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ABSTRACT
This paper involves the design of non-overshooting PD and PID controllers for some special
plants. The PID controller parameters are determined to reach a stable closed-loop system with
monotonically decreasing frequency response. Thus specific regions in the controller parame-
ters space are obtained. Gain crossover frequency andphase isodampingproperty are employed
to choose an appropriate solution among the obtained solutions. The performance of the pro-
posed PD andPID controllers in position and velocity control of a laboratoryDC servomechanism
system is investigated through experimental tests.
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1. Introduction

Simple structure and easy tuning of PID controllers
have made them as the most popular controllers for
industrial applications [1]. A variety of approaches have
been proposed to design PID controllers in the lit-
erature. PID controller coefficients could be adjusted
to minimize a closed-loop system performance index
by means of some optimization methods [2]. Internal
Model Control (IMC) method has been employed for
analytical design of PID controllers [3,4]. Tuning PID
controllers based on some frequency specification such
as gain margin, phase margin and gain crossover fre-
quency has been considered, too [5]. In [6], a method
to design PID controllers based on the phase margin
and gain crossover frequency requirements has been
proposed. In this work, the crossover frequency has
been selected based on an integral performance index
criteria. Moreover, adaptive control and auto-tuning
methods have been utilized for PID controller design
in the literature [7].

On the other hand, transient response control has
been considered by the control engineers. Attain-
ing a non-overshooting or minimum overshoot step
response is required in some real plants. Thus sev-
eral methods have been introduced to achieve this
goal. In [8], necessary and sufficient conditions for
state space models to achieve a non-overshooting
step response was extracted. In [9], a min–max opti-
mization approach to determine the optimum loca-
tion of zeros to attain a minimum-overshoot transient
response was employed. In [10], a compensator for
special case of minimum phase systems to attain a non-
overshooting closed-loop system step response was
designed. A rational two-parameter controller to

eliminate overshoot in closed-loop system step response
was proposed in the literature [11]. Moreover, state
feedback design to reach a non-overshooting step
response has been reported [12]. Characteristic Ratio
Assignment (CRA) method is one of the common
approaches for transient response control. In this
method, the characteristic ratios appropriately related
to the denominator coefficients of a transfer function
are assigned to reach a non-overshooting step response
[13]. Manabe introduced Coefficient Diagram Method
(CDM) to assign characteristic ratios [14]. A Butter-
worth filter pattern for characteristic ratios to achieve
the desired transient response was proposed, too [15].

Designing PID controllers to reach a non-
overshooting step response has been taken into consid-
eration in the literature. In [16], the relation between
the location of transfer function poles and zeros and
step response overshoot has been extracted. This rela-
tion has beenutilized to design aPID controller to avoid
overshoot in the closed-loop system step response. In
another work, a non-overshooting PI controller for
variable-speed motor derives has been provided [17].
In [18], the Tabu search optimization method has been
employed for adjustment of the PID controller parame-
ters to attain a desired transient response. Widder’s and
Markov–Lucaks theoremshave been employed to attain
a non-negative error response [19]. In [20], a fuzzy PID
controller to achieve a zero overshoot step response
has been presented. The CRA and CDM approaches
have been employed to design non-overshooting PID
controllers for some real plants [21–23]. In [24], amod-
ified version of the PID controller, called I+PD con-
troller, has been designed using process step response
and damping optimum criterion. In this approach, the
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characteristic ratios of the closed-loop transfer func-
tion are appropriately assigned to reach a satisfactory
transient response. This method could not be applied
to ordinary PD or PID controllers. Because, for these
controllers, the obtained closed-loop transfer function
is not all-pole and the characteristic ratios assignment
method could not be utilized. Moreover, the magni-
tude optimum method has been employed to design
PID controllers [25–28]. In this method, the PID con-
troller parameters are appropriately calculated such that
the magnitude of the closed-loop system frequency
response becomes near to 1. This leads to the flatness of
the frequency response in a wide range of frequencies.
Consequently, a satisfactory transient response will be
obtained. However, there is no guarantee that a non-
overshooting step response could be obtained.

