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DESIGN OF COLUMNS IN TERMS OF STABILITY 

Summary 

In this paper, we investigate global and local stability of columns with an open and a 
closed thin-walled cross section. The proposed model of global stability is made of two 
deformable elements connected with an elastic joint. Stiffness of the elastic joint represents 
local discontinuity of the cross section of the column caused by the loss of stability of 
individual plates. The model of local stability of the columns is conceptualized on the 
principle of continuity of individual plates of the cross section. The coefficients of local 
buckling are defined as geometric parameters of the column with a rectangular hollow section 
(RHS) and a U-shaped cross section. The dominant parameters that influence the interactive 
behaviour of local and global buckling are the slenderness of plates and the column as a 
whole. The basic function of the developed models is to identify the stability mechanism in 
terms of better estimation of the critical force and higher load capacity. 

Key words: buckling; plate; cross section; stability; column 

1. Introduction 
Design of support structures requires an analysis of stability of all elements that are 

subjected to load. The phenomenon of stability of the columns under load encompasses a 
complex mechanism of the interactive behaviour of local and global buckling [1]. The largest 
number of the here presented papers analyse the behaviour of a structure in terms of global 
stability. Buckling modes of columns under a load depend on the boundary conditions at the 
ends and on geometric imperfections. Models of buckling of a column with elastic supports 
according to dimensionless parameters, which represent rotational and translational 
constraints, as well as the factors of effective lengths are considered by Adman and Saidani 
[2]. An analysis of the global stability of columns with a rectangular cross section, eccentric 
supported by another element is carried out by Zang and Tong on a example of light 
supporting structures [3]. The proposed analytical model of this investigation is applicable to 
the analysis of geometrical imperfections and shows that the size of eccentricity and stiffness 
of the supported element are key parameters in defining the critical buckling force. 
Experimental and numerical research into flexural and lateral-torsional mode of buckling of 
an open thin-walled column with fixed supported ends and a C-shaped cross section is 
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presented by Gunalan and Mahendran [4]. It is shown that the currently applicable standards 
for the assessment of the resistance of elements to buckling, AS/NZS 4600 [5] and AISI-NAS 
[6], are substantially underestimated when the ends of the column are fixedly supported. 
Improvement of existing standards is carried out by using sophisticated numerical methods, 
such as CUFSM [7] and experimental testing. Experimental results for columns with a 
rectangular cross section show that the interaction between local and global buckling has a 
significant adverse effect on their resistance [8-9]. These papers have established a good 
correlation of the conducted tests for simultaneous occurrence of local and global buckling 
with the direct strength method (DSM), which is integrated into the standard procedures AISI-
NAS and EC 3 [10].The buckling curve that defines the resistance of columns according to 
Eurocode 3 Part 1.4 (EN 3) provides a fairly conservative approach in the zone of interactive 
behaviour of local and global buckling which is not the case with the application of the DSM 
procedure [11]. In recent years, a large number of studies on stability of columns indicate the 
importance of local buckling analysis. The reason for this is the fact that in the thin-walled 
cross section the occurrence of local buckling initiates a global stability loss. In this respect, 
research on the stability of columns with a thin-walled closed cross section obtained by 
modifying the basic square shape was carried out in [12]. It was found that L, T and + forms 
provide increased resistance to buckling of the columns by 10%, 50% and 90%, respectively, 
in relation to the basic form, the RHS, as a result of a higher effective width beff i.e. the 
effective cross-sectional area Aeff [13]. The determination of the effective width and its impact 
on the stability of the steel box-shaped column is presented by Shanmugam et al. [14]. Higher 
values of these parameters provide a greater reserve of carrying capacity of columns after the 
occurrence of elastic local buckling or in the process of post-buckling of the plates [15]. In 
addition to the cross-sectional shape, the increase in the effective width of the plate of which 
the column is made can be achieved by installing longitudinal stiffeners [16]. Longitudinal 
stiffeners significantly affect local buckling so that it is reduced, but on the other hand can 
cause distortion of the cross section or distortional buckling [17]. The cross sections with 
stiffeners along the free edge of the plate elements (e.g. C, Z, Ω and other profiles) are 
particularly sensitive to distortion, which affects the interaction of local, distortional and 
global buckling [18]. The theoretical formulation of distortional buckling is presented by 
Kesti and Davies [19] on an example of C profiles, which is an integral part of the standards 
AS/NZS 4600. The assessment of resistance of open thin-walled columns in the distortional 
buckling mode using current applicable standards is discussed by He and Zhou [20]. 
According to the literature the research on local buckling columns is exclusively related to 
partial analysis of the plate with boundary conditions which approximately represent 
interactive influence of other elements of the cross section. The critical elastic buckling force 
of the combined loaded rectangular plate was defined by Shahabian and Roberts [21]. The 
behaviour of a plate with two fixed and two elastically supported edges was analysed in a 
recent study, published by Cai and Long [22]. Analytical solutions in the analysis of local 
buckling are particularly important because they provide more complete identification of the 
mechanism of stability of elements of the cross section [23-24]. 

