
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=taut20

Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: 0005-1144 (Print) 1848-3380 (Online) Journal homepage: http://www.tandfonline.com/loi/taut20

A modified whale optimization algorithm-
based adaptive fuzzy logic PID controller for
load frequency control of autonomous power
generation systems

Raghuraman Sivalingam, Subramani Chinnamuthu & Subhransu Sekhar
Dash

To cite this article: Raghuraman Sivalingam, Subramani Chinnamuthu & Subhransu Sekhar Dash
(2017) A modified whale optimization algorithm-based adaptive fuzzy logic PID controller for load
frequency control of autonomous power generation systems, Automatika, 58:4, 410-421, DOI:
10.1080/00051144.2018.1465688

To link to this article:  https://doi.org/10.1080/00051144.2018.1465688

© 2018 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 22 May 2018.

Submit your article to this journal 

Article views: 136

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=taut20
http://www.tandfonline.com/loi/taut20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2018.1465688
https://doi.org/10.1080/00051144.2018.1465688
http://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2018.1465688&domain=pdf&date_stamp=2018-05-22
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2018.1465688&domain=pdf&date_stamp=2018-05-22


VOL. 58, NO. 4, 410–421
https://doi.org/10.1080/00051144.2018.1465688

REGULAR PAPER

Amodified whale optimization algorithm-based adaptive fuzzy logic PID
controller for load frequency control of autonomous power generation systems

Raghuraman Sivalingama, Subramani Chinnamuthu b and Subhransu Sekhar Dash b

aDepartment of Electrical and Electronics Engineering, Velammal Engineering College, Chennai, India; bDepartment of Electrical and
Electronics Engineering, SRM University, Chennai, India

ABSTRACT
An autonomous power generation system (APGS) contains units such as diesel energy gener-
ator, solar photovoltaic units, wind turbine generator and fuel cells along with energy-storing
units such as the flywheel energy storage system and battery energy storage system. The com-
ponents either run at lower/higher power output or may turn on/off at different instants of their
operation. Due to this, the conventional controllers will not provide desired performance under
varied load conditions. This paperproposes anadaptive fuzzy logic PID (AFPID) controller for load
frequency control. In order to achieve an improved performance, a modified whale optimiza-
tion algorithm (mWOA) was also proposed in this paper for tuning of the AFPID parameters. The
proposed algorithm was first evaluated using standard test functions and compared with other
recent algorithms to authenticate the competence of algorithm. The proposedmWOAalgorithm
outperforms PSO, GSA, DE and FEP algorithms in five out of seven unimodal test functions and
four out of six multimodal test functions. The effectiveness of the AFPID compared with the con-
ventional PIDand theproposedAFPIDprovidesbetter performance. Reductionof 39.13% inerror
criteria (objective function) comparedwithWOA-PID controller. Theproposedapproachwas also
comparedwith some recently proposed frequency control approaches in awidely used two-area
test system.
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1. Introduction

The increasing power demand, rising costs of electric-
ity transmission and distribution, deregulation of the
energy markets, depletion of fossil fuels are making a
significant entrance of renewable energy resources into
the energy sector [1–4]. The centralized power gen-
eration, transmission and distribution are now shift-
ing to a decentralized one [1]. In this framework, a
new power system model called autonomous power
generating system (APGS) has evolved. It is a collec-
tion of distributed energy resources (DERs) such as
diesel energy generator (DEG), fuel cell (FC), micro-
turbine generator (MTG) with solar photovoltaic (PV)
units and wind turbine generators (WTG) and clus-
ter of loads [1,2]. The chaotic characteristics of the
load and the sustainable energy generations, i.e. wind
and solar sources, introduce fluctuations in the system
frequency [1]. Energy-storing elements such as ultra
capacitor (UC), flywheel energy storage system (FESS)
and battery energy storage system (BESS) are coupled
to the system to mitigate the unbalance due to genera-
tion and load mismatch. These energy-storing devices
store the surplus power for a small interval of period
from the renewable energy sources and later deliver the

power to the grid when there is a more load demand
[5,6]. A proper control strategy is required for coordi-
nating these actions accurately [5]. This calls for the
concept of load frequency control (LFC) for damping
the frequency oscillation.

