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Abstract. In this paper, a feasible primal-dual path-following interior-point algorithm for monotone
semidefinite linear complementarity problems is proposed. At each iteration, the algorithm uses only
full Nesterov-Todd feasible steps for tracing approximately the central-path and getting an approxi-
mated solution of this problem. Under a new appropriate choices of the threshold τ which defines the
size of the neighborhood of the central-path and of the update barrier parameter θ, we show that the
algorithm is well-defined and enjoys the locally quadratically convergence. Moreover, we prove that
the short-step algorithm deserves the best known iteration bound, namely, O(
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n log n

ε
). Finally, some

numerical results are reported to show the practical performance of the algorithm.
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1. Introduction

Let Sn denotes the linear space of all n × n real symmetric matrices and Sn+ ⊂ Sn be the
closed convex cone of symmetric positive semidefinite matrices. Given a linear transformation
L : Sn → Sn and a symmetric matrix Q ∈ Sn, the semidefinite linear complementarity problem
(SDLCP), is the problem of finding a pair of matrices (X,Y ) ∈ Sn × Sn such that

X,Y ∈ Sn+, Y = L(X) +Q, X • Y = 0, (1)

where X • Y denotes the trace of the matrix product XY .
The SDLCPs is an important class of mathematical programming which finds many applica-

tions in control theory, linear and bilinear inequalities and other optimization related problems.
It includes also as a special, the geometric SDLCP [13], the standard linear complementarity
problem (LCP) [5], the primal-dual pair of linear (LO), convex quadratic (CQO) and semidef-
inite optimization (SDO). In references [4, 9], the reader will find the state of art of SDLCPs
and its applications.

There are many approaches for solving the class of monotone SDLCP. Among them primal-
dual path-following interior-point methods (IPMs) gained much more attention than others.
Their derived algorithms enjoy polynomial complexity and they are highly efficient in prac-
tice [17]. Thus motivates researchers to extend it to other convex optimization problems and
mathematical programming such as CQO, SDO, convex quadratic semidefinite optimization
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(CQSDO), LCP, SDLCP and so on. For an overview of these methods, we refer to the refer-
ences [1, 3, 4, 5, 11, 12, 14, 15, 17, 18].

For instance, there is a considerable variant of primal-dual IPMs for solving SDLCPs. Ko-
jima et al. [13], first proved the existence and the uniqueness of the central-path of SDLCP
and then presented an interior-point method to solve it. Their search directions is based on
Nesterov-Todd scheme. Also Tseng [17], proposed an infeasible interior-point method for solv-
ing this problem. Later on, Achache and Boudiaf [2], study the complexity of a damped Newton
Nesterov-Todd step primal-dual IPMs for SDLCPs. They proved its complexity for large and
short-step methods. Besides, Wang and Bai [18], suggested a short-step primal-dual interior-
point algorithm for solving the SDO problems. Their search directions is based on the technique
of an algebraically equivalent transformation applied to the nonlinear equations from the sys-
tem of equations which defines the central-path. They also computed its complexity. Their
work is an extension of Darvay’s work for LO [7]. Chen [6], presented a primal-dual IPMs for
geometric SDLCP. His search directions is based on the M-Z family. He also proved its poly-
nomial convergence. Recently, Achache and Guerra [2], designed a feasible short full-Nesterov
step algorithm for solving CQSDOs. They proved that the iteration bound is O(

√
n log n

ε ).
Their analysis was inspired from the work of De Kelerk [8], for SDO. Furthermore, Kheirfam
and Haghighi [12], presented a full-Newton step feasible IPMs for solving the P∗(κ)-LCP linear
complementarity problem based on a new search direction. They derive the iteration bound
for their algorithm, which coincides with the best-known iteration bound for these types of
algorithms. Very recently, Mansouri et al. [15], proposed a feasible IPMs for solving SDLCPs
based on a classical kernel function and the Nesterov-Todd search directions. They proved that
their short-step algorithm will terminates after at most O(

√
n log n

ε ) iterations.
The majority of the above mentioned short-step primal-dual path-following IPMs are based

on tracing approximately the central-path by restricting the given strictly feasible iterates in a
neighborhood of it and decreasing the duality gap to zero for reaching an optimal solution for
this problem using defaults of the threshold τ which defines the size of this neighborhood and
of the update barrier parameter θ. These defaults play an important role in the analysis and
the practical performance of these algorithms.