2. Models of global and local buckling of columns 
Global buckling manifests itself in the loss of stability of the column due to insufficient 

resistance of the cross section to the load transfer. This mode of buckling has long been 
known and represents an inevitable part of the analysis of columns. On the other hand, thin-
walled cross sections which are sensitive to the occurrence of local buckling are used for a 
more rational design of columns. Open cross sections (e.g. U, C, Z, etc.) are characterized by 
low torsional stiffness with pronounced effects of distortional buckling (distortion of the cross 
section). It should be noted that distortion may occur in the closed cross section but the effect 
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is less pronounced compared to open cross sections. Models of the stability of columns could 
be classified into two groups: a) models of global stability (based on the resistance of the 
entire cross-section) and b) models of local distortional stability (resistance of plates of the 
cross section). These models will be presented in the following sections of the paper on an 
example of an open and a closed cross section with special reference to the definition of the 
buckling coefficient and the critical buckling stress.  

2.1 Global buckling of the column 
The key parameters which have a direct impact on the occurrence of global buckling are 

related to the length of the column, the load and the shape of the cross section. Length and 
load are characteristics of the bearing structure which can not be significantly affected. The 
greatest opportunities for structural improvements regarding the reduction of sensitivity to the 
occurrence of buckling comes from a favourable choice of the cross-sectional shape [12]. This 
fact is especially significant when one takes the interactive relationship between the local and 
the global buckling into account. Optimally designed structures have a task to carry heavier 
load without significantly increasing their weight. Thus, columns have to be designed so that 
the cross section has approximately the same resistance to the loss of stability over the whole 
of its length L. This requires the use of variable cross section of the column, in some cases the 
rationalization of mass is achieved by creating perforated holes, although the existence of 
holes in the structure is often a construction requirement.  

On the other hand, these structural requirements and the occurrence of local buckling on 
the elements of the cross section lead to a reduction in the effective cross-sectional area Aeff, 
thereby a reduction in the stability of the column. Therefore, the need to develop models of 
global stability with i-th number of discrete elements mutually connected with (i+1) springs 
of the bending stiffness ci+1 and (i+1) springs of the torsion stiffness Ci+1 arises. Zones of 
discontinuity of the cross section of the column correspond with the increase or the decrease 
in their bending stiffness compared to the rest of the column. The model of global stability 
with two discrete elastic elements is presented in Fig. 1b. The total potential energy of Ti for 
the i-th deformable element with elastic connections is the sum of the strain energy Ui and the 
external work Vi, which is a consequence of the action of the external force F. 
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The general solution to equation (9) has the following form: 
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The integration constants A, B, C and D are determined from the system which defines 
the boundary conditions on the ends of the column. This system is written in a compact form 
as follows: 

       0det0  i
TT

i DCBA     (9) 



















































































































































