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Abstract—Low Earth Orbit (LEO) satellites are used for 

public networking and for scientific purposes. Established 
satellite ground stations can communicate with LEO satellites 
only when the satellite is in their visibility region.  Each ground 
station is characterized by its own ideal horizon plane.  Because 
of natural barriers that plane is modified to the designed one, 
defined by minimal elevation, in order to avoid natural obstacles. 
Designed horizon plane implementation implies also the power 
saving from the satellite to be transmitted. The major loss in 
communication between the LEO satellite and the ground station 
is the free space loss.  Free space loss varies since the distance 
from the ground station to the satellite varies over time, usually 
compensated through variable satellite transmit power toward 
the downlink. The main novelty of the paper is the mathematical 
elaboration and confirmation that through the implementation of 
the designed horizon plane instead of an ideal one, the transmit 
EIRP (Equivalent Isotropic Radiated Power) from the satellite 
toward the ground station, could be saved and still permanently 
keeping the constant receiving performance at the ground 
station. The novelty is proved by simulation for different 
altitudes associated with power savings calculation for designed 
horizon plane implementation compared to the ideal one.  
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I.    INTRODUCTION 

The demands for satellite services are increasing every day, 
especially in the field of providing broadband services [1]. 
Early designs were focused on making the system suitable for 
commercial operations, but new generations have to develop 
ways of maximizing the downlink data throughput related to 
broadband service requirements. [2]. The spacecraft orbit and 
mission goals will drive available locations for the ground 
stations. The important factors on ground station design are 
location, coverage, availability, user needs, cost and the 
components of the ground station architecture. The ground 
station design and architecture is the research subject by 
different worldwide institutions, among them to be 
emphasized the work by Toronto Institute for Aerospace 
Studies (UTIAS) related to nanosatellites and their respective 
ground stations [3]. Another institution is the Georgia Institute 
of Technology, Atlanta, which will support five small satellite 
missions within a two year frame (2017 to 2019).  
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The Georgia Institute of Technology will use a network of 

three different ground stations [4]. Satellite communication 
requirements depend on the satellite’s mission nature. The 
ground station design should be in accordance with such 
requirements, also. In the both above cases, the designed 
ground station horizon plane and its impact on satellite’s 
transmit power seems not to be deeply discussed.  

Thus, the further author’s elaboration is an approach toward 
designed ground station horizon determination and its impact 
on power savings. Nowadays, specifically for small and 
lightweight satellites (micro and nano) are applied flexible 
payload architectures with variable satellite EIRP and 
reconfigurable coverage in order to maximize satellite mission 
performance [5]. On-board processing models with 
reconfiguration and self-configuration are considered, also [6]. 
Variable satellite’s EIRP is almost mandatory to keep 
receiving ground station performance for LEO satellites, 
because of variation in distance between the satellite and the 
ground station. Authors’ interest is the satellite ground station 
performance. The idea is keeping the ground station 
performance constant, under different propagation and 
communication circumstances. LEO satellites are 
characterized by variable free space loss, since the range 
between the ground station and the satellite varies over time. 
Free space loss variation should be compensated by EIRP.  
Authors through their paper [7] presented the idea that such 
variation of the EIRP at the satellite to be transformed at the 
bandwidth tuning at the receiver of the satellite ground station, 
bringing the complexity from the satellite to the ground 
station. But, the continuous change of the bandwidth faces 
serious difficulties to be implemented and the bandwidth 
tuning may raise interference and regulatory issues.   

This paper is another attempt and consideration related to 
the satellite’s power to be transmitted toward the ground 
station.  The paper approaches the EIRP savings at the satellite 
by keeping the constant receiving signal margin at the ground 
station, through the implementation of the designed horizon 
plane, instead of an ideal one.  In order to obtain the constant 
downlink margin at the receiver (constant signal to noise 
ratio), all over the time, for analytical and simulation purposes, 
the typical LEO altitudes from 600km to 1200km are 
considered. For these altitudes, under different elevations, are 
simulated and calculated the EIRP savings.  For simulation 
purposes the increment steps of 200km for altitudes and of 5º 
for elevation are applied. Behind the Introduction, by Section 
II the satellite ground station geometry is considered, followed 
by elaboration of the satellite ground station horizon and 
designed plane given at Section III. Section IV is dedicated to 

264 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 3, SEPTEMBER 2018

1845-6421/09/534 © 2018 CCIS

FESB
Typewritten Text
             Original scientific paper

FESB
Typewritten Text



downlink link budget estimation. By Section V, the power 
savings simulation is presented, proving the power savings by 
designed horizon implementation compared to the ideal one. 
Finally, the paper is concluded by methodology of designed 
horizon plane determination, for an in advance defined power 
to be saved.  

