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Abstract
Wellbore instability is one of the main problems that engineers meet 

during drilling. The causes of wellbore instability are often classified 
into either mechanical (for example, failure of the rock around the hole 
because of high stresses, low rock strength, or inappropriate drilling 
practice) or chemical effects which arise from damaging interaction 
between the rock, generally shale, and the drilling fluid. Often, field 
instances of instability are a result of a combination of both chemical 
and mechanical. This problem might cause serious complication in 
well and in some case can lead to expensive operational problems. The 
increasing demand for wellbore stability analyses during the planning 
stage of a field arise from economic considerations and the increasing 
use of deviated, extended reach and horizontal wells.

This paper presents causes, indicators and diagnosing of wellbore 
instability as well as the wellbore stresses model.

Sažetak
Nestabilnost kanala bušotine jedan je od glavnih problema s 

kojima se inženjeri susreću tijekom bušenja. Nestabilnost kanala može 
biti posljedica mehaničkih uzroka (naprimjer, lom stijene oko kanala 
zbog velikih naprezanja, mala čvrstoća stijene ili neodgovarajuća 
praksa bušenja) ili kemijskih uzroka (štetne reakcije između stijene, 
obično šejla i isplake). U praksi je nestabilnost kanala bušotine često 
posljedica zajedničkog djelovanja kemijskih i mehaničkih mehanizama. 
Ovaj problem može izazvati ozbiljne komplikacije u bušotini i u nekim 
slučajevima može dovesti do skupih operativnih problema. Povećana 
potreba za analizama nestabilnosti kanala bušotine tijekom faze 
planiranja polja proizlazi iz ekonomskih razmatranja i rastuće upotrebe 
otklonjenih, povećanog dosega i horizontalnih bušotina. 

U radu se prikazuju uzroci i pokazatelji nestabilnosti kanala bušotine, 
dijagnosticiranje problema  te naprezanja u stijeni pribušotinske zone.

 

Introduction

Unexpected or unknown behavior of rock is often the 
cause of drilling problems, resulting in an expensive loss 
of time, sometimes in a loss of part or even whole borehole. 
Borehole stability is a continuing problem which results in 
substantial yearly expenditures by the petroleum industry 
(Bradley, 1978, Awal et al., 2001). As result, a major 
concern of the drilling engineers is keeping the borehole 
wall from falling in or breaking down. Detailed attention 
is paid to drilling fluid programs, casing programs, and 
operating procedures in drilling a well to minimize these 
costly problems.

Wellbore instability has become an increasing concern 
for horizontal and extended reach wells, especially with 
the move towards completely open hole lateral section, 

and in some cases, open hole build-up section through 
shale cap rocks. More recent drilling innovations such 
as underbalanced drilling techniques, high pressure jet 
drilling, re-entry horizontal wells and multiple laterals 
from a single vertical or horizontal well often give rise 
to challenging wellbore stability question (Martins et al., 
1999; Kristiansen, 2004; Tan et al., 2004).  

In many cases the section of an optimal strategy to 
prevent or mitigate the risk of wellbore collapse might 
compromise one or more of the other elements in the 
overall well design, e.g., drilling rate of penetration, 
the risk of differential sticking, hole cleaning ability, or 
formation damage. For drilling situations it is therefore 
desirable to apply integrated predictive methods that can, 
for instance, help to optimize the mud density, chemistry, 
rheology, the selection of filter cake building additives, 
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Table 1 Causes of wellbore instability

Tablica 1. Uzroci nastabilnosti kanala bušotine

Causes of Wellbore Instability

Uncontrollable (Natural) Factors Controllable Factors
Naturally Fractured or Faulted Formations Bottom Hole Pressure (Mud Density)

Tectonically Stressed Formations Well Inclination and Azimuth
High In-situ Stresses Transient Pore Pressures
Mobile Formations Physico/chemical Rock-Fluid Interaction

Unconsolidated Formations Drill String Vibrations
Naturally Over-Pressured Shale Collapse Erosion
Induced Over-Pressured Shale Collapse Temperature

and possibly temperature. Sensitivity studies can also 
help assess if there is any additional risk due to the 
selected well trajectory and inclination. Wellbore stability 
predictive models may also be used to design appropriate 
completions for inflow problems where hole collapse and 
associated sand production, or even the complete loss of 
the well, may concerned. For example, in highly permeable 
and weakly cemented sandstones such predictive tools 
can be used to decide whether a slotted or perforated liner 
completion would be preferred over leaving a horizontal 
well completely open hole (McLellan at all,1994b).