11

1sinsincoscoscossin

011

01cossinsincos

3
111

3

11

3

11

jj

ii

j

i

j
i

j

i
i

j

ii
ii

j

i
i

j

ii
i

ij

ii

i
i

j

ii
ii

j

ii
i

i

c
F

c
EI

c
F

c
FLL

c
FL

c
EILL

c
FL

c
EIL

C
EI

L
C
EILL

C
EIL











 (10) 

2.2 Local buckling of the column 
The zones of local buckling of the cross section correspond with the reduction of the 

effective cross-sectional area regardless of the fact that the material in these zones physically 
exists (this refers to ineffective zones). The stability of the columns formed of plates (e.g. by 
cold forming or welding) requires an interactive analysis of individual elements, i.e. the – 
plates. In this regard, it is necessary to perform a structural decomposition of the column on 
individual elements (plates) of the same length, whereas in a general case elements are of 
different widths and thicknesses. The theoretical basis for identification of local stability of 
columns includes a partial analysis of individual elements of which a cross section is formed. 
Depending on the type of cross section of the column, various contour conditions are imposed 
that significantly influence the buckling of certain plates and have an indirect impact on the 
stability of the overall cross section. The end edges of the plates from which the column is 
formed are most often connected to the base plates, which correspond to a completely fixed 
support. However, the analysis of the local stress of box girders presented in study [26] shows 
that the conditions of a fixed supported girder have influence on the behaviour of long plates 
only in their immediate vicinity. The differential equation of the elastic behaviour of the plate 
according to [27-28] reads as: 
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The general solution that corresponds to differential equation (1) has the following form [28]: 
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The coefficients A1, A2, A3 and A4 are determined from the boundary conditions that 
define the state of the plate along the longitudinal edges. 

D is the flexural rigidity of the plate and σx is the normal stress in the plane of the plate. 
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Fig. 1  Models of local buckling (a), global buckling (b) and considered cross-sections (c) 

The critical force of the local buckling Fcr,l has a value which is different from the critical 
force of the global buckling Fcr,g, regardless of the fact that the column in both cases has the 
same length and cross section. Global buckling occurs after the loss of stability in the most 
exposed section of the column (the middle section of a - simply supported column), while 
local buckling is characterized by the appearance of waves along the whole length of the 
column. Types of boundary conditions and characteristic equations, depending on the type of 
cross section of the column and the conditions of the supported individual plates of cross 
section, are presented in Tables 1 and 2. Closed cross sections (e.g., rectangular cross 
sections) are characterized by interactions with neighbouring plates through their two lateral 
edges. Due to the symmetry of cross section, boundary conditions need to be defined along 
two longitudinal lines of the plates (Table 1). The first line refers to the centre line of the 
plate, where changes in deflection and moment have extreme values. The second line 
corresponds to the line of the joint of two adjacent plates along which transverse displacement 
is prevented and continuity of the cross section is ensured [26]. The boundary conditions in 
the longitudinal direction (along the x-axis) correspond with the free supported plates, because 
slender plates are characterized by a large number of half waves which changes sign. The 
inflection point of the half wave is equivalent to a simply supported edge of the plate because 
deflections and bending moments along this line are characterized by the change of sign and 
have zero values (Fig. 1a). Open cross sections (e.g. U profiles) are characterized by the plates 
with free ends (flange profiles) which generate appropriate boundary conditions. These 
conditions are related to the formulation of transverse forces and bending moment along the 
free edge of the plate which must have a value of zero (Table 2). Boundary conditions for the 
rib profile are identical with formulations that are valid for a rectangular cross section. The 
condition of the stability of columns of different types of cross sections is defined by the 
characteristic equations S and B, given in Tables 1 and 2.  
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Table 1  Boundary conditions and equations for RHS   Table 2 Boundary conditions and equations for U profile 
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The parameters α, β, γ and δ, represented in the characteristic equations, are given by 
the following expressions (the number of wavelength plates defines m = 1, 2, 3, ...): 
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where ε is the parameter of wavelength of local buckling of the rectangular plate which is 
defined as the relation of dimensions of the rectangular plates (ε = a/b), according to Fig. 1a, 
while k represents the coefficient of local buckling and ν is Poisson's ratio (ν = 0.3). 