In this paper, our motivation is to offer on one hand new defaults for these parameters
and on the other hand we elaborate across this latter a feasible primal-dual path-following
short-step interior-point algorithm for solving (1). We show under these new defaults that the
algorithm is well-defined and enjoys the locally quadratically convergence. Moreover, we prove
that the short-step algorithm deserves the best known iteration bound, namely, O(

√
n log n

ε ).
This iteration bound is as good as the bound for LO [7, 16], CQO [1], SDO [8, 18] , CQSDO
[2], P∗(κ)-LCP [12] if κ = 0, and SDLCP [15], cases. Here, we reconsider the analysis used in
[2] and [8] and we make it suited for our case. Finally, some numerical results on two problems
constructed by Lyapunov and two-sided linear transformations show that the new proposed
defaults are well promising and perform well enough in practice in comparison with some other
existing defaults in the literature.

The rest of the paper is built as follows. In section 2, the generic full-Newton step feasible
IPMs for SDLCP is presented. In section 3, detailed proofs of the complexity of the proposed
algorithm are given. Section 4, provides some numerical results while some conclusions and
remarks are drawn in section 5.

The following notations are used throughout the paper. Rn denotes the n-dimensional
euclidean space. The set of all n × n squared matrices is denoted by Rn×n. The trace of a
matrix A = (aij) is denoted by Tr(A) and is defined by Tr(A) =

∑n
i=1 aii. The Frobenius and

the spectral norms of a matrix A in Rn×n are defined by ‖A‖F =
√
A •A =

√
Tr(AAT ) and

‖A‖, respectively. If X ∈ Sn is positive semidefinite (definite), we write X � 0(X � 0). For
any squared matrix V , detV denotes its determinant, meanwhile, λmin(V ) and λmax(V ) denote,
respectively, its smallest and its largest eigenvalue. The symmetric positive definite square root
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of any matrix X � 0 is denoted by X1/2. The notation A ∼ B ⇔ A = PBP−1 means that
A is similar to B. If f(x) ≥ 0, is a real valued function of a real nonnegative variable, then
f(x) = O(x) means that f(x) ≤ cx for some constant c. Finally, the identity matrix of order n
and the vector of ones are denoted by I and e, respectively.

2. A full Nesterov-Todd step feasible IPM

In this section, we first recall the notion of the central-path for SDLCP. Then we derive
the Nesterov-Todd search directions for SDLCP. Finally, the generic full-Newton step feasi-
ble interior-point algorithm based on the Nesterov-Todd search directions is presented.

2.1. The central-path for SDLCP

Throughout the paper, we assume that the SDLCP (1) satisfies the following conditions.

• Interior-Point-Condition (IPC). There exists a pair of matrices (X0, Y 0) such that:

Y 0 − L(X0) = Q, X0 � 0, Y 0 � 0.

• Monotonicity. The symmetric linear transformation L satisfies:

L(X) •X ≥ 0, ∀X ∈ Sn.

Since for X,Y ∈ Sn+, we have X • Y = 0 if and only if XY = 0. Then, finding a solution of (1)
is equivalent to solving the following system:{

Y − L(X) = Q,
XY = 0, X, Y � 0.

(2)

The basic idea of primal-dual IPMs is to replace the second equation in (2) by the parameterized
equation XY = µI, µ > 0. Hence, the system (2) becomes{

Y − L(X) = Q,
XY = µI, X, Y � 0.

(3)

If IPC holds then for each µ > 0, system (3) has a unique solution (X(µ), Y (µ)) which is called
the µ−centers of SDLCP. The set of the µ−centers gives a homotopy path which is called
the central-path of SDLCP. If µ 7→ 0, then the limit of the central-path exists, and since the
limit points satisfy the complementarity condition i.e., XY = 0, the limit yields a solution for
SDLCP. Detailed proofs of the existence and uniqueness of the central-path can be found in
Kojima et al., [13].

2.2. The Nesterov-Todd search directions

Applying Newton’s method to system (3), we get the following system{
∆Y = L(∆X)
∆XY +X∆Y = µI −XY, (4)

or equivalently {
∆Y = L(∆X)
∆X +X∆Y Y −1 = µY −1 −X. (5)
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Clearly, ∆X is not symmetric due to the matrix X∆Y Y −1. Therefore, a way to symmetrizing
the second equation in (5) is to introduce an invertible matrix P and to replace it by the
equation ∆X + P∆Y PT = µY −1 − X, such that the resulting new system has a unique
symmetric solution. Thus, we obtain{

∆Y = L(∆X)
∆X + P∆Y PT = µY −1 −X. (6)

In this paper, we consider the symmetrization scheme of Nesterov-Todd [14]. So we use

P = X1/2(X1/2Y X1/2)−1/2X
1
2 = Y −1/2(Y 1/2XY 1/2)1/2Y −1/2.