To enhance the LFCperformance, several approaches
such as the conventional PID controller [4,7], robust
H∞ controller [8–11], fractional order controller
[1,5,6] have been used in similar types of system design.
To preserve desirable performance and stability, either
centralized controller [6] or decentralized controller [4,
12] is used. The system parameters and the local loads
of the hybrid power system controlled by a centralized
control unit rather than multiple decentralized con-
trollers make the overall system design simple as well
as reduce cost [1]. Conventional PI-based controller has
been adopted by the researcher for LFC on similar types
of system [4,7]. RobustH∞ controller approaches have
been widely proposed in the literature for LFC problem
[3,9–11]. Few papers addressed fuzzy logic techniques
for optimal tuning of the standard PID controller
[13–15] and FOPID controller [5] for solving LFC
problem. It is observed that adaptive control makes the
system under control less affected by the unmodelled
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process dynamics and variation in system parameters.
Therefore, in the proposed control strategy, an adaptive
fuzzy-based PID controller is taken into consideration
for LFC in the proposed hybrid power system.

Controlling APGS with various uncertain system
parameters is mostly based on optimization [6]. Differ-
ent types of hybrid algorithms were developed in many
papers [1,5,7,8,11,13] to find the controller gains in
order to enhance the system transient response as well
as to ensure the robustness and stability of the system.
Many researchers have suggested different optimization
techniques such as fast evolutionary algorithm [16],
Glowworm Swarm Optimization [17], multi-objective
evolutionary algorithm [18], microgenetic algorithm
[19], hybrid differential evolution and harmony search
algorithm [20], clustered adaptive teaching learning-
based optimization [21] in power system problems.
Whale optimization algorithm (WOA) is a recently pro-
posed technique inspired by hunting the behaviour
of whales [22]. The major benefit of the WOA tech-
nique compared to other established techniques is that
the WOA technique does not need specific algorithm
parameters. Apart from this, WOA is easy to under-
stand and program. The algorithm uses three oper-
ators: the hunt for prey, surrounding the prey and
bubble-net searching behaviour of whales for optimiza-
tion. The superiority of WOA over PSO, GSA, DE and
FEP has been demonstrated [22]. However, in origi-
nal WOA algorithm, the present best solution is the
target prey and the others attempt to modify their posi-
tions towards the best agent. This process of update
may result in being stuck in local optima. Therefore,
in the present paper, a modified whale optimization
algorithm (mWOA) is proposed where correction fac-
tors are introduced at various stages of the algorithm
to get improved results. After this, the mWOA tech-
nique is used to tune AFPID (adaptive fuzzy logic
PID) controller parameters; results are compared with
WOA and mWOA optimized PID controller. Devia-
tion in grid frequency, control signal and the output of
different controlled sources of APGS system are anal-
ysed with standard PID and AFPID controllers and the
superiority of the AFPID over PID is demonstrated.

2. Whale optimization algorithm

WOA is a recently proposed meta-heuristic algorithm
based on social behaviour of whales [8]. Humpback
whales are among the biggest whales whose favourite
prey are krill and small fish herds. The hunting process
of humpback whales is based on the bubble-net feeding
approach method. The twisting bubble-net nourishing
scheme is mathematically modelled in WOA. Here the
scientific model of encircling prey, spiral bubble-net
encouraging move and scan for prey is mathematically
expressed.

2.1. Encircling prey

Humpback whale encircles the prey (small fishes); at
that point. overhauls its position towards the optimum
solution over the course of increasing number of itera-
tions from start to a maximum number of iterations.

⇀

D =
∣∣∣⇀

C · ⇀

X
∗
(t) − ⇀

X(t)
∣∣∣ , (1)

⇀

X(t + 1) = ⇀

X
∗
(t) − ⇀

A · �D, (2)

where t shows the current iteration, �A and �C are coef-
ficient vectors, �X is the position vector of the best
arrangement acquired in this way, �X∗ is the position
vector, · is the element by element multiplication and
| | is the absolute value. It merits saying here that �X∗
should be upgraded in every cycle if there is a superior
solution.

�A = 2�a · �r − �a, (3)

�C = 2 · �r, (4)

where �a is linearly decreased from 2 to 0 over the course
of iterations and �r is a random vector in [0, 1].

2.2. Bubble-net attacking technique

Here two methodologies are planned as follows:
1. Shrinking encirclingmechanism: This behaviour

is accomplished by diminishing the estimation of �a in
Eq. (3). Take note of that the fluctuation range of �A is
likewise diminished by�a. As such, �A will be a random
value in the interim [−a, a] where a is diminished from
2 to 0 throughout cycles. Random values for a vector �A
are set in the range between [−1, 1].

2. Spiral updating arrangement: Spiral condition
for position update between humpback whale and prey
that was helix-formed development given as takes after

�X(t + 1) = �D′ · ebl · cos(2π l) + �X∗(t), (5)

where �D′ = |�X∗(t) − �X(t)| and shows the separation of
the ith whale to the prey (best arrangement got as such),
b is a steady to define the state of the logarithmic spiral;
dot (·) is a component by component augmentation and
l is an arbitrary number in the range [−1, 1].

