0=boK, + a9 >0=K, > o (17)
0

The range of values of the parameters K, and K,
that fulfil the conditions is shown in Section 5.

4, Stability criteria and tracking performance
4.1. Preliminaries

The stability criteria of the considered closed-loop sys-
tem are based on two bounded-input, bounded-output
(BIBO) conditions. The first one depends on the simu-
lation process time (the algorithm verifies that the sim-
ulation time is the same as the desired time stated
prior to simulation), and the second verifies for simu-
lations terminated successfully if the consecutive peaks
of the output signal y(t) are diverging, by calculating
the differences between them. If the difference is
increasing, the system is considered to be unstable, and
in other situations the described system is assumed to
be stable. To analyse the tracking performance, the
authors used two standard quality criteria: integral of
absolute error (IAE) and integral of squared error
(ISE) [7].

4.2. Stability and performance analysis

The stability analysis is performed for range of w from
—5 to 5 with step of 0.01. The ranges for parameters of
the FOPD controller, namely K; and K, were calcu-
lated by using Equations (14) and (15). The x parame-
ter varies from 0.01 to 1, and, in accordance with the
condition mentioned above, u < 1. Simulation time
was set to 100sec and the input signal r(t) = 1(¢).
Second-order plant model parameter is put to T = 1
and according to (2), gy = 1, and a, = 2. The time delay
To = 1sec.

Figures 6-8, are examples of stability surface plots.
The filled surface represents the region that has been
obtained as the result of simulations. In addition, it has
been truncated to obtain a stabilizing FOPD
controller using Matlab curve-fitting tool and this area
is limited by black dotted lines.

It can be noted that the range of parameters is rela-
tively wide, but not all combinations assure a stable

10

Figure 6. K, and K, parameters’ range for the order of 11 = 2/5
(@=0,b=5,c=2).



Figure 7. K, and K, parameters’ range for the order of yv = 3/5
(@=0,b=5,c=3)

Figure 8. K, and K; parameters’ range for the order of p = 1
(@=0,b=5,c=5).

closed-loop system. The stability region for the consid-
ered ranges is marked with black doted line. It should
be stressed that with increasing non-integer order of
W, the stability region expands too. In Figure 8, the
classical proportional-derivative (PD) controller is
presented, because u = 1, and this choice provides the
widest range for parameters K, and K; that ensures
stability of the closed-loop system. To verify the stabil-
ity, the authors implemented the stability criteria men-
tioned in Section 4. The stability surface for the whole
range of 1 and w is shown in Figure 9.

Apart from the stability, the tracking performance
measured by IAE and ISE indexes is also presented,
and analysed by means of simulations. In Figure 10,
two performance index surfaces for IAE (left) and ISE

0.8~
0.6 -
0.4

0.2~

Figure 9. Stability region for the system with the PD* control-
lerand w € [ — 5, 5].
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Figure 10. Quality indices’ surface of the PD* controller for w
el[-55]

(right) are presented, for stable closed-loop systems,
with the white area corresponding to unstable closed-
loop representation based on the stability criteria men-
tioned in Section 4.

5. Conclusions

The results presented in the paper are only few exam-
ples of the performance and stability analyses for FO
systems with time delay, where the plant model mimics
the behaviour of the propulsion unit model. It was
observed during the analysis that with increasing non-
integer order w of the PD controller, the stability
region also increased. The FOPD controller gives the
possibility to analyse the time-delayed systems without
introducing approximations of the time-delay which
reflect the real physical systems. Further research will
be conducted on real machine, either as hardware-in-
the-loop experiment or by logging data from real-time
control systems to extend the results of this paper, as
this paper is the introductory work. Nevertheless, it
would also be interesting to use even the simulation
result only to verify the impact of changes in parame-
ters of the second-order model and its time delay on
the closed-loop stability and performance. Similar
results could also be obtained for controllers with I
term, with applied anti-windup compensators in the
FO controller.
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