To simplify the matters, we define D = P 1/2. The symmetric matrix D can be used to rescale
X and Y to the same matrix V [8], defined by

V :=
1
√
µ
D−1XD−1 =

1
√
µ
DY D. (7)

Due to (7), it easy to see that V 2 = 1
µD
−1XYD, i.e., V 2 ∼ 1

µXY . Moreover, let us further
define the following notations

DX =
1
√
µ
D−1∆XD−1, DY =

1
√
µ
D∆Y D. (8)

Again due to (7) and (8), system (6) can be rewritten as follows:{
L(DX) = DY

DX +DY = PV ,
(9)

where L(DX) = DL(DDXD)D and

PV = V −1 − V.

Because L is monotone, then by considering the first equation in (6), and due (8), the scaled
directions satisfy the non-orthogonality property since

DX •DY =
1

µ
∆X •∆Y =

1

µ
∆X • L(∆X) ≥ 0.

Note that for SDO case DX • DY = 0. It is the only difference between SDO problem and
SDLCP problem. Thus makes the analysis different.
The search direction DX and DY are obtained by solving (9) so that ∆X and ∆Y are computed
via (8). Then the new iterate is obtained by taking a full NT-step as follows:

X+ := X + ∆X, Y+ := Y + ∆Y.

For the analysis of the algorithm, we define a norm-based proximity measure as follows:

δ(X,Y ;µ) := δ(V ) =
1

2
‖PV ‖F . (10)

Clearly,
δ(V ) = 0⇔ V = I ⇔ XY = µI.

Hence, the value of δ(V ) can be considered as a measure for the distance between the matrix
pair of matrices (X,Y ) and the corresponding µ-center (X(µ), Y (µ)).
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2.3. The generic interior-point algorithm

In this subsection, the general outline of the generic interior-point primal-dual algorithm for
SDLCP is described as follows. First, we use a suitable threshold (default) value τ > 0, with
0 < τ < 1 and we suppose that a strictly feasible initial point (X0, Y 0) exists such that
δ(X0, Y 0;µ0) ≤ τ, for certain µ0 is known. Using the obtained search directions (∆X,∆Y ) and
taking a full-Newton step, the algorithm produces a new iterate (X+, Y+) = (X+∆X, Y +∆Y ).
Then, it updates the barrier parameter µ to (1 − θ)µ with 0 < θ < 1 and solve the Newton
system and then target a new µ-center and so on. This procedure is repeated until the stopping
criterion nµ ≤ ε is satisfied for a given accuracy parameter ε. The details of our generic full
NT-step feasible interior-point algorithm for SDLCP is now presented in Fig.1. as follows.

Primal-dual path-following interior-point algorithm for SDLCP
Input:
A threshold parameter 0 < τ < 1 (default τ = 2√

10
);

an accuracy parameter ε > 0;
a fixed barrier update parameter 0 < θ < 1 (default θ = ( 6

23n )1/2);
a strictly feasible point (X0, Y 0) and µ0 = 1

2 s.t. δ(X0, Y 0;µ0) ≤ τ ;
begin
X := X0; Y := Y 0; µ := µ0;
While nµ ≥ ε do
Solve system (9) and use (8) to obtain (∆X,∆Y );
Update X := X + ∆X; Y := Y + ∆Y ;
µ := (1− θ)µ;

end while
end.

Figure 1: Algorithm 2.3

3. Complexity analysis

In this section we will show that Algorithm 2.3 can solve the SDLCPs in polynomial-time.

3.1. Feasibility and locally quadratically convergence of the feasible
NT-step

In this subsection, we first investigate the strict feasibility of the full NT-step. Then, we mainly
prove the locally quadratically convergent of full NT-step to the target point (X(µ), Y (µ)).
For the analysis of the algorithm, we consider the n× n real symmetric matrix DXY given by

DXY :=
1

2
[DXDY +DYDX ].