To model so, we are assuming that there is a likeli-
hood of picking a half between either the contracting
surrounding system or the spiral model to overhaul the
position of whales during enhancement. The scientific
model is as per the follows:

�X(t + 1) =
{�X∗(t) − �A · �D, if P < 0.5,
D′ · ebl · cos(2π l) + �X∗(t), if P ≥ 0.5,

(6)
where P is an arbitrary number in the range [0,1].
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2.3. Search for prey (exploration phase)

The �A vector can be utilized for exploration to search
for prey; vector �A additionally takes the qualities more
noteworthy than one or not asmuch as−1. Exploration
takes after the following two conditions:

�D = �C · −−→Xrand − �X, (7)

�X(t + 1) = −−→Xrand − �A · �D, (8)

where −−→Xrand is an arbitrary position vector (an irreg-
ular whale) looked over the present population and
calculated as when |�A| > 1, authorized investigation to
WOA calculation to find worldwide ideal avoids local
optima and when |�A| < 1, for overhauling the position
of current search operator/best arrangement is chosen.

3. Modified whale optimization algorithm

In original WOA algorithm, the present best solution
is the target for other search agents. Hence all prey
attempt to modify their positions to proximate the best
agent as per Equations (1) and (2). As the location of the
best search, space is not known a priori, this process of
update may result in being trapped in local optima. If
the position of the vectors changes during the search,
the process is governed by large steps, the algorithm
may not be able to explore properly the search space.
To minimize the magnitude of changes in the posi-
tion of vectors, correction factors are introduced as CF1
and CF2 in the proposed mWOA technique. Now the
equation becomes

⇀

D =
∣∣∣⇀

C · ⇀

X
∗
(t) − ⇀

X(t)
∣∣∣ /CF1, (9)

⇀

X(t + 1) = (
⇀

X
∗
(t) − ⇀

A · �D)/CF1. (10)

The correction factor makes the whales to move in
small steps towards the prey to explore the search space
efficiently.

Similarly, a correction factor is introduced in the
exploitation phase where the spiral updating position
is given by Equation (11) as

�X(t + 1) = (�D′ · ebl · cos(2π l) + �X∗(t))/CF2. (11)

By introducing the above correction factor, the hump-
back whales are made to swim around the prey within a

reduced shrinking circle, thus enhancing the exploiting
capability of the algorithm.

Finally, the correction factor is introduced in the
exploration phase of search for prey. So in original
WOA algorithm, the search agent position is updated
in the exploration phase as per Equations (7) and (8).
As a result, it may lead to randommovement of whales.
Thus in the proposed mWOA technique, the position
of search agents is updated by using correction factors
as given in Equations (12) and (13).

�D = (�C · −−→Xrand − �X)/CF1, (12)

�X(t + 1) = (
−−→Xrand − �A · �D)/CF2. (13)

After a repeated series of trail runs, the correction
factors are 2.5and 1.5, respectively.

It should be noted that by introducing the correction
factors, the capability of whales to reach any position
in the search space is enhanced. Therefore, it allows
any search agent to update its position in the neigh-
bourhood of the current best solution and simulates
encircling the prey more efficiently.

4. Performance investigation of mWOA
algorithm

The proposed mWOA algorithm performance is car-
ried out by fitting to some standard benchmark
functions. The details about these functions, their
dimension, boundary of the search spaces and opti-
mum values are available in the literature [22]. There
are 13 functions, out of which functions f1 tof7 are
unimodal functions. Unimodal functions are specifi-
cally taken for verifying the exploitation property of
the algorithm [22]. Functions f8 to f13 are multimodal
functions with more number of local optima. This
number increases exponentially with the increase in
dimensions. These functions are very challenging test
beds for meta-heuristic algorithms as exploration and
exploitation are tested simultaneously by these func-
tions. As suggested in the original WOA algorithm, the
mWOA algorithm is executed for 30 independent runs
with randomly generated population for each bench-
mark functions with a population size of 30 and an

Table 1. Statistical result of proposed modified WOA and comparison with other techniques [22] for unimodal benchmark test
functions.

mWOA WOA PSO GSA DE FEP

f Avg. Std. dev. Avg. Std. dev. Avg. Std. dev. Avg. Std. dev. Avg. Std. dev. Avg. Std. dev.