In this paper, designing PD and PID controllers to
attain non-overshooting step responses for certain cat-
egories of systems is considered.According to an empir-
ical principle, systems with monotonically decreas-
ing frequency responses have low overshoot in their
step responses [29]. Thus the PD and PID controller
coefficients are selected to reach a closed-loop fre-
quency response with monotonically decreasing prop-
erty. Consequently, some inequalities in terms of PID
controller parameters will be obtained. The numeri-
cal solution of these inequalities leads to some spe-
cific regions in the parametric space. This means that
a variety of controllers could be designed to reach a
non-overshooting closed-loop system step response.
Among these controllers, those satisfying a predefined
gain crossover frequency and phase isodamping prop-
erty are selected. The isodamping property means that
the phase of the loop gain frequency response is kept
flat around the gain crossover frequency. This means
that the closed-loop system is robust under gain uncer-
tainties. Thus these uncertainties could not affect the
minimum overshoot property of the step response. The
simulation and experimental results on a DC velocity
and position servo system demonstrate the capability
of the so designed PD and PID controller.

The remainder of this paper is organized as fol-
lows. The proposed non-overshooting PD and PID
controllers are given in Section 2. Section 3 investi-
gates the performance of these controllers in position
and velocity control of a laboratory DC motor. Finally,
Section 4 concludes the paper.

2. The proposed non-overshooting PD and
PID controllers

In this section, the proposed PD and PID controllers
are introduced. These controllers are designed to meet
the closed-loop system stability and achieve non-
overshooting step responses. Moreover, gain crossover
frequency and phase isodamping property are

Figure 1. The unit negative feedback control structure.

incorporated in the design procedure. Some special
plants are chosen for these control purposes.

Consider the unit negative feedback control struc-
ture in Figure 1. The controller C(s) (may be a PD or
PID controller) should be appropriately designed for
a minimum phase plant G(s) so that the closed-loop
system does not exhibit overshoot in its step response.
To attain this goal, the controller parameters could be
adjusted such that the monotonically decreasing prop-
erty for the magnitude of the closed-loop system fre-
quency response will be fulfilled. Or∣∣H(jω2)

∣∣ < ∣∣H(jω1)
∣∣ , for : ω2 > ω1, (1)

where H(jω) is the frequency response of the closed-
loop system.

The following remarks could be expressed for using
relation (1).

Remark 1: Condition (1) means that when the fre-
quency ω increases, the numerator of |H(jω)| increases
smaller than its denominator.

Remark 2: Condition (1) is valid for minimum phase
plants. This means that the closed-loop system should
be minimum phase. Thus the plant should be mini-
mum phase and the controller should be appropriately
designed such that the closed-loop system is minimum
phase, too.

Remark 3: If the condition (1) is satisfied, then a non-
overshooting step response or a step response with
very small overshoot will be obtained. For example,
a second order system with complex conjugate poles
with a damping ratio belonging to (0.7, 1) satisfies the
condition (1) but shows a small overshoot in its step
response (below 5%). In control engineering applica-
tions, this small overshoot could be acceptable. Finally,
for transfer functions with complex conjugate poles,
condition (1) could result in a step response with a little
overshoot.

2.1. Non-overshooting PID controller design for
first-order systems

The plant transfer function is considered as

G(s) = K
1 + Ts

, (2)

where K>0 and T>0 are the steady-state gain and
time constant parameters.
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The PID controller with the following transfer func-
tion is considered:

C(s) = Kp

(
1 + 1

Tis
+ Tds

)
, (3)

where Kp, Ti and Td are the proportional gain, integra-
tor and derivative time constants, respectively.

The closed-loop transfer function is calculated as

H(s) = KKp(TiTds2 + Tis + 1)
Ti(T + KKpTd)s2 + Ti(1 + KKp)s + KKp

.