We recall some useful lemmas in [2, 8], which will be used in the proof of Lemma 5.
Let 0 ≤ α ≤ 1, we define

X(α) := X + α∆X, Y (α) := Y + α∆Y.

Lemma 1 (Lemma 6.1 in [8]). Suppose that X � 0 and Y � 0. If

det(X(α)Y (α)) > 0,∀ 0 ≤ α ≤ α,

then X(α) � 0 and Y (α) � 0.
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Lemma 2 (Lemma A.1 in [8]). Let Q � 0, and let M ∈ Rn×n be skew-symmetric. One has
det(Q + M) > 0 if Q � 0. Moreover, if λi(Q + M) ∈ R for i = 1, . . . , n, then 0 < λmin(Q) ≤
λmin(Q+M) ≤ λmax(Q+M) ≤ λmax(Q), which implies (Q+M) � 0.

Lemma 3 (Lemma 3.3 in [2]). Let δ := δ(X,Y ;µ) and (DX , DY ) be a solution of (9) with
µ > 0. Then

0 ≤ Dx •DY ≤ 2δ2. (11)

In addition, the spectral norm of DXY satisfies

‖DXY ‖ ≤
1

4
‖PV ‖2F = δ2. (12)

Lemma 4 (Lemma 6.3.2 in [8]). One has ‖DXY ‖2F ≤ 1
8‖PV ‖

4
F .

Also we briefly recall some known facts from linear algebra for the trace of an invertible
square matrix and its eigenvalues which will be used later.

Property 1. Let A, B ∈ Rn×n, then

1. Tr(A+B) = Tr(A) + Tr(B);

2. Tr(βA) = βTr(A);

3. Tr(A) = Tr(AT );

4. Tr(A) = Tr(B) if A ∼ B;

5. Tr(AB) = Tr(BA);

6. Tr(A) = 0 if A = −AT , i.e., A skew-symmetric;

7. λmax(A2) = (λmax(A))2;

8. λmax(A−1) = 1
λmin(A) .

The next lemma gives a sufficient condition for strict feasibility of the full NT-step under
the condition δ < 1.

Lemma 5. Let δ < 1, then the full NT-step is strictly feasible.

Proof. By applying (7) and (8), we have

X(α)Y (α) = XY + α(∆XY +X∆Y ) + α2∆X∆Y

= µD[V 2 + α(DXV + V DY ) + α2DXDY ]D−1

∼ µ[V 2 + α(DXV + V DY ) + α2DXDY ]. (13)

Defining now the two matrices M(α) and B(α) as follows:

M(α) = µ

[
1

2
α(DXV + V DY − V DX −DY V ) +

α2

2
(DXDY −DYDX)

]
B(α) = µ

[
V 2 +

1

2
α(DXV + V DY + V DX +DY V ) + α2DXY

]
= µ

[
V 2 +

1

2
α((DX +DY )V + V (DY +DX)) + α2DXY

]
= µ

[
(1− α)V 2 + α(I + αDXY )

]
. (14)
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According to (13), we have

X(α)Y (α) ∼ µ[V 2 + α(DXV + V DY ) + α2DXDY ] = M(α) +B(α). (15)

One can easily check that the matrix M(α) is skew-symmetric. Hence, Lemma 1 implies that
det(X(α)Y (α)) > 0, if the matrix B(α) � 0. Then, from Lemma 2, B(α) � 0 if α ≤ 1 and
‖DXY ‖ < 1. By Lemma 4, ‖DXY ‖ ≤ 1

4‖PV ‖
2
F = δ2 < 1. In addition, since X(0) � 0 and

Y (0) � 0, Lemma 1, implies that X(1) � 0 and Y (1) � 0. This completes the proof of the
lemma.

Finally, we may write

V 2
+ =

1

µ
D−1X+Y+D =

1

µ
D−1X(1)Y (1)D. (16)

This implies that
µV 2

+ ∼ X+Y+ ∼ X(1)Y (1).

Lemma 6. One has
λmin(V 2

+) ≥ 1− δ2.

Proof. In view of (14) and (15) in the proof of the Lemma 5, letting α = 1, we get

X+Y+ = X(1)Y (1) ∼ B(1) +M(1) ∼ µI + µDXY +M(1).

Due to (16), it follows that

V 2
+ ∼ I +DXY +

1

µ
M(1), (17)

and consequently we have,

λmin(V 2
+) = λmin(I +DXY +

1

µ
M(1)).