Local buckling is related only to the loss of stability of individual elements of the cross 
section, without displacement of their built-in or free edges and distortion of the cross section 
(rotation of flanges in an open cross section). The rectangular cross section is composed of 
four plates which are connected to each other along the longitudinal edges in an inseparable 
unit. The interaction of the structural elements of the cross section is represented by boundary 
conditions along the joint lines which relate to the limitation of the lateral displacements as 
well as the condition of continuity as follows: 
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where k represents the number of plates from which the rectangular cross section is formed  
(p = 1, 2, 3, 4). When the appropriate function of deflection wp (x, y) is applied to the 
boundary conditions of the system of plates (15), which are defined by (11), we obtain a 
system of four equations which are equivalent to the determinant of the system of order 4×4, 
which is necessary to define the stable equilibrium of the structural elements of the cross 
section. The determinant of the system mentioned above can be written in a compact form as 
follows [30]: 
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where φn (φn = tn/tp) and λn (φn = bp/bn) are geometric parameters of the cross section; 
where t is the thickness, b is the width and p is the number of characteristic plates. When 
applied to the two different plates connected along a common longitudinal edge, we obtain: 
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where φ1 (φ1 = t1/t2) and λ1 (φn = b2/b1) are characteristics of the RHS and the U – shaped 
cross section. After appropriate expressions for S and B from Table 1 have been introduced in 
(20) we obtain:  
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The condition (16) corresponds to the boundary condition of stability of the thin-walled 
rectangular cross section when local buckling occurs. The relevant length of the column to 
analyse local buckling is assessed in relation to the maximum cross-sectional dimension  
(a ≈ b). This length is exactly determined by the parameter ε in the conditions of local 
stability (18). Boundary conditions of open cross sections are more complex because of the 
plates with free edges (flange of the U-shaped cross section) or elastically supported edges 
(flange of the C-shaped cross section). The boundary conditions (19a) and (19b) refer to the 
rib of the U profile and they are equivalent to the previous case, while the formulations (19c) 
and (19d) are characterized by the boundary conditions of their flanges. Indices 1 and 2 refer 
to the plate cross section with different widths. 
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Except by local buckling, the open cross section is characterized by distortion of the 
cross section (distortional buckling), especially of the profile with strengthened edges, such as 
the C profile. Distortional mode occurs in columns whose approximate length is in the range 
of 10a < Ldis < 100a. Lower values Ldis affect the introduction of local distortion, whereas 
higher values of Ldis cause interaction between distortional buckling and flexural-torsional 
buckling. The length of the column at which purely distortional buckling occurs depends on 
the type of the load and the cross sectional shape. This length must be large enough to avoid 
local buckling and significantly smaller than the actual length of column L in order to avoid 
interaction with global buckling. Analogously to the previous case, replacing the function of 
deflection (2) in the boundary conditions (19) leads to the equation of local (distortional) 
stability (20) of elements of the cross section which is related to the U profile (the same form 
holds for the C profile, but with different coefficients).  
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3. Discussion and verification of results 
The condition of global stability (14) implemented in the simply supported column (for 