Causes of wellbore instability

Wellbore instability is usually caused by a combination 
of factors which may be broadly classified as being either 
controllable or uncontrollable (natural) in origin. These 
factors are shown in Table 1 (McLellan et al., 1994a, 
Bowes and Procter , 1997; Chen et al., 1998; Mohiuddin 
et al., 2001).

Uncontrollable factors 

Naturally fractured or faulted formations

A natural fracture system in the rock can often be 
found near faults. Rock near faults can be broken into 
large or small pieces. If they are loose they can fall into 
the wellbore and jam the string in the hole (Nguyen 
et al., 2007). Even if the pieces are bonded together, 
impacts from the BHA due to drill string vibrations can 
cause the formation to fall into the wellbore. This type 
of sticking is particularly unusual in that stuck pipe can 
occur while drilling. Figure 1 shows possible problems 
as result drilling a naturally fractured or faulted system. 
This mechanism can occur in tectonically active zones, 
in prognosed fractured limestone, and as the formation is 
drilled. Drill string vibration have to be minimized to help 
stabilize these formations (Bowes and Procter, 1997).  

Hole collapse problems may become quite severe if 
weak bedding planes intersect a wellbore at unfavorable 
angles. Such fractures in shales may provide a pathway 
for mud or fluid invasion that can lead to time-depended 
strength degradation, softening and ultimately to hole 
collapse. The relationship between hole size and the 
fracture spacing will be important in such formations.

Figure 1 Drilling through naturally fractured or faulted formations

Slika 1. Bušenje kroz prirodno raspucane ili rasjedima ispresjecane 
formacije

 
Tectonically Stressed Formations

Wellbore instability is caused when highly stressed 
formations are drilled and if exists a significant difference 
between the near wellbore stress and the restraining 
pressure provided by the drilling fluid density. Tectonic 
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stresses build up in areas where rock is being compressed 
or stretched due movement of the earth´s crust. The rock 
in these areas is being buckled by the pressure of the 
moving tectonic plates.

When a hole is drilled in an area of high tectonic 
stresses the rock around the wellbore will collapse into 
the wellbore and produce splintery cavings similar to 
those produced by over-pressured shale (Figure 2). In 
the tectonic stress case the hydrostatic pressure required 
to stabilize the wellbore may be much higher than the 
fracture pressure of the other exposed formations (Bowes 
and Procter, 1997).  This mechanism usually occurs 
in or near mountainous regions. Planning to case off 
these formations as quickly as possible and maintaining 
adequate drilling fluid weight can help to stabilize these 
formations

Figure 2 Drilling through tectonically stressed formations

Slika 2. Bušenje kroz tektonski napregnute formacije

High in-situ stresses
 
Anomaliously height in-situ stresses, such as may be 

found in the vicinity of salt domes, near faults, or in the 
inner limbs of a folds may give rise to wellbore instability. 
Stress concentrations may also occur in particularly stiff 
rocks such as quartzose sandstones or conglomerates. 
Only a few case histories have been described in the 
literature for drilling problems caused by local stress 
concentrations, mainly because of the difficulty in 
measuring or estimating such in situ stresses.