On the other hand, by Lemma 2, we derive

λmin(V 2
+) ≥ λmin(I +DXY ) ≥ 1− |λmin(DXY )| ≥ 1− |λmax(DXY )| = 1− ‖DXY ‖.

Lemma 3, (12) implies that

λmin(V 2
+) ≥

(
1− 1

4
‖PV ‖2F

)
≥ 1− δ2.

This completes the proof.

Lemma 7. If δ < 1. Then

δ+ := δ(X+, Y+;µ) ≤ δ2√
2(1− δ2)

.

Moreover, If δ ≤ 2√
10

, then δ+ ≤ δ2 which shows the quadratic convergence of Algorithm 2.3.

Proof. We have,

δ2(X+, Y+;µ) =
1

4

∥∥V −1+ − V+
∥∥2
F

=
1

4

∥∥V −1+ (I − V 2
+)
∥∥2
F
≤ 1

4
λ2max(V −1+ )

∥∥I − V 2
+

∥∥2
F
.
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Hence,

δ2(X+, Y+;µ) ≤ 1

4

1

λmin(V 2
+)

∥∥I − V 2
+

∥∥2
F
.

By Lemma 6, it follows that

δ2(X+, Y+;µ) ≤ 1

4(1− δ2)

∥∥I − V 2
+

∥∥2
F
.

Next task, is to show that ∥∥I − V 2
+

∥∥2
F
≤ ‖DXY ‖2F .

From (17), we deduce that

I − V 2
+ ∼ −DXY −

1

µ
M(1),

and so ∥∥I − V 2
+

∥∥
F

=

∥∥∥∥DXY +
1

µ
M(1)

∥∥∥∥
F

.

We have,

∥∥I − V 2
+

∥∥2
F

= Tr

((
DXY +

1

µ
M(1)

)2
)

= Tr

(
D2
XY +

1

µ2
M2(1)

)
+

2

µ
Tr(DXYM(1)).

Next, we show that
2

µ
Tr(DXYM(1)) = 0.

Since M is skew-symmetric and DXY is symmetric, we have,

Tr(DXYM(1)) = −Tr(DT
XYM

T (1)) = −Tr((M(1)DXY )T )

= −Tr(M(1)DXY ) = −Tr(DXYM(1)).

This implies that

Tr(DXYM(1)) = 0.

Hence, we get

∥∥I − V 2
+

∥∥2
F

= Tr(D2
XY −

1

µ2
M(1)M(1)T )

= ‖DXY ‖2F −
1

µ2
‖M(1)‖2F ≤ ‖DXY ‖2F .

Finally, it follows that ‖I − V+‖F ≤ ‖DXY ‖. By Lemma 4, the result followed. This completes
the proof.

The next lemma gives the effect of the full NT-step on duality gap.

Lemma 8. Let δ ≤ 2√
10

. After a full NT-step one has X+ • Y+ ≤ 2µn.



A full Nesterov-Todd step primal-dual path-following IP algorithm for SDLCPs 45

Proof. Due to (16), V 2
+ ∼ 1

µX+Y+ and the fact that Tr(M(1)) = 0, and using (17) we obtain

X+ • Y+ = µTr(V 2
+) = µTr(I +DXY +M(1))

= µTr(I +DXY ) = µ(n+ Tr(DXY ))

= µ(n+ Tr(DXDY )) = µ(n+DX •DY ).

Now due to (11), it follows

X+ • Y+ ≤ µ(n+ 2δ2).

Let δ ≤ 2√
10

, then

X+ • Y+ ≤ µ
(
n+

4

5

)
. (18)

Because (n+ 4
5 ) ≤ 2n for all n ≥ 1, the result followed. This completes the proof.

3.2. Updating the barrier parameter

In the following subsection, we investigate the effect on the proximity measure of a full NT-step
by an update of the parameter µ.

Lemma 9. If δ ≤ 2√
10

and µ+ = (1− θ)µ, where 0 ≤ θ ≤ 1, then

δ2(X+, Y+;µ+) ≤ 2

15
+

θ2

4(1− θ)

(
n+

4

5

)
+

4θ

15
.

Moreover, if δ ≤ 2√
10

, θ = ( 6
23n )1/2 and n ≥ 2, then δ(X+, Y+;µ+) ≤ 2√

10
.