f 1 0 0 1.41E–30 4.91E–30 0.000136 0.000202 2.53E–16 9.67E–17 8.2E–14 5.9E–14 0.00057 0.00013
f 2 0 0 1.06E–21 2.39E–21 0.042144 0.045421 0.055655 0.194074 1.5E–09 9.9E–10 0.0081 0.00077
f 3 0 0 5.39E–07 2.93E–06 70.12562 22.11924 896.5347 318.9559 6.8E–11 7.4E–11 0.016 0.014
f 4 0 0 0.072581 0.39747 1.086481 0.317039 7.35487 1.741452 0 0 0.3 0.5
f 5 28.7801 0.2426 27.86558 0.763626 96.71832 60.11559 67.54309 62.22534 0 0 5.06 5.87
f 6 5.4912 0.5014 3.116266 0.532429 0.000102 8.28E–05 2.5E–16 1.74E–16 0 0 0 0
f 7 0.1396E–4 0.144E–4 0.001425 0.001149 0.122854 0.044957 0.089441 0.04339 0.00463 0.0012 0.1415 0.3522
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Table 2. Statistical result of proposed modified WOA and comparison with other techniques [22] for multimodal benchmark test
functions.

mWOA WOA PSO GSA DE FEP

f Avg. Std. dev. Avg. Std. dev. Avg. Std. dev. Avg. Std. dev. Avg. Std. dev. Avg. Std. dev.

f 8 −2.2973E3 0.4074E3 −5080.76 695.7968 −4841.29 1152.814 −2821.07 493.0375 −11080.1 574.7 −12554.5 52.6
f 9 0 0 0 0 46.70423 11.62938 25.96841 7.470068 69.2 38.8 0.046 0.012
f 10 4.086E–15 1.084E–15 7.4043 9.897572 0.276015 0.50901 0.062087 0.23628 9.7E–08 4.2E–08 0.018 0.0021
f 11 0 0 0.000289 0.001586 0.009215 0.007724 27.70154 5.040343 0 0 0.016 0.022
f 12 0.1815 0.1162 0.339676 0.214864 0.006917 0.026301 1.799617 0.95114 7.9E–15 8E–15 9.2E–06 3.6E–06
f 13 1.8095 0.1236 1.889015 0.266088 0.006675 0.008907 8.899084 7.126241 5.1E–14 4.8E–14 0.00016 0.000073

iteration of 500. Tables 1 and 2 show results like aver-
age and standard deviation for unimodal and multi-
modal functions, respectively. The proposed mWOA
algorithm results were compared with the original
WOA algorithm and with some recent well-known
meta-heuristic techniques such as PSO, GSA, DE and
FEP [22]. It is evident from Table 1 that, for unimodal
modal functions,mWOAtechnique is very efficient and
outperformsWOA, PSO, GSA, DE and FEP for five (f 1,
f 2, f 3, f 4, f 7) out of seven unimodal test functions. It is
observed fromTable 2 that,mWOAoutperformsWOA,
PSO, GSA, DE and FEP for four (f 8, f 9, f 10, f 11) out
of six unimodal test functions. This validates that the
modified WOA makes a sound equilibrium between
exploration and exploitation preventing local optima

stagnation. The proposed mWOA technique was then
applied to a real-world problem of tuning the AFPID.

5. System investigated

The block diagram of the proposed system [1] is pre-
sented in Figure 1. The parameter of each component
of system represents a real system and taken from
reference [1]. The model under study was developed
in MATLAB/SIMULINK environment and proposed
mWOA program written (in .m file). The generation
subsystem includes one PV, one DEG, one MTG, two
FCs and three WTGs. The storage system includes
one BESS and one FESS connected to the load side.
Moreover, appropriate rate constraint nonlinearities

Figure 1. Block diagram representation of the APGS considered in the study.
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Table 3. Parameters of APGS [1].

Components Gain Time constant

Solar photovoltaic (PV) KPV = 1 TPV = 1.8
Wind turbine generator (WTG) KWTG = 1 TWTG = 1
Aqua electrolyser (AE) KAE = 0.002 TAE = 0.5
Fuel cell (FC) KFC = 0.01 TFC = 4
Diesel energy generator (DEG) KDEG = 0.003 TDEG = 2
Battery energy storage system (BESS) KBESS = −0.003 TBESS = 0.1
Flywheel energy storage system (FESS) KFESS = −0.01 TFESS = 0.1
Micro turbine generator (MTG) KMTG = 0.002 TMTG = 1

were considered such as |PFESS| < 0.9, |PBESS| < 0.2,
|PDEG| < 0.01, |PMTG| < 0.01. These rate constraint
nonlinearities incorporate various electromechanical
constraints that these devices exhibit.