Mobile formations

The mobile formation squeezes into the wellbore 
because it is being compressed by the overburden forces. 
Mobile formations behave in a plastic manner, deforming 
under pressure. The deformation results in a decrease in 
the wellbore size, causing problems of running BHA´s, 
logging tools and casing (Figure 3). A deformation 
occurs because the mud weight is not sufficient to prevent 

the formation squeezing into the wellbore (Bowes  and 
Procter, 1997). This mechanism normally occurs while 
drilling salt. An appropriate drilling fluid and maintaining 
sufficient drilling fluid weight are required to help stabilize 
these formations.  

Figure 3 Drilling through mobile formations

Slika 3. Bušenje kroz pokretljive formacije

Unconsolidated formations

An unconsolidated formation falls into the wellbore 
because it is loosely packed with little or no bonding 
between particles, pebbles or boulders. The collapse of 
formations is caused by removing the supporting rock as 
the well is drilled (Figure 4). It happens in a wellbore when 
little or no filter cake is present. The un-bonded formation 
(sand, gravel, etc.) cannot be supported by hydrostatic 
overbalance as the fluid simply flows into the formations. 
Sand or gravel then falls into the hole and packs off the 
drill string. The effect can be a gradual increase in drag 
over a number of meters, or can be sudden (Bowes  and 
Procter, 1997). This mechanism is normally associated 
with shallow formation. An adequate filter cake is required 
to help stabilize these formations.  

Figure 4 Drilling through unconsolidated formations

Slika 4. Bušenje kroz nekonsolidirane formacije
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Naturally Over-Pressured Shale Collapse

Naturally over-pressured shale is the one with a 
natural pore pressure greater than the normal hydrostatic 
pressure gradient. Naturally over-pressured shales are 
most commonly caused by geological phenomena such 
as under-compaction, naturally removed overburden 
and uplift (Figure 5). Using insufficient mud weight in 
these formations will cause the hole to become unstable 
and collapse (Bowes  and Procter, 1997; Tan et al., 
1997). This mechanism normally occurs in prognosed 
rapid depositional shale sequences. The short time hole 
exposure and an adequate drilling fluid weight can help to 
stabilize these formations.  

 

Figure 5 Drilling through a naturally over-pressured shale

Slika 5. Bušenje kroz šejl pod prirodnim nadtlakom

Induced Over-Pressured Shale Collapse

Induced over-pressured shale collapse occurs when 
the shale assumes the hydrostatic pressure of the wellbore 
fluids after a number of days exposures to that pressure. 
When this is followed by no increase or a reduction in 
hydrostatic pressure in the wellbore, the shale, which now 
has a higher internal pressure than the wellbore, collapses 
in a similar manner to naturally over-pressured shale 
(Figure 6) (Bowes  and Procter, 1997).  This mechanism 
normally occurs in water based drilling fluids, after a 
reduction in drilling fluid weight or after a long exposure 
time during which the drilling fluid was unchanged.

Figure 6 Drilling through induced over-pressured shale 

Slika 6. Bušenje kroz šejl pod izazvanim nadtlakom

Controllable factors

Bottom hole pressure (mud density)

Depending upon the application, either the bottom hole 
pressure, the mud density or the equivalent circulating 
density (ECD), is usually the most important determinant 
of whether an open wellbore is stable (Figures 7 and 
8) (Hawks and McLellan, 1997; Gaurina-Međimurec, 
1998). The supporting pressure offered by the static or 
dynamic fluid pressure during either drilling, stimulating, 
working over or producing of a well, will determine  the 
stress concentration present in the near wellbore vicinity. 
Because rock failure is dependent on the effective stress 
the consequence for stability is highly dependent on 
whether and how rapidly fluid pressure penetrate the 
wellbore wall. That is not to say however, that high mud 
densities or bottom hole pressures are always optimal for 
avoiding instability in a given well. In the absence of an 
efficient filter cake, such as in fractured formations, a rise 
in a bottom hole pressure may be detrimental to stability 
and can compromise other criteria, e.g., formation damage, 
differential sticking risk, mud properties, or hydraulics 
(Tan and Willoughby, 1993; McLellan, 1994a; Mohiuddin 
et al., 2001).
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Figure 7 Effect of mud weight on the stress in wellbore wall

Slika 7. Utjecaj gustoće isplake na naprezanja u kanalu bušotine

Well Inclination and Azimuth

Inclination and azimuthal orientation of a well with 
respect to the principal in-situ stresses can be an important 
factor affecting the risk of collapse and/or fracture 
breakdown occurring (Figure 8). This is particularly 
true for estimating the fracture breakdown pressure in 
tectonically stressed regions where there is strong stress 
anisotropy (McLellan, 1994a). 