Proof. We have,

4δ2(X+, Y+;µ+) =

∥∥∥∥∥√(1− θ)V −1+ − V+√
(1− θ)

∥∥∥∥∥
2

F

=

∥∥∥∥∥√1− θ
(
V −1+ − V+

)
− θ√

(1− θ)
V+

∥∥∥∥∥
2

F

= (1− θ)
∥∥V −1+ − V+

∥∥2
F

+
θ2

1− θ
‖V+‖2F − 2θTr((V −1+ − V+)V+)

= (1− θ)
∥∥V −1+ − V+

∥∥2
F

+
θ2

1− θ
‖V+‖2F − 2θTr(I − V 2

+)

= 4(1− θ)δ2+ +
θ2

1− θ
‖V+‖2F − 2θn+ 2θ‖V+‖2F .

Let V 2
+ = 1

µD
−1X+Y+D and due to (18) in the proof of Lemma 8, we have

‖V+‖2F = Tr(V 2
+) =

1

µ
X+ • Y+ ≤

(
n+

4

5

)
.

Hence, after some elementary reductions, we obtain

δ2(X+, Y+;µ+) ≤ (1− θ)δ2+ +
θ2

4(1− θ)

(
n+

4

5

)
+

2θ

5
.
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By Lemma 7, δ+ ≤ δ2√
2(1−δ2)

and if δ ≤ 2√
10

, then we get

δ2(X+, Y+;µ+) ≤ 2

15
+

θ2

4(1− θ)

(
n+

4

5

)
+

4θ

15
.

Let θ = ( 6
23n )1/2 then θ2 = 6

23n , and we have,

δ2(X+, Y+;µ+) ≤ 2

15
+

6
23n (n+ 4

5 )

4(1− θ)
+

4θ

15
.

Because
6(n+ 4

5 )

23n ≤ 42
115 for alln ≥ 2, this implies that,

δ2(X+, Y+;µ+) ≤ f(θ) =
2

15
+

21

230(1− θ)
+

4θ

15
.

Also for n ≥ 2, then 0 ≤ θ ≤ ( 3
23 )1/2. Since

f ′(θ) =
21

230 (1− θ)2
+

4

15
> 0, for all 0 < θ <

(
3

23

)1/2

,

then f(θ) is continuous and monotonic increasing function on
[
0, ( 3

23 )1/2
]
, so

f(θ) ≤ f

((
3

23

)1/2
)

= 0.3725 <
4

10
.

Hence δ(X+, Y+;µ+) ≤ 2√
10

. This completes the proof.

Lemma 9, indicates that for the defaults τ = 2√
10

and θ = ( 6
23n )1/2, the Algorithm 2.3, is

well-defined since the conditions X+ � 0, Y+ � 0 and δ(X+, Y+;µ+) ≤ 2√
10

are maintained

during the solution process.

3.3. Iteration bound

We conclude this section with a theorem that gives us the iteration bound of Algorithm 2.3.
Before doing this we apply the results obtained in the previous subsections and get the following
lemma.

Lemma 10. Assume that X0 and Y 0 are strictly feasible starting point for SDLCP (1) such
that δ(X0, Y 0;µ0) ≤ 2√

10
for certain µ0 > 0. Moreover, let Xk and Y k be the iterate produced

by Algorithm 2.3, after k iterations. Then, the inequality Xk • Y k ≤ ε is satisfied for

k ≥ 1

θ
log

(
2nµ0

ε

)
.

Proof. After k iterations, Lemma 8 implies that

Xk • Y k ≤ 2nµk = 2n(1− θ)kµ0.

Then Xk • Y k ≤ ε holds if 2n(1− θ)kµ0 ≤ ε. Taking logarithm, we arrive at the relation

k log(1− θ) ≤ log ε− log(2nµ0).

Using − log(1− θ) ≥ θ, for 0 ≤ θ ≤ 1, then, we deduce that the above inequality holds if

kθ ≥ log 2nµ0 − log ε = log

(
2nµ0

ε

)
.

This implies the lemma.
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Theorem 1. Let θ = ( 6
23n )1/2 and τ = 2√

10
with µ0 = 1

2 . Then, Algorithm 2.3 requires at most

O
(√

n log
n

ε

)
iterations for getting an ε-approximate solution of SDLCP.