5.1. Modelling of different generation system

The PV, DEG, MTG, FC and WTG are represented
in Equations (14)–(18) with their corresponding gains
and time constants reported in Table 3 [1,3,4]. The
parameter k represents the number of units considered.

GPV(s) = KPV

(1 + sTPV)
= �PPV

�ϕ
, (14)

GDEG(s) = KDEG

(1 + sTDEG)
= �PDEG

�u
, (15)

GMTG(s) = KMTG

(1 + sTMTG)
= �PMTG

�u
, (16)

GFCK
(s) = KFC

(1 + sTFC)
= �PFC

�PAE
, k = 1, 2, (17)

GWTGk
(s) = KWTG

(1 + sTWTG)
= �PWTG

�PW
, k = 1, 2, 3.

(18)

5.1.1. Wind speedmodelling
Thewind turbine generator power (PWTG) is a function
of wind speed VW. The algebraic summation of base
wind speed with noise component [1] is called as wind
speed.

VW can be represented by

Vw = VWB + VWN. (19)

The base component of the wind speed is a constant
which is present throughout thewind turbine operation
and for the present case it is taken as 7.5 m/s. It is given
as follows:

VWB = 7.5ϕ(t) − 3ϕ(t − 200) + 10.5ϕ(t − 250),
(20)

where ϕ(t) is the Heaviside step function.

The wind speed noise is given as follows:

VWN = 2σ 2
N∑
i=1

√
SV(ωi)�ω cos(ωit + ϕi), (21)

whereωi = (i − 1/2)�ω and ϕi ≈ U(0, 2π).�ω is the
change in frequency to estimate spectral density. σ 2 is
the variance due to noise and set to 200.

The spectral density function Sv(ωi) is expressed
in (22)

Sv(ωi) = 2KNF2|ωi|

π2
[
1 +

(
Fωi

Fωi
μπ

)2]4/3 , (22)

where N = 50 and �ω = 0.5 rad/s are considered to
get an operative modelling precision. KN (=0.004),
µ (=7.5) and F (=2000) denote the surface drag coef-
ficient, the base wind speed and the turbulence scale,
respectively.

5.1.2. Wind turbine characteristic
The power coefficient of wind turbine (CP) [1] is char-
acterized by non-dimensional curves which is a func-
tion of blade pitch angle (β) and tip speed ratio (λ).

λ is given by

λ = Rbladeωblade

Vw
(23)

where Rblade (=23.5 m) and ωblade (=3.14 rad/s)
are the blade radius and blade rotational speed,
respectively.

Considering β = 0.1745, Cp is given by

Cp = (0.44 − 0.0167β) sin
[

π(λ − 3)
15 − 0.3β

]

− 0.0184(λ − 3)β . (24)

The wind turbine output [1] is given by

Pw = 1
2
ρArCpV3

w, (25)

where Ar = 1735m2 is the blade swept area and
ρ = 1.250 kg/m2 is the density of air.

5.1.3. Characteristic of PV system output power
The PV system output power of [1] is given by

Ppv = ηSγ [1 − 0.005(T + 25)], (26)

where η is the efficiency of the PV cells (η = 10%).
S is the area of the PV array (S = 4084m2), γ is the
solar radiation on the PV cells in kw/m2 and T is the
ambient temperature (T = 25°C).

φ is given by

ϕ = 0.5ϕ(t) − 0.33ϕ(t − 25) + 0.3ϕ(t − 75)

− 0.3ϕ(t − 150) + ϕn(t),

ϕn(t) ≈ U(−0.1, 0.1). (27)
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5.2. Modelling of aqua electrolyser

A portion of output power developed by wind and
photovoltaic is used by an aqua electrolyser (AE). It pro-
duces hydrogen which is used by FC to produce power.
AE uses a fraction, i.e. (1 − kn) of the total power gener-
ated fromPV andWTG for the production of hydrogen
which is fed to the two FCs to produce power. The
transfer function of the AE can be sighted as

GAE(s) = KAE

(1 + sTAE)
. (28)

kn is taken as 0.6 for the present study.

5.3. Modelling of energy-storing system

Energy-storing components effectively absorb/supply
deficit/surplus energy from/to the hybrid power system
within a fraction of period for a stable hybrid system
[1,4].

FESS and BESS are two storage systems considered
in the present study and are expressed as

GFESS(s) = KFESS

(1 + sTFESS)
(29)

GBESS(s) = KBESS

(1 + sTBESS)
. (30)

Each energy storage element is provided with an
upper and lower saturation limit along with rate con-
straint nonlinearity to prevent the mechanical shock
due to sudden frequency variation [6]. Their rate con-
straint nonlinearities are |PFESS| < 0.9, |PBESS| < 0.2
and 0 < PDEG < 0.45.