Figure 8 Effect of the well depth (a) and the hole inclination (b) on 
wellbore stability

Slika 8. Utjecaj dubine (a) i otklona (b) na stabilnost kanala bušotine

Transient wellbore pressures

Transient wellbore pressures, such as swab and surge 
effects during drilling, may cause wellbore enlargement 
(Hawks and McLellan, 1997). Tensile spalling can occur 
when the wellbore pressure across an interval is rapidly 

reduced by the swabbing action of the drill string for 
instance. If the formation has a sufficiently low tensile 
strength or is pre-fractured, the imbalance between the 
pore pressures in the rock and the wellbore can literally 
pull loose rock off the wall. Surge pressures can also 
cause rapid pore pressures increases in the near-wellbore 
area sometimes causing an immediate loss in rock 
strength which may ultimately lead to collapse. Other 
pore pressure penetration-related phenomena may help to 
initially stabilize wellbores, e.g. filter cake efficiency in 
permeable formations, capillary threshold pressures for 
oil-based muds and transient pore pressure penetration 
effects (McLellan, 1994a).

Physical/chemical fluid-rock interaction

There are many physical/chemical fluid-rock 
interaction phenomena which modify the near-wellbore 
rock strength or stress. These include hydration, osmotic 
pressures, swelling, rock softening and strength changes, 
and dispersion. The significance of these effects depend 
on a complex interaction of many factors including the 
nature of the formation (mineralogy, stiffness, strength, 
pore water composition, stress history, temperature), the 
presence of a filter cake or permeability barrier is present, 
the properties and chemical composition of the wellbore 
fluid, and the extent of any damage near the wellbore 
(McLellan, 1994a).

Drillstring vibrations (during drilling)

Drillstring vibrations can enlarge holes in some 
circumstances. Optimal bottomhole assembly (BHA) 
design with respect to the hole geometry, inclination, 
and formations to be drilled can sometimes eliminate this 
potential contribution to wellbore collapse. Some authors 
claim that hole erosion may be caused due to a too high 
annular circulating velocity. This may be most significant 
in a yielded formation, a naturally fractured formation, 
or an unconsolidated or soft, dispersive sediment. The 
problem may be difficult to diagnose and fix in an inclined 
or horizontal well where high circulating rates are often 
desirable to ensure adequate hole cleaning (McLellan, 
1994a).

Drilling fluid temperature

Drilling fluid temperatures, and to some extent, 
bottomhole producing temperatures can give rise to 
thermal concentration or expansion stresses which may 
be detrimental to wellbore stability. The reduced mud 
temperature causes a reduction in the near-wellbore stress 
concentration, thus preventing the stresses in the rock 
from reaching their limiting strength (McLellan, 1994a).
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Indicators of wellbore instability

A list of the indicators of wellbore instability which 
are primarily caused by wellbore collapse or convergence 
during the drilling, completion or production of a well is 
shown in Table 2. They are classified in two groups: direct 
and indirect causes. Direct symptoms of instability include 
observations of overgauge or undergauge hole, as readily 
observed from caliper logs (Mohiuddin et al., 2001). 
Caving from the wellbore wall, circulated to surface, and 

Table 2 Indicators of wellbore instability

Tablica 2. Pokazatelji nestabilnosti kanala bušotine

Indicators of wellbore instability

Direct indicators Indirect indicators
Oversize hole High torque and drag (friction)

Undergauge hole Hanging up of drillstring, casing, or coiled tubing
Excessive volume of cuttings Increased circulating pressures
Excessive volume of cavings Stuck pipe