4. Numerical results

In this section, we shall test Algorithm 2.3 on two monotone SDLCPs to validate its efficiency.
To achieve this, we provide a feasible starting point (X0, Y 0) such that IPC and δ(X0, Y 0;µ0) ≤
2√
10

are satisfied. We have implemented Algoritm 2.3 in MATLAB and run on Pentium 4. In

the implementation, we use ε = 10−6, θ = ( 6
23n )1/2 and τ = 2√

10
. Also we make change in the

theoretical barrier parameter µ0 > 0 where some relaxed barrier values are suggested in order to
reduce the number of iterations produced by the algorithm. The number of iterations and the
time produced by Algorithm 2.3, are denoted by ”Iter ” and ”CPU”, respectively. We note here
that the first example of monotone SDLCP is reformulated from the symmetric semidefinite
constrained least squares (SDLS) problem [14]. However, the second example is defined by the
double sided multiplicative linear transformation. Finally, we compare our obtained numerical

results with those obtained by using the classical defaults θ =
1

2
√
n

and τ = 1
2 .

Problem 1.
The symmetric semidefinite constrained least squares problem (SDLS) is defined as the following
convex optimization problem:

min
X

1

2
‖AX −B‖2F s.t. X � 0,

where A,B are given matrices in Rm×n with m ≥ n. It is shown that if rank (A) = n, then
SDLS has a unique solution X∗ � 0 [14]. Therefore, the necessary and sufficient optimality
conditions for SDLS are equivalent to the following monotone SDLCP where L(X) and Q are
given by:

L(X) =
1

2
(ATAX +XATA) and Q = −1

2
(ATB +BTA). (19)

Here L(X) is named as the Lyapunov linear transformation and it is easy to check that L(X)
is symmetric and strictly monotone for all X in Sn [9]. For example, for m = 6 and n = 5, the
matrices A and B of the SDLS are given by:

A =


6 −1 0 0 0
−0.1 6 −1 0 0

0 −0.1 6 −1 0
0 0 −0.1 6 −1
0 0 0 −0.1 6
0 0 0 0 −0.1

 ,

B =


1 0 0 0 0
−0.4 1 0 0 0
−0.4 −0.4 1 0 0
−0.4 0 −0.4 1 0
−0.4 0 0 −0.4 1
−0.4 0 0 0 −0.4

 .

The unique optimal solution X∗ ∈ S5+ is given by:
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X∗ =


0.1639 −0.0215 −0.0342 −0.0328 −0.0300
−0.0215 0.1553 −0.0227 −0.0019 −0.0027
−0.0342 −0.0227 0.1558 −0.0194 0.0014
−0.0328 −0.0019 −0.0194 0.1564 −0.0189
−0.0300 −0.0027 0.0014 −0.0189 0.1598

.

The numerical results obtained by the application of Algorithm 2.3, to the corresponding
SDLCP in (19), with the strictly feasible initial starting point X0 � 0 is given by:

X0 = Diag (0.2369, . . . , 0.2369)

are summarized in table 1.

θ�µ 0.5 0.05 0.005 0.0005
Iter CPU Iter CPU Iter CPU Iter CPU(

6
23

)1/2
51 0.039 42 0. 0235 33 0.0230 24 0.0206

1
2
√
n

55 0.036 45 0.0323 34 0.0321 25 0.0291

Table 1: Numerical results for Problem 1.

Problem 2.
The data of the monotone SDLCP is given by:

L(X) = AXAT +Q, (20)

where

A =


17.25 −1.75 −1.75 −1.75 −1.75
−1.75 16.25 −2 0 0
−1.75 −2 16.25 −2 0
−1.75 0 −2 16.25 −2
−1.75 0 0 −2 16.25

 ,

and

Q =


−9.25 1.25 1.25 1.25 1.25
1.25 −8.25 1.5 0 0
1.25 1.5 −8.25 1.5 0
1.25 0 1.5 −8.25 1.5
1.25 0 0 1.5 −8.25

 .

Note here since the matrix A is positive definite, it has shown [10], that the symmetric double
sided multiplicative linear transformation is strictly monotone and so the corresponding SDLCP
in (20), has a unique solution for all symmetric Q. The unique solution X∗ ∈ S5+ of the proposed
example is given by:

X∗ =


0.0313 0.0020 0.0020 0.0020 0.0020
0.0020 0.0313 0.0019 0 0
0.0020 0.0019 0.0312 0.0019 0
0.0020 0 0.0019 0.0312 0.0019
0.0020 0 0 0.0019 0.0313

.