supports A and B there is: C1 = C3 → ∞ and c1 = c3 = 0) with two deformable segments, 
which are connected with an elastic connection in the point M (C2 = CM and c3 = cM), allows 
identification of the critical mode of stability caused by the occurrence of elastic local 
buckling (Fig. 1b). Flexural stiffness of the spring cM which prevents relative rotation of the 
elements of the column around the point M is given by cM = μEI/L. Extensional stiffness of 
the spring CM limits the translational movement of the point M in relation to the initial 
position of the column and it is defined as CM = ψEI/L3. When the conditions of the supported 
column are implemented, which is formed of two segments of the same lengths (L/2) 
mutually elastically connected according to Fig. 2b, the determinant (14) is reduced to the 
equation of global stability (21). 
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where pN (pN = F/F0) represents the normalized critical force of global buckling. Euler′s 
(critical) buckling load for a simply supported column amounts to F0 = π2EI/L2. The column is 
in the position of stable equilibrium if it satisfies equation (21), while pN,cr is the value that 
corresponds to this stable state. The critical force of the global buckling Fcr is determined by 
the normalized critical force pN,cr and the reference critical buckling load of the columns 
which correspond to the model of the simply supported column F0. The μ and ψ parameters 
are non-dimensionless coefficients that define the elasticity of the connection at point M of 
the column and their value depends on the type and the dimensions of the cross section, i.e. 
the effective width beff [13]. The dependence of the normalized force pN according to 
parameters μ and ψ is illustrated in Fig. 2. For the value μ = 10, the mathematical model (21) 
is equivalent to Euler's critical force. The lower value of the coefficient μ tends to be constant 
when ψ grows. On the other hand, the increase in the parameter μ increases the resistance to 
the bending of the column at point M, allowing for a higher critical force which degressively 
increases with an increase of parameter ψ. The critical buckling stress, caused by the loss of 
global stability, is defined as: 
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where σper is a permissible value of the stress. The critical force of the elastic buckling, which 
is defined according to the criteria of global stability, is insufficient for a complete evaluation 
of the stability of the column as a whole. Global stability depends solely on the slenderness of 
column λ which is defined as the ratio buckling length Lbuck and the minimum radius of 
gyration rmin. Column length L has a significant impact on its stability, but this parameter is 
usually a construction condition and the possibility of its variation is limited to a considerable 
extent. Young's modulus of elasticity E can be influenced by the choice of different types of 
materials, which is also a limiting factor. Therefore, the dominant parameter that affects the 
global stability of the column refers to the axial moment of inertia I. Rationality of the 
supporting structures is achieved by applying a thin-walled cross-section, which is 
characterized by the minimum mass, i.e. the ratio A/I. This means that with a small surface of 
the cross section A a high resistance of the cross section to bending can be achieved, defined 
by the parameter I. If we observe a rectangular and a square shape of the same cross-sectional 
area, we can conclude that according to (22), a square cross section has greater stability. The 
increase in the axial moment of inertia I results from larger cross-sectional dimensions b×b 
and reduced plate thickness t. An unfavourable ratio t/b can initiate local buckling and failure 
of the column as a whole.  
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Fig. 2  Normalized critical buckling force as non-dimensionless parameters  pN = f(μ, ψ) 

The ratio of t/b must be above the area of local buckling (Fig. 4, left). On the other 
hand, thin-walled cross sections result in the occurrence of a phenomenon of local buckling, 
which can induce instability regardless of the fact that the aspect of global buckling shows the 
state of stability of the column. Thus, the stability analysis of a column requires identification 
of interactive behaviour of local and global buckling. The mechanisms of local and global 
buckling are different one from another and the interactivity between these two phenomena is 
established through the cross section. Namely, the cross section provides the required stiffness 
of the column EI in terms of bending resistance of the column. Certain flexural stiffness of the 
column is achieved by different cross sections, which is completely irrelevant from the aspect 
of the global stability model. However, the type and shape of the cross section have a great 
influence on the parameters of local buckling, as well as on the occurrence of the distortional 
mode of buckling. This assertion can be illustrated by an example of a closed and an open 
cross section (Fig. 3). The analysis of the local stability of the rectangular cross section shows 
that an increase in the width ratio b2/b1 causes a reduction in the coefficient of local buckling 
k. Definition of the local buckling coefficient k is done with respect to the characteristic 
values b2/b1 = 1 (k = 4). The cross sections most sensitive to local buckling are characterized 
by higher values of the parameter t1/t2 due to a decrease in the coefficient of the local buckling 
k with the increase in b2/b1. In terms of local stability, the square shape is the optimal 
configuration of the column with a four-sided closed cross section. The wavelength of local 
buckling is defined by the parameter ε and has a tendency of constant increase (by 
approximately linear dependence) as the parameter b2/b1 increases. The wavelength for the 
square cross section has a minimum value and amounts to b (Lbuck = b → ε = 1). 