Cavings at surface Excessive drillstring vibrations
Hole fill after tripping Drillstring failure

Excess cement volume required Deviation control problems
Inability to run logs

Poor logging response
Annular gas leakage due to poor cement job

Keyhole seating
Excessive doglegs

hole fill after tripping confirm that spalling processes are 
occurring in the wellbore. Large volumes of cuttings and/
or cavings, in excess of the volume of rock which would 
have been excavated in a gauge hole, similarly attest to 
hole enlargement. Provided the fracture gradient was not 
exceeded and vuggy or naturally fractured formations 
were not encountered, a requirement for a cement volume 
in excess of the calculated drilled hole volume is also a 
direct indication that enlargement has occurred (McLellan 
et al., 1994a).

Diagnosing of wellbore instability mechanisms

Diagnosing the four most important wellbore 
instability mechanisams is described in Figure 9. Three 

of these are mechanical (breakouts, closely spaced natural 
fractures and weak planes, drilling induced fractures) and 
one of these is chemical (chemical activity) in origin.
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Figure 9 Diagnosing the 4 most common wellbore instability mechanisms

Slika 9. Dijagnostciranje četiri najčešća mehanizma nestabilnosti kanala

Wellbore stresses – model development

Before describing the variety of predictive models that 
are available for assessing wellbore stability it is necessary 
to define what constitutes the ˝failure˝ of a wellbore. 
Clearly, the spalling or erosion of manageable amounts of 
rock from a wellbore wall does not necessarily imply that 
the wellbore has failed. Providing that sufficient hydraulic 
power is available to circulate cavings out of the hole it 
cannot be claimed that hole enlargement, or convergence 
in many cases, has impaired the ability of the hole to 
serve its engineering function that is – to gain access to 
subsurface hydrocarbons. It follows, therefore, that wall 
deformation and yielding phenomena do not necessarily 
mean that a wellbore has ˝failed˝ (McLellan, 1994a). 

  Figure 10 In-situ stresses

Slika 10. In-situ naprezanja
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Before a wellbore is drilled the rock is in a state of 
equilibrium. The stresses in the earth under these conditions 
are known as the far field stresses (σv, σH, σh  or in-situ 
stresses (Gaurina-Međimurec, 1994). When the well is 
drilled, the rock stresses in the vicinity of the wellbore 
are redistributed as the support originally offered by the 
drilled out rock is replaced by the hydraulic pressure of 
the mud. The stresses can be resolved into a vertical or 
overburden stress, σv, and two horizontal stresses, σH (the 
maximum horizontal in-situ stress), and σh (the minimum 
horizontal in-situ stress), which are generally unequal 
(Figure 10) (McLean et al.,1990). 

If the redistributed stress state exceeds the rock 
strength, either in tension or compression, then instability 
may result. Figure 11 shows the wellbore stresses after 
drilling. These are described as radial stress σr, tangential 
stress (circumferential or hoop stress) σt , and axial stress 
σa. The radial stress acts in all directions perpendicular 
to the wellbore wall, the tangential stress circles the 
borehole, and the axial stress acts parallel to the wellbore 
axis (McLean, 1990).

Figure 11 Wellbore stresses

Slika 11. Naprezanja u kanalu bušotine

The local stress distribution around a wellbore are 
controlled by mechanical (in-situ stresses), chemical, 
thermal, and hydraulic effects.  The coordinate referencing 
system used to calculate the stress distribution around a 
wellbore, goverrned by the in-situ stress and hydraulic 
effects,  is shown in Figure 12. 

Figure 12 The coordinate system for the in-situ stress display 

Slika 12. Koordinatni sustav za prikaz in-situ naprezanja 

Local stresses induced by in-situ stress and hydraulic 
effects at the wellbore wall (r = rw), for vertical well can 
be described as follows:

               (Eq. 1)

According to previous equations it can be concluded 
that the radial stress σr depends on the wellbore pressure 
or mud weight. The tangential stress σt depends on σt, σt, 
pw and θ. The wellbore stresses diminish rapidly from the 
borehole wall converting to far field stresses because away 
from the wellbore the rock is in an undisturbed state.