5.4. Power systemmodel

The power system model is formulated as

Gsys(s) = �f
�Pe

= 1
Ms + D

, (31)

where D and M are equivalent damping constant (0.4)
and inertia constant (0.03) of the hybrid power system,
respectively. It is taken as 0.4 and 0.03 respectively for
the present study.

6. Adaptive fuzzy logic control

A fuzzy logic controller has a predefined set of con-
trol rules, which depends on the researcher’s knowl-
edge and experience [23]. The input/output linguistic
variables of the membership functions (MFs) are also
generally predetermined. The design of FLCs largely
depends on the choice of input/output scaling factors
(SFs) and selection of controller parameters. Tuning of
SFs is of highest importance because of their universal
effect on the control action.

For satisfactory control action, the membership
functions should be a function of error (e) and change
of error (�e) and FLC maps input to output by a lim-
ited number of IF–THEN rules. Sometimes, this is not
adequate to provide necessary control actions. In such
cases, static values of SFs and single MFs are insuffi-
cient to achieve the desired control action. To overcome
this, various online and offlinemethods are proposed to
fine-tune the input/output SFs to change the definition
of MFs.

Adaptive control has been a topic of research for var-
ious LFC schemes. Adaptive control technique is cat-
egorized into two types, the self-tuning regulators and
themodel reference control systems [24]. Adaptive con-
troller makes the system under control less sensitive to
its parameter uncertainties under various environmen-
tal and operating conditions. Adaptive fuzzy-based PID
controller design has now been considered as a topic of
research and several methods are adopted in [14] and
[24]. In the proposed method, an adaptive PID kind
FLC (AFPID) is used to get the process optimally con-
trolled based on the e and �e. Figure 2 represents the
schematic diagram of the proposed AFPID controller.

Figure 2. Structure of the proposed adaptive fuzzy logic control scheme.
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Figure 3. Membership function for e and ė.

Table 4. Rule base for AFPID.

ė
e NB NS Z PS PB

NB NB NB NS NS Z
NS NB NS NS Z PS
Z NS NS Z PS PS
PS NS Z PS PS PB
PB Z PS PS PB PB

Figure 3 shows the membership functions e and �e
and rule base is depicted in Table 4. Fuzzy part 1 and
fuzzy part 2 share a common membership function.
Thismakes the design simple. TheMFs for e and�e are
kept within the common interval [−1, 1] and they are
chosen to be triangular which is the most popular and
economical as compared to other alternatives. Mam-
dani fuzzy interface is used for the present simulation.
The fuzzy linguistic variables NB, NS, Z, PS, PB repre-
sent Negative Big, Negative Small, Zero, Positive Small
and Positive Big, respectively, and are shown in Table 6.
The mWOA optimization algorithm is used for fine-
tuning of the input and output scaling factors (k11 to
k31) and PID controller parameters (kP, kI and kD) of
AFPID controller shown in Figure 2.

ISE has taken into consideration in the present study
for tuning of the controller gains

J =
∫ Tmax

0
[(�f )2 + (�u)2/Kf ]dt, (32)

where Tmax is the maximum simulation time and �f
and �u are per unit frequency deviation and control
signal output of controller. Tmax is taken as 300 s for the
present case. The factorKf is chosen as 104 to give equal
weightage on both parts of control objective.

7. Results and discussion

7.1. Implementation of the proposedmWOA
algorithm for frequency control

The APGS simulated by considering two different con-
trollers, i.e. PID and AFPID controller separately and
optimized with the mWOA technique. Figure 4(a–d)

depicts the stochastic output characteristics of the
solar photovoltaic power (PPV), wind turbine genera-
tor (PWTG), renewable sources total power (wind and
PV) to the electric grid (PT) and the load demand (PL)
which is used in the simulation study. Both the solar
and wind power output have overlying variations about
their steady state, which would of course affect the sys-
tem frequency. These oscillations have to damp out as
quickly as possible by the proper control action of the
controller. In the present design framework, both the
powers (PWTG and PPV) drop to significantly differ-
ent level after 25 and 200 s, respectively. This resem-
bles the practical scenario as the generated powers
of wind turbine and PV system fluctuate widely over
time based on the varied environmental conditions.
Simultaneously, the load demand also faces an identi-
cal kind of variation about its steady state and varies
from 0.4 p.u to 0.9 p.u. The AFPID controller consid-
ers all these speculative variations while computing the
controller gains. The optimized parameter of the PID
and AFPID controller is given in Table 5. The corre-
sponding values of objective function (J) are also given
in Table 5. For the same controller structure (PID),
minimum objective function value is obtained with the
proposed mWOA technique (J = 3.1809) compared to
the original WOA technique (J = 3.5827). The objec-
tive function value is further reduced (J = 2.1809) with
the proposed mWOA optimized AFPID controller, i.e.
there is a reduction of 39.13% in error criteria (objective
function value) compared with the WOA optimized
PID controller.