 
Fig. 3  Coefficient of local buckling k = f(b2/b1) for rectangular cross-section (RHS) and U-shaped cross section 
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The critical stress value caused by local buckling is defined as: 
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where m is the number of different plate elements of the cross section (e.g., for RHS and U 
profile, m = 2). The critical force of local buckling corresponds to the minimum values of 
stress defined for each individual element of the cross section, according to the equation (23). 
Local stability of the U-shaped cross section is characterized by the curve of the local 
buckling coefficient k = k (b2/b1), which is shown in Fig. 3 (right). If t1/t2 = 1, the maximum 
value of the local buckling coefficient is k = 4.593 for the ratio of the width flange to the rib 
b2/b1 = 0.2. Accordingly, the optimum width of the flanges for the U-shaped profile in terms 
of local stability is b2 = 0.2b1 (b1 is the width of the rib). The wavelength of buckling for U-
shaped profiles is characterized by higher values of b2/b1 (relative to the RHS) as a 
consequence of the free edge of the flanges. Plate 1 of the U-shaped cross section refers to the 
rib profile (Fig. 1). The two main parameters of local stability include the buckling coefficient 
k and the wavelength ε. Minimum values of the parameters k and ε that satisfy (18) for the 
RHS and (20) for the U-shaped profiles are authoritative for the analysis of local stability.  

 
Fig. 4  Interaction between local and global buckling for square hollow section (SHS) 

The interactive behaviour of local and global buckling of a thin-walled cross-section of a 
squared shape is shown in Fig. 4. The key geometrical sizes which lead to the interaction of 
local and global buckling refer to the parameters of t/b and L/b. Plate thickness t is 
characterized by local and global buckling, whereas the column length L has only influence 
on global buckling. The dimension of the cross section b is also a geometric parameter that 
has an influence on both models of buckling. By reducing the slenderness of the plate 
elements t/b and increasing the slenderness of the column L/b, the critical stress of buckling 
σcr moves from the area of local buckling towards the zone of global buckling (Fig. 4). The 
verification of the presented models was performed in accordance with EN 1993-1 [10] and 
experimental data [1]. A comparative analysis of the results for three columns of different 
lengths with square hollow sections (SHSs) is given in Table 3. The theoretical models show 
consistency with experimental data, while EN 1993-1 has a more conservative approach.  

Table 3  Comparative analysis and verification of results 

Case 
Length 
[mm]  

Slenderness Coefficients Maximum critical force Fcr [kN] Deviation 
Exp/Th [%]local global t/b L/b EN 1993-1 Experimental Theory 

1 2200 0.85 0.35 0.22    8.50 1891 2139 2204 2.95 
2 3700 0.85 0.55 0.22 14.25 1803 2065 2204 6.30 
3 4900 0.85 0.72 0.22 18.85 1721 2144 2204 2.72 
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4. Conclusion 
This study includes an identification of influential parameters of columns with an open 

and a closed cross section (RHS and U-shaped cross section) with respect to the interaction of 
local and global buckling. So, models of global and local stability have been created which 
allow an analytical solution to be used for defining the critical elastic buckling stress. The 
model of local buckling is created under conditions that take mutual interaction of all 
individual elements of the cross section into account. The model of global buckling allows a 
critical buckling force to be defined by means of parameters pN, μ and ψ, taking the loss of 
stability and reduction of the effective zone of the cross section into account. The two 
dominant parameters that affect the occurrence of local and global stability of columns are 
related to the characteristics of the plate slenderness t/b and the column slenderness L/b. It has 
been shown that the reduction in the wall thickness t, for example by 35% whose slenderness 
t/b = 0.02, leads to a progressive decrease in the critical local buckling stress by 100%. The 
limit slenderness of the square hollows cross section (SHS) is t/b = 0.02, while the critical 
buckling load has a constant value of up to L/b < 30. The critical buckling load decreases by 
reducing t/b. At the same time the application of the cross section with an expressed 
occurrence of local buckling affects the increase of the global instability of the column. 
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