(4)
According to (4), the closed-loop system is stable if the
following relations are satisfied

KKp > 0,Ti (1 + KKp) > 0, Ti(T + KKpTd) > 0.
(5)

Since K>0, the following relations could be derived
from (5)

Kp > 0, Ti > 0, T + KKpTd > 0. (6)

This means that for the closed-loop system stability, Kp
and Ti must be positive but Td could be negative. On
the other hand, to avoid undershoot in the closed-loop
system step response the numerator coefficients of (4)
should be positive. This means that

KpTiTd > 0, KpTi > 0, Kp > 0. (7)

Thus, to attain a step response without undershoot, Td
must be positive, too. Finally, we have

Kp > 0, Ti > 0, Td > 0. (8)

The magnitude square of the closed-loop system fre-
quency response is calculated as

|H(jω)|2 = K2K2
p
T2
dT

2
i ω

4 + Ti(Ti − 2Td)ω
2 + 1

α(ω)
,

(9)
where

α(ω) = T2
i (T + KKpTd)

2ω4 + Ti{Ti(1 + KKp)
2

− 2KKp(T + KKpTd)}ω2 + K2K2
p . (10)

To realize monotonically decreasing condition (1),
the following inequality should be fulfilled

T3
i {Ti(T − Td)(T + Td + 2KKpTd)

− 2TTd(T + KKpTd)}ω2
1ω

2
2(ω

2
2 − ω2

1)

+ T2
i T(T + 2KKpTd)(ω

4
2 − ω4

1)

+ Ti{Ti(1 + 2KKp)− 2KKpT}(ω2
2 − ω2

1) > 0. (11)

According to (1), (ω2
2 − ω2

1) and (ω
4
2 − ω4

1) are positive.
On the other hand, considering positive values for Ti,
Kp and Td, the term T2

i T(T + 2KKpTd) is always posi-
tive. Thus the sufficient condition for realization of (11)

is that the first and third terms in (11) are greater than
or equal to zero. Thus we have

Ti(T − Td)(T + Td + 2KKpTd) ≥2TTd(T + KKpTd).
(12)

Ti(1 + 2KKp) ≥ 2KKpT. (13)

The realization of (12) requires the satisfaction of the
following two relations:

Td ≤ T. (14)

Ti ≥ 2TTd(T + KKpTd)

(T − Td)(T + Td + 2KKpTd)
. (15)

To establish (13), the following condition should bemet

Ti ≥ 2KKpT
1 + 2KKp

. (16)

Finally, attaining a stable closed-loop system with non-
overshooting and non-undershooting step response
requires the following conditions:

0 < Td ≤ T,Kp > 0,Ti > 0 (17a)

Ti ≥ 2KKpT
1 + 2KKp

(17b)

Ti ≥ 2TTd(T + KKpTd)

(T − Td)(T + Td + 2KKpTd)
. (17c)

Finally, the PID controller design for plant (2) is sum-
marized in Algorithm 1.
Algorithm 1.

Step 1.Choose an arbitrary positive value forKp and
an arbitrary Td, where 0 < Td ≤ T.

Step 2. Now, find an appropriate value for Ti ensur-
ing (17b) and (17c).

2.2. Non-overshooting PD controller design for
integrating systems

In this section, the following type 1 second-order plant
is considered

G(s) = K
s(1 + Ts)

, (18)

where K and T are arbitrary positive parameters. To
track constant reference values, a PD controller with
the following transfer function could be utilized for
plant (18)

C(s) = Kp(1 + Tds). (19)

Considering plant (18) and controller (19), the follow-
ing closed-loop system transfer function is obtained

H(s) = KKp(Tds + 1)
Ts2 + (1 + KKpTd)s + KKp

. (20)

According to (20), the necessary and sufficient con-
ditions to reach a stable closed-loop system without
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undershoot in its step response are

Kp > 0, Td > 0. (21)