Local stresses induced by in-situ stress and hydraulic 
effects at the wellbore wall (r = rw), for deviated and 
horizontal wells, well can be expressed by Eq. 2:

 
               (Eq.2)
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Local Stresses at the wellbore wall (r = rw) induced by 
chemical and thermal effects can be expressed as follows 
(Eq.3):

        (Eq.3)

   
From Equation 3, one notes that pore pressure and 

temperature profiles are needed to calculate the stress 
distribution around a wellbore arising from chemical 
and thermal effects. The pore pressure profile is altered 
by water and ion movements into or out of the shale due 
to hydraulic, chemical, and electical potentials. Pore 
pressure and temperature profiles can be obtained by using 
equations presented in literature (Ottesen and Kwakwa, 
1991; Lomba et al, 2000;  Awal et al., 2001; Zhang et al, 
2006; Nguyen et al., 2007).

In order to evaluate the potential for wellbore stability 
a realistic constitutive model must be used to compute the 

stresses and/or strains around the wellbore. The computed 
stresses and strains must then be compared against a given 
failure criterion.

Shear Failure

Numerous shear failure criteria such as Mohr-Coulomb, 
Drucker-Prager, von Mises, modified Lade criteria and 
others are proposed in the literature (Simangunsong et al., 
2006; Zhang et al, 2006; Maury et al., 1987; Morita et al., 
1993; McLean et al., 1990).

The Mohr-Coulomb shear-failure model is one of 
the most wiedely used models for evaluating borehole 
collapse. This model neglects the intermediate principal 
stress but includes the effect of directional strengths of 
shales. The shear-failure criterion can be expressed by the 
following (Eq.4):

     (Eq. 4)

Shear Stress magnitudes can be ordered in 6 different 
ways, as shown in Table 3 (Bowes and Procter, 1997).
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Table 3 Shear failure types

Tablica 3. Tipovi smičnog loma

Failure type Geometry and Orientation Figure

Shear Failure Shallow Knockout 

σa > σt > σr

The failure will occure in the 
radial/axial plane because the 

maximum (σa) and minimum (σr) 
stresses are oriented in this plane (a 

vertical plane).

Shear Failure Wide Breakout 

σt > σa > σr

The failure will occure in the 
radial/tangential plane because the 
maximum (σt) and minimum (σr) 
stresses are oriented in this plane 

(the horizontal plane).
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Table 3 Shear failure types (continued)

Tablica 3. Tipovi smičnog loma (nastavak)

Failure type Geometry and Orientation Figure

Shear Failure High-Angle 
Echelon 

σa > σr > σt

The failure will occure in the axial/
tangential arc because the maximum 
(σa) and minimum (σt) stresses are 
oriented in this arc (the arc of the 

borehole wall).

Shear Failure Narrow Breakout 

σr > σa > σt

The failure will occure in the 
radial/tangential plane because the 
maximum (σr) and minimum (σt) 
stresses are oriented in this plane 

(the horizontal plane).

Shear Failure Deep Knockout 

σr > σt > σa

The failure will occure in the radial/
axial plane because the maximum 
(σr) and minimum (σa) stresses are 

oriented in this plane (a vertical 
plane).

Shear Failure Low-Angle 
Echelon 

σt > σr > σa

The failure will occure in the axial/
tangential arc because the maximum 
(σt) and minimum (σa) stresses are 
oriented in this arc (the arc of the 

borehole wall).

Tensile Failure

Tensile failure occurs when the stress imposed by 
drilling mud exceeds the tensile strength of formations (To). 
The extremely excessive weight of drilling mud creates 
hydraulic fracture, which triggers massive circulation loss 
and matrix deformation. Hence, this failure becomes the 
upper limit of the mud density window in safe drilling 
practice.