To compare the performance of designed con-
trollers, various cases are assumed. For the first case,
only the load variation as presented in Figure 4(d) is
considered and wind and solar generations are kept
constant. For the second case, solar generation, wind
generation and load are variations that are considered
as given in Figure 4.

Case 1: Load variation with constant wind and solar
generation

In the first case, PV andwind powers are set constant
(0.4 and 0.6 p.u., respectively), and the load demand is
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Figure 4. (a) Generated power by solar energy; (b) generated power by wind energy source; (c) total renewable power generation;
(d) load demand which are independent of the controller structure.

Table 5. WOA- and mWOA-based tuning parameters of PID and AFPID controllers.

Technique/Controller kP kI kD k11 k21 k31 J

WOA: PID 8.8219 7.1508 4.4308 – – – 3.5827
mWOA: PID 9.2701 9.5176 1.8736 – – – 3.1809
mWOA: AFPID 4.8406 6.9087 0.2231 1.5893 1.6064 0.9664 2.1809

varied as shown in Figure 4(d). The frequency deviation
for the above case is shown in Figure 5 from which it
is clear that the mWOA optimized PID controller pro-
vides better system compared to the WOA optimized
PID controller. It can be seen from Figure 5 that the
maximum overshoot and undershoot with the WOA
optimized PID controller are 0.3221 and −0.3599 and
the same with themWOAoptimized PID controller are
0.3079 and −0.3645, respectively. It is also clear from
Figure 5 that the best system response is obtained with
the proposedmWOA optimized FAPID controller. The
maximum overshoot and undershoot reduce to 0.2697
and −0.1878 respectively with the mWOA optimized
FAPID controller.

Case 2: Simultaneous variation of load demand, wind
and solar power

In case 2, PV and wind powers varied as shown in
Figure 4(a,b) along with the load variation. The sys-
tem frequency response and control signal response
are shown in Figure 6(a,b) respectively. For compari-
son, the responses with WOA optimized PID, mWOA
optimized PID and mWOA optimized AFPID con-
trollers are provided in Figure 6. From Figure 6(a) it
is clear that the proposed mWOA optimized AFPID
controller structure provides better system dynamic
response compared to theWOAandmWOAoptimized
conventional PID control structure. It can be seen
from Figure 6(a) that maximum overshoots withWOA

Figure 5. Frequency deviation response under load variation with constant wind and solar power.
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Figure 6. (a) Frequency deviation with PID and AFPID controllers and (b) control signal with PID and AFPID controllers.

Figure 7. (a) DEG power with PID and AFPID controllers; (b) FESS power with PID and AFPID controllers; (c) MTG power with PID and
AFPID controllers; (d) BESS power with PID and AFPID controllers; (e) FC power with PID and AFPID controllers; (f ) AE power with PID
and AFPID controllers.

optimized PID, mWOA optimized PID and mWOA
optimized AFPID controllers during the first swing
are 0.2806, 0.275 and 0.1666, respectively. Maximum
undershoots are −0.2552, −0.2339 and −0.1505 with
optimized PID, mWOA optimized PID and mWOA
optimized AFPID controllers, respectively.

From the control characteristic as shown in
Figure 6(b), the band of oscillations for the AFPID
controller is not as much as that of the classical PID
controller. From practical point of view, this is relevant

as the control signal activates mechanical components
such as DEG, BESS and FESS. Prolonged swinging in
the actuator demand would deteriorate the mechani-
cal parts, which degrade their lifetime as well as affect
the performance of these components. The equivalent
powers generated by the DEG, FESS, MTG, BESS, FC
and AE are given in Figure 7(a–f). With the AFPID
controller, the power fluctuation in these energy stor-
age systems reduces significantly than that of the con-
ventional PID controller. This may result in smaller



AUTOMATIKA 419

Figure 8. Frequency deviation of area 1 under step load disturbance in area 1 for a two-area non-reheat test system with different
AGC approaches.

Table 6. Comparative performance indexes with recent AGC approaches.