The magnitude square of the closed-loop system fre-
quency response is given by

|H(jω)|2 = K2K2
p(T2

dω
2 + 1)

ψ(ω)
, (22)

where

ψ(ω) = T2ω4

+ (K2K2
pT

2
d + 2KKp(Td − T)+ 1)ω2 +K2K2

p .
(23)

According to (1), the function (22) is monotonically
decreasing if the following inequalities will be satisfied:

T2(ω4
2 − ω4

1)+ T2
dT

2ω2
1ω

2
2(ω

2
2 − ω2

1)

+ (2KKp(Td − T)+ 1)(ω2
2 − ω2

1) > 0. (24)

Considering (21), the sufficient condition for establish-
ment of (24) is

Td ≥ 2KKpT − 1
2KKp

. (25)

Finally, if the following conditions are fulfilled, a closed-
loop system step response with zero overshoot and
undershoot could be obtained

Kp > 0, Td > 0

Td ≥ 2KKpT − 1
2KKp

. (26)

The PD controller design for plant (18) is illustrated in
the following algorithm.

Algorithm 2.
Step 1. Select an arbitrary positive value for Kp.
Step 2. Now, choose an appropriate value for Td

satisfying(d2).

2.3. Non-overshooting PID controller design for
second-order systems

Consider the following stable second-order plant:

G(s) = K
s2 + As + B

, (27)

where K, A and B are arbitrary positive constants. The
closed-loop system transfer function for plant (27) and
controller (3) becomes

H(s) = KKp(TiTds2 + Tis + 1)
Tis3 + Ti(A + KKpTd)s2
+Ti(B + KKp)s + KKp

. (28)

It could be easily verified that the closed-loop system
is a stable system without undershoot in its transient

response, if

Kp > 0, Ti > 0, Td > 0,

Ti >
KKp

(A + KKpTd)(B + KKp)
. (29)

Substituting s = jω in (28) gives

|H(jω)|2 = K2K2
p(T2

i T
2
dω

4 + Ti(Ti − 2Td)ω
2 + 1)

β(ω)
,

(30)
where

β(ω) = T2
i ω

6 + T2
i ((A + KKpTd)

2

− 2(B + KKp))ω
4 + Ti(Ti(B + KKp)

2

− 2KKp(A + KKpTd))ω
2 + K2K2

p . (31)

The monotonically decreasing condition (1) gives

T2
i (ω

6
2 − ω6

1)+ T4
i T

2
dω

4
1ω

4
2(ω

4
2 − ω4

1)

+ T3
i (Ti − 2Td)ω

2
1ω

2
2(ω

4
2 − ω4

1)

+ T2
i (2AKKpTd + A2 − 2B − 2KKp)(ω

4
2 − ω4

1)

+ T3
i (−2Td(A2 + AKKpTd − 2B − 2KKp)

+ Ti(A2 + 2AKKpTd − 2B − 2KKp

− B2T2
d − 2BKKpT2

d))ω
2
1ω

2
2(ω

2
2 − ω2

1)

+ Ti(Ti(B2 + 2BKKp)− 2AKKp)(ω
2
2 − ω2

1) > 0.
(32)

The sufficient conditions to realize (32) are

Ti ≥ 2Td

Ti ≥ 2AKKp

B2 + 2BKKp

Td ≥ 2KKp + 2B − A2

2AKKp

A2 + 2AKKpTd − 2B − 2KKp

− B2T2
d − 2BKKpT2

d > 0

Ti ≥ 2Td(A2 + AKKpTd − 2B − 2KKp)

A2

+ 2KKpTd(A − BTd)− 2B − 2KKp − B2T2
d . (33)

Incorporating conditions (29) and (33) yields the fol-
lowing non-overshooting step response conditions for
plant (27)

Kp > 0, Ti > 0, Td > 0 (34a)

Ti ≥ 2Td (34b)

Ti >
KKp

(A + KKpTd)(B + KKp)
(34c)
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Ti ≥ 2AKKp

B2 + 2BKKp
(34d)

Td ≥ 2KKp + 2B − A2

2AKKp
(34e)

A2 + 2AKKpTd − 2B − 2KKp

− B2T2
d − 2BKKpT2

d > 0 (34f)

Ti ≥ 2Td(A2 + AKKpTd − 2B − 2KKp)

A2 + 2KKpTd(A − BTd)− 2B − 2KKp − B2T2
d
.