The numerical results obtained by Algorithm 2.3, for this problem with the strictly feasible
initial starting point X0 � 0 is given by:

X0 = Diag (0.0620, . . . , 0.0620),
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are summarized in table 2.

θ�µ 0.5 0.05 0.005 0.0005
Iter CPU Iter CPU Iter CPU Iter CPU(

6
23

)1/2
51 0.0184 42 0. 0213 33 0.0182 24 0.0163

1
2
√
n

53 0.0186 43 0.0227 35 0.0235 25 0.0202

Table 2: Numerical results for Problem 2.

It can be observed from Tables 1 and 2 that the numbers of iteration and the time produced by
our algorithm with these new defaults are better than those obtained by the most used defaults.

5. Conclusion and future works

In this paper, we have extended a primal-dual path-following interior-point algorithm for SDO
and CQSDO to monotone SDLCPs. The corresponding algorithm is based only on full Nesterov-
Todd step and on new defaults. We derived the currently best known iteration bound for the
algorithm with short-step method, namely, O(

√
n log n

ε ) which is the same as in the LO, SDO
and CQSDO cases. The practical performance of the algorithm is demonstrated by its success
to solve some monotone SDLCPs linked to some well-known linear transformations such as Lya-
punov and two-sided. Further research might extend the algorithm to linear complementarity
problems over symmetric cones.
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semi-défini. Revue d’Analyse Numérique et de Théorie de l’Approximation, 38 (2), 115-129.

[5] Achache, M. (2010). Complexity analysis and numerical implementation of a short-step primal-
dual algorithm for linear complementarity problems. Applied Mathematics and Computation, 216
(7), 1889-1895.

[6] Chen, F. (2011). Polynomial convergence of primal-dual algorithms for SDLCP based on the M-Z
family of directions. Applied Mathematical Sciences, 5 (39), 1903-1907.

[7] Darvay, Zs. (2003). New interior-point algorithms for linear optimization. Advanced Modeling
Optimization, 5 (1), 51-92.

[8] De Klerk, E. (1997). Interior point methods for semidefinite programming. Master of Science in
the Faculty of Engineering. University of Pretoria.

[9] Gowda, M. S. and Song, Y. (2000). On semidefinite linear complementarity problem. Mathematical
Programming, Series A, 88, 575-587.

[10] Gowda M. S., Song, Y. and Ravindran, G. (2003). On some interconnections between strict
monotonicity, globally uniquely solvable, and P properties in semidefinite linear complementarity
problems. Linear Algebras and its Applications, 370, 355-368.

[11] Kheirfam, B. (2013). A new infeasible interior-point algorithm with full Nesterov-Todd step for
semidefinite Optimization. Iranian Journal of Operations Research, 4(1), 88-107.

[12] Kheirfam, B. and Haghighi, M. (2016). A full-Newton step feasible interior-point algorithm for
P∗(κ)-LCP based on a new search direction. Croatian Operational Research Review, 7, 277-290.



50 Mohamed Achache and Nesrine Tabchouche

[13] Kojima, M., Shindoh, M. and Hara, S. (1997). Interior-point methods for the monotone semidefi-
nite linear complementarity in symmetric matrices. SIAM J. Optimization, 7, 86-125.

[14] Krislock, N. G. B. (2003). Numerical solution of semidefinite constrained least squares problems.
Master of Science. The university of British Colombia, Canada.

[15] Mansouri, H., Zangiabadi, M. and Pirhaji, M. (2016). A polynmial-time interior-point algorithm
for linear semidefinite complementarity problems. Mathematical Analysis and Optimization, 1(1),
37-45.

[16] Nesterov, Y. E. and Todd, M. J. (1997). Self-scaled barriers and interior-point methods for convex
programming. Mathematics of Operations Research, 22(1), 1-42.

[17] Roos, C., Terlaky, T. and Vial, Ph. J. (1997). Theory and Algorithms for linear optimization. An
Interior Point Approach. John Wiley and Sons, Chichester, UK.

[18] Tseng, P. (1998). Search directions and convergence analysis of some infeasible path-following
methods for the monotone semi-definite LCP. Journal of Optimization Methods and Software, 59,
245-268.

[19] Wang, G. Q. and Bai, Y. Q. (2009). A new primal-dual path-following interior point algorithm
for semidefinte optimization. Journal of Mathematical Analysis and Applications, 353, 339-349.