Settling times Ts (s)

Performance/technique: control structure ITAE value (×10−2) �F1 �F2 Maximum overshoot Maximum undershoot

Conventional ZN: PI [25] 375.68 45 45 18.25× 10−2 31.32× 10−3

GA: PI [25] 274.75 10.59 11.39 0 24.07× 10−2

BFOA: PI [25] 179.75 5.52 7.09 63.12× 10−4 26.21× 10−2

DE: PI [26] 125.51 8.96 8.16 20.26× 10−3 23.6× 10−2

PSO: PI [27] 121.42 7.37 7.82 38.58× 10−3 25.35× 10−2

hBFOA-PSO: PI [27] 118.65 7.39 7.65 36.73× 10−3 24.72× 10−2

NSGA-II: PI [28] 117.85 6.49 7.54 67.34× 10−4 26.32× 10−2

PS: Fuzzy PI [29] 63.34 6.05 7.10 0 92.08× 10−3

PSO: Fuzzy PI [29] 44.70 5.13 6.22 0 88.01× 10−3

NSGA-II: PIDF [28] 38.7 3.03 4.86 0 105.18× 10−3

hPSO-PS: Fuzzy PI [29] 14.38 2.26 3.74 0 85.18× 10−3

Proposed mWOA: AFPID 7.33 2.19 2.13 0 38.08× 10−3

dimension of this energy storage and supply systems.
There is also less requirement of storing and supply-
ing power to suppress the grid frequency variation. In
Figure 7, negative powers in energy storage elements
indicated that they are absorbing power and conversely
the positive powers signify that they are producing the
extra power making the whole system stable. Thus the
hybrid power system becomesmore reliable and energy
efficient.

7.2. Comparisonwith recent frequency control
approaches

To demonstrate the superiority of the proposedmWOA
optimized AFPID controller, a widely used two equal
area non-reheat thermal power system [25–29] is con-
sidered. Identical AFPID controllers are assumed for
each area and the proposed mWOA algorithm was
employed to tune the controller parameters. For a fair
comparison, identical power systemandobjective func-
tions from the literature [25–29] are considered. The
optimized AFPID controller parameters are:

kP = 1.9698, kI = 1.7634, kD = 1.0609,

k11 = 0.8172, k21 = 0.0777, k31 = 1.8405.

A step increase in demand of 10% applied at t = 0 s;
in area 1 and the performance of proposed controller

is compared with approaches such as ZN: PI, GA: PI,
BFOA: PI [25], DE: PI [26], hybrid BFOA-PSO: PI [27],
NSGA-II: PI [28], NSGA-II: PIDF [28], PS: Fuzzy PI
[29], PSO: Fuzzy PI [29] and hybrid PSO-PS: Fuzzy
PI [29]. The results are provided in Table 6. It is clear
from Table 6 that best system performance with mini-
mum ITAE value and settling times in �F1, �F2 and
�Ptie are obtained with the proposed mWOA tuned
AFPID controller compared to recently proposed AGC
approaches. For completeness, the frequency response
of area 1 for the above disturbance is shown in Figure 8.
It is evident from Figure 8 that the proposed approach
outperforms than recently proposed AGC approaches.
The maximum overshoots and undershoots of fre-
quency response are shown in Figure 8 and tabulated in
Table 6. From Table 6, the lowest maximum overshoots
and undershoots of frequency response are obtained
with the proposedmWOAoptimizedAFPID compared
to other approaches.

8. Conclusion

In practice, classical PID controller is commonly used
for LFC problem. However, it is not able to pro-
vide desirable performance during severe disturbances.
Owing to the practical difficulties faced in trying to
achieve desired control criteria in LFC, an adaptive
fuzzy logic PID control method is presented in this
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paper for hybrid power systems. For tuning the con-
troller parameters, a modified WOA technique is pro-
posed where the position of search agents is updated
by using correction factors. It is found from the sta-
tistical results that the proposed mWOA algorithm
outperforms original WOA, PSO, GSA, DE and FEP
algorithms. In the next stage, frequency control of an
APGS consisting of various energy sources such as
DEG, FC, MTG with renewable energy sources such as
PV units, WTG along with energy storage devices like
BESS and FESS and cluster of loads is considered and
the parameters of proposed AFPID controller are opti-
mized employing the mWOA technique. It is observed
that themWOA tunedAFPID controller provides supe-
rior performance compared to the PID controller. Test-
ing the results of mWOA in terms of statistical analysis
like “Wilcoxon Signed Rank Test” is the focus of the
future work. Also, frequency control in an APGSs in
the presence of plug in electric vehicles is the focus of
the future research work.
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