(34g)

Inequality (34f) could be rewritten as

(B2 + 2BKKp)T2
d − 2AKKpTd

− A2 + 2B + 2KKp < 0. (35)

If A2 ≤ 2B is considered, then we have

A2K2K2
p + (B2 + 2BKKp)(A2 − 2B − 2KKp)

= (A2 − 4B)K2K2
p + 2B(A2 − 3B)KKp

+ B2(A2 − 2B) < 0. (36)

On the other hand, B2 + 2BKKp > 0. Thus, according
to (36), the left side of (35) should be positive. There-
fore, the following limitation for the parameters of the
plant (27) should be realized

A2 > 2B. (37)

Considering the constraint (37), relation (35) will be
satisfied if the following relations are fulfilled:

Kp ≤ A2 − 2B
2K

. (38)

Td <
AKKp

B2 + 2BKKp

+
√
A2K2K2

p + (B2 + 2BKKp)(A2 − 2B − 2KKp)

B2 + 2BKKp
.

(39)

Moreover, according to (38), the left side of (34e)
is negative. This means that inequality (34e) will be
automatically fulfilled. Thus relation (34) could be

rewritten as

Kp > 0, Ti > 0, Td > 0 (40a)

Kp ≤ A2 − 2B
2K

(40b)

Td <
AKKp

B2 + 2BKKp

+
√
A2K2K2

p + B(B + 2KKp)(A2 − 2B − 2KKp)

B2 + 2BKKp
(40c)

Ti >
KKp

(A + KKpTd)(B + KKp)
(40d)

Ti ≥ 2AKKp

B2 + 2BKKp
(40e)

Ti ≥ 2Td (40f)

Ti ≥ 2Td(A2 + AKKpTd − 2B − 2KKp)

A2 + 2KKpTd(A − BTd)− 2B − 2KKp − B2T2
d
.

(40g)

The following algorithmdescribes the details of the PID
controller design for plant (27).
Algorithm 3.

Step 1. Choose a positive value for Kp ensur-
ing (40b).

Step 2. Select a positive value for Td satisfy-
ing (40b), (40c).

Step 3.Now, find an appropriate positive value forTi
satisfying (40d) –(40g).

2.4. Additional design conditions

Several controllers may satisfy conditions in (14), (23)
or (31). Some criteria should be added to select appro-
priate controllers among them. Thus two conditions are
added in the PID design procedure. The first condition
is the gain crossover condition which guarantees unit
magnitude for the loop gain frequency response in a
predefined frequency ωc. Or

∣∣G(jωc)C(jωc)
∣∣ = 1. (41)

Condition (41) is required to reach a closed-loop sys-
tem transient response with desired speed. For PD
controller with only two design parameters, the addi-
tional condition (41) is enough. Moreover, for the PID
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controller with three design parameters, the following
isodamping property should be fulfilled, too.

d
dω

∠[G(jω)C(jω)]
∣∣
ω=ωc = 0. (42)

This means that the phase variations around the
crossover frequency are negligible. This yields a closed-
loop system robust to gain variations.

Applying conditions (41) and (42) on plant (2) yields
the following relations between PID controller param-
eters

Kp = Tiωc
√
1 + T2ω2

c

K
√
(1 − TiTdω2

c )
2 + T2

i ω
2
c

. (43)

Ti =
−a1 ±

√
a21 + 4a2T

2a2
, (44)

where

a1 = 1 + T2ω2
c + 2TTdω

2
c ,

a2 = ω2
c (T − Td)(TTdω

2
c − 1). (45)

Incorporating (17), (43) and (44) yields the PID con-
troller parameters for plant (2). This means that the
three-dimensional region obtained from conditions
(17) is converted to a one-dimensional region in terms
of parameter Td. Several PID controller parameters
may fulfil these relations. One of these controllers
could be selected by the designer. The obtained solu-
tions could vary by changing the crossover frequency
parameter.