Tensile failure usually occurs when the least effective 
principal stress surpasses the formation rock tensile 

strength. Mathematically this criterion can be expressed 
as follows (Simangunsong et al., 2006; Zhang et al, 2006) 
:

                  (Eq. 5)                 
The tensile strength of the rock can be assumed to be 

equal to zero because, theoretically, a fracture initiates 
in a flaw, a joint, or an existing fracture. To apply the 
criteria in Eq. 5 all principal stresses are subject to tensor 
transformations (Simangunsong at al., 2006). Tensile 
stress magnitudes can be ordered in 3 different ways, as 
shown in  Table 4 (Bowes and Procter, 1997).

op TP ≤−3σ
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Table 4 Tensile failure types

Tablica 4. Tipovi vlačnog loma

Failure type Geometry and Orientation Figure

Tensile Failure Cylindrical 

σr ≤ -To

This failure is concentric  with 
the borehole. A low mud weight 

would favor the failure due to the 
magnitude of σr  being lower.

Tensile Failure Horizontal 

σa ≤ -To

This failure creates horizontal 
fractures. 

Tensile Failure Vertical 

σt ≤ -To

This failure creates a vertical 
fracture parallel with the 

maximum horizontal stress 
direction. This is because, this 

orientation is the tangential stress 
has to overcome the smallest 

formation tensile strength.

Conclusion

The application of relatively new technologies 
(underbalanced drilling, slimhole completions, re-entry 
wells with open hole buildup sections, and multilateral 
wells) have to take into consideration, during the well 
planning stage, the risk of wellbore instability. The 
objective of a wellbore stability assessment is to quantify 
the influence of those parameters that affect the integrity 
of a given well such as lack of sufficient wellbore pressure, 
pore pressure transmission, hole inclination and others. 
The results of the wellbore stability assessment have to 
be used to mitigate the consequences of the instability. A 
wide variety of analytical and numerical models exist for 
prediction wellbore stresses and modes of instability for 
nearly all possible loading conditions, well geometries, 
rock properties and wellbore fluids. Dedicated laboratory 
tests and in-situ stress measurements are desirable to have 
more confidence in predictions achieved with analytical or 
numerical modeling tools. Every well should be evaluated 

individually based on next criteria: the type of anticipated 
problems, their potential severity, the quantity and quality 
of data needed for a proper analysis, time and budget, and 
the success of previous analyses of particular type.

Accepted:03.08.2007.
Received:05.09.2007.

Nomenclature:

az = Well azimuth, degree
Co = Cohesive strength, Pa
E = Young´s modulus, Pa
iw = Well Inclination, degrees
Pp = Pore pressure, Pa
Pi = Initial pore pressure, Pa
pw = Wellbore pressure, Pa
r = Near wellbore position, m
rw = Wellbore radius, m
Ti = Initial formation temperature, degrees
Tw = Wellbore wall temperature, degrees
θ = Point location angle, degrees
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φ = Internal friction angle, degrees
σ1 = Maximum principle stress, Pa
σ2 = Medium principle stress, Pa
σ3 = Minimum principle stress, Pa
σh = Minimum in-situ horizontal stress, Pa
σH = Maximum in-situ horizontal stress, Pa
To = The  tensile strength of formation rock, Pa
σr = Radial normal stress at wellbore, Pa
σt = Hoop stress at wellbore, Pa
σa = Axial stress at wellbore, Pa
σx = Normal stress in x-direction, Pa
σy = Normal stress in y-direction, Pa
σx = Axial stress, Pa
τθz = Shear stress at wellbore, Pa
τrz = Shear stress at wellbore, Pa
τrθ = Shear stress at wellbore, Pa
τxy = In-situ shear stress in (x,y,z) coordintaed system, Pa
τyz = In-situ shear stress in (x,y,z) coordintaed system, Pa
τzz = In-situ shear stress in (x,y,z) coordintaed system, Pa
ν = Poisson ration, dimensionless
αp = Biot´s constant, dimensionless
αt = Volumetric-thermal-expansion-constant, degrees-1
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