Remark 4: The gain crossover frequency ωc should
be appropriately selected such that inequalities (17)
are fulfilled. This could be realized by trial and error.
Moreover, this parameter determines the transient
response speed of the closed-loop system. Increasing
ωc decreases the settling time of the closed-loop system
step response. Moreover, increasing ωc increases the
control signal amplitude. Thus this parameter should
be selected such that a satisfactory transient response
with permissible control signal will be obtained.

For plant (18), applying (41) causes the following
constraint on the PD controller parameters in (19)

Kp = ωc
√
1 + T2ω2

c

K
√
1 + T2

dω
2
c

. (46)

This converts the admissible two-dimensional param-
eter region obtained from (26) to a one-dimensional
region in terms of parameter Td.

Remark 5: For the PD controller design for plant (18),
any arbitrary gain crossover frequency ωc could be

selected. Only the value of Td should be selected such
that inequality (d2) will be realized. However, this
parameter determines the settling time of the closed-
loop system step response and themaximum amplitude
of the control signal.

Finally, for the second-order plant (27), the gain
crossover frequency and isodamping property lead to
the following relations between PID controller param-
eters:

Kp = Tiωc
√
(B − ω2

c )
2 + A2ω2

c

K
√
(1 − TiTdω2

c )
2 + T2

i ω
2
c

. (47)

Ti =
−b1 ±

√
b21 − 4b0b2
2b2

, (48)

where

b0 = A(B + ω2
c )

(B − ω2
c )

2 + A2ω2
c
,

b1 = −(1 + 2b0Tdω
2
c ), b2 = ω2

c (b0(1 + Tdω
2
c )− Td).

(49)

Conditions (40) and constraints (47) and (48) yield a
one-dimensional parameter region in terms of parame-
terTd which could be considered as the solution region.

Remark 6: The gain crossover frequency ωc should be
chosen such that inequalities in (40) are satisfied. Sub-
stituting (47) and (48) in (40) will not lead to straight-
forward inequalities in terms ofKp,Ti ,Td andωc. Thus
finding an appropriate value for ωc for satisfaction of
conditions (40) could be performed by software.

In the next section, the ability of the so-designed
non-overshooting PD and PID controllers for the con-
trol of the mentioned plants is verified through some
experimental and simulation tests.

3. Experimental and simulation results

In this section, the performance of the proposed PID
and PD controllers is investigated. Three examples are
given to show the effectiveness of non-overshooting
PID controllers.

Example 1: Consider a modular DC servomotor sys-
tem in Figure 1. As shown in Figure 2, a permanent
magnet DC motor coupled with a tachometer to mea-
sure its angular velocity and a position potentiometer
to measure its position is considered. An Advantech
A/D and D/A interface is employed to implement the
designed controllers in MATLAB real-time environ-
ment. To verify the effect of the load disturbance, a
magnetic brake causing angular velocity decrement is
provided.
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Figure 2. The DC servomotor plant in Example 1.

Figure 3. The Ti − Td region with different values of Kp in
Example 1.

Employing a non-parametric identification approach
leads to the following open loop transfer function for
the speed servo system

G(s) = ω(s)
V(s)

= 3.45
0.1s + 1

, (50)

where ω(t) is the motor angular velocity and v(t) is
the voltage applied to the servo amplifier block. The
reference angular velocity is selected as 1000 rpm.

Figure 3 shows (Ti − Td) region with different val-
ues of Kp. According to (17), the parameter Td should
be in the range (0, 0.1]. But Ti is considered in the
arbitrary range (0, 10] due to drawing limitations.
Among all possible controllers, a controller satisfying

Table 1. Controller parameters.

KP Ti Td ωc

Example 1 0.378 0.122 0.002 12
Example 2 0.247 – 0.048 5
Example 3 0.992 4.629 0.98 2

Figure 4. The experimental and simulation angular velocities
for Example 1.

Table 2. Transient response specifications.

Example 1 Example 2 Example 3

Rise time (s) 0.215 0.35 3.101
Settling time (s) 0.447 0.49 5.26

gain crossover frequency and isodamping property is
selected. The corresponding gain crossover frequency
and obtained PID controller parameters are presented
in Table 1. Figure 4 compares the motor angular veloci-
ties obtained from simulation and experimental tests.
The similarity of these responses to each other con-
firms the robust stability of the proposed controller. The
obtained rising time and settling time for the exper-
imental result are presented in Table 2. The voltage
applied to the motor in the experimental test is given in
Figure 5. Moreover, according to Figure 6, the effect of
the load torque applied in t=1.5 s is quickly eliminated.

Example 2: The position control of the DC motor
in Example 1 is considered here. Considering the
potentiometer gain, the following transfer function is
obtained for the position DC servo plant

G(s) = θ(s)
V(s)

= 21.113
s(0.1s + 1)

, (51)

where θ(t) is the motor shaft position and v(t) is the
voltage applied to the servo amplifier block.

The shaft position set value is chosen as 60◦.
The two-dimensional non-overshooting PD controller
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Figure 5. The control signal for Example 1.

Figure 6. The load torque effect for Example 1.

parameter region is given in Figure 7. The parame-
ters Kp and Td are considered in the arbitrary ranges
(0, 10] and (0, 0.1], respectively. An appropriate con-
troller realizing the gain crossover frequency condition
is selected in which its parameters are given in Table 1.
As could be seen in Figure 8, the difference between the
non-overshooting motor shaft position responses cor-
responding with simulation and experimental tests is
negligible. The rising time and the settling time values
for experimental test are shown in Table 2. Moreover,
the control signal is shown in Figure 9.

Example 3: In this example, the ability of the pro-
posed non-overshooting PID controller for controlling
a second-order plant is verified. Consider a second-
order plant with the following transfer function:

G(s) = 5
s2 + 5s + 1

. (52)

The (Ti − Td) region with different values of Kp
ensuring (40b) is shown in Figure 10. The parameter Ti

Figure 7. The two-dimensional region for PD controller param-
eters in Example 2.

Figure 8. The experimental and simulation motor shaft posi-
tions for Example 2.

Figure 9. The control signal for Example 2.
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Figure 10. The Ti − Td region with different values of KP in
Example 3.

Figure 11. The effect of gain uncertainty in unit step response
of Example 3.

is assumed in the arbitrary ranges (0, 35]. The range of
Td is obtained according to (40c). With an appropriate
gain crossover frequency, the PID controller parame-
ters are selected according to relations (40), (47), (48)
and (49). The obtained controller coefficients are given
in Table 1. Figure 11 compares the nominal unit step
response with those obtained with ±10% uncertainty
in parameter K. This uncertainty does not have any
effect on step response overshoot. The obtained rising
time and settling time for nominal response are given
in Table 2. Figure 12 shows the control signal.

Figure 12. The control signal for Example 3.

4. Conclusion

This paper presents a novel analytical tuning method
for the family of PID controllers. The design method
is based on adjusting the PID controller parameters
to avoid overshoot in the closed-loop system step
response. This is accomplished by achieving a mono-
tonically decreasing closed-loop system frequency
response. Moreover, the loop gain phase is adjusted
to be flat around the desired gain crossover frequency
which makes the closed-loop system robust under gain
uncertainties. The simulation results on a second-order
plant and the experimental results on a laboratory DC
position and speed servomechanism demonstrate the
efficiency of the proposed non-overshooting PID con-
troller, as well.
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