II.    SATELLITE AND GROUND STATION GEOMETRY 

The location of the satellite ground station (could be any 
point on the Earth’s surface) is usually given in terms of 
geographical coordinates defined by latitude and longitude.  
The main communication goal is to establish the link between 
the appropriate ground station and the satellite. In Figure 1.a) 
is presented the case where the GS (Ground station) has no 
communication with the satellite being still out of the LEO 
coverage zone and in Figure 1.b) is presented the case where 
the GS (Ground station) is already under the LEO coverage 
and established communication with the satellite, represented 
as line of communication (GS-Sat segment) in Fig. 1.b). 
                                                                        

 

 

Fig. 1.a) No lock established and b) Lock is established. 

 
Typically for LEO satellites, because of low altitude and 

consequently the small coverage, under the satellite pass some 
ground stations may fall under the footprint and some others 
remain out, which have to wait for another satellite pass to be 
served. Due to the satellite pass given in Fig. 2, only the 
ground station identified as BC1, may establish the 

communication with the satellite during the appropriate 
satellite pass.  

 

 
Fig. 2. The satellite coverage area. 

 
On the other side, the position of the satellite within its orbit 

seen from the ground station is defined by Azimuth (Az) and 
Elevation (El) angles. The azimuth is the angle of the direction 
of the satellite, measured in the ground station’s horizon plane 
from geographical north in clockwise direction (Fig. 3). The 
range of azimuth is 0º to 360º. The elevation is the angle 
between a satellite and the ground station’s horizon plane (Fig. 
3). The range of elevation is 0º to 90º. The basic geometry 
between a satellite and ground station is depicted in Fig. 3 [8]. 

Vectors respectively represent: the vector from the 
Earth’s center to a satellite, the vector from the ground station 
to a satellite and the vector from Earth’s center to a ground 
station. This relationship can be clearly shown as:  

 

                                                                        (1)  

The two points of the triangle indicate the satellite and a 

ground station, and the third one is the Earth’s center. Two 

sides of this triangle are usually known (the distance from the 

ground station to the Earth’s center, what is factically the 

Earth’s radius 3106378xRe  m, and the distance from the 

satellite to Earth’s center is orbital radius). The most needed 

parameter is the slant range d  (distance from the ground 

station to the satellite, respectively the communication line 

length). The   ‘grey circle’   in Fig. 3, represents the ideal 

horizon plane of the respective ground station, which is always 

perpendicular to the vector Re. Further the triangle from Fig. 3 

is brought on plane and is given in Fig. 4. There are four 

variables in this triangle: 
0 - is elevation angle, 

0 - is nadir 

angle, 
0 - is central angle and d  is slant range. The slant 

range (communication line length) will be used during link 

budget calculations, and it is expressed through elevation 

angle
0  [9].  

Sat 
GS 

Sat 
GS 
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Fig. 3.  Horizon plane and orbits. 

 

 

 
Fig. 4. Ground station geometry. 

 

 
Solving this triangle yields out the range d as [9]: 
                        

                    (2) 

                   

 
H is the LEO satellite orbit altitude. The range d is the 
communication line length (segment GS-Sat in Fig.1.b). 

The shortest range is achieved under 90º elevations and the 
largest range occurs at 0º elevation [10]. The shortest range is 
equal to the orbital altitude (applying (2) for 90º), as:                               
                                      
                                                                   (3) 
 

 
The range under the 0º elevation (applying (2) for 0º) is 

known as the radius of the ideal horizon plane of the 
appropriate ground station, expressed as: 
 
 

                                                    (4) 
 

The horizon plan expands as the satellite radius (altitude) 

increases, presented in Fig. 5 for simulated altitudes from 

600km to 1200km [11]. 

The range under the lowest elevation angle represents the 

worst link budget case, since that range is the maximal 

possible distance between the ground station and the satellite, 

thus representing the longest communication line (distance).   

This range under the same elevation increases as satellite’s 

altitude increases, and based on Eqn. (2) results for different 

altitudes are given in Table 1. 
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Fig. 5. Ideal horizon plane for different altitudes. 

 
For designed horizon plane, the elevation range of (0-30) º is 
considered.  By 0 º is represented ideal horizon plane, and 
from 5º to 30º designed horizon planes. The designed   horizon 
plane is determined by minimal elevation. For simulation 
purposes the elevation of designed horizon planes is increased 
in steps by 5º. (In Table 1, the ideal plane is grey shaded to 
correspond with the respective one at Fig. 3.) 
 

TABLE I 

LEO SATELLITE RANGES 
           

 
Tracking satellite software, based on Kepler’s elements, 

precisely define relative position between the ground station 
and the satellite, consequently determining also the time when 
the satellite will lock/unlock communication with the ground 
station. This software provides real-time tracking information, 
usually displayed in different modes (satellite view, radar map, 
tabulated, etc). The display mode “radar map” includes 
accurate satellite position with the ground station considered at 
the center, as in Figure 6 is presented [10, 11].  

The perimeter of the circle is the horizon plane (grey circle 
from Figure 2), with North on the top (Az = 0º), then East (Az 
= 90º), South (Az = 180º) and West (Az = 270º). Three 
concentric circles represent different elevations: 0º, 30º and 
60º. At the center the elevation is 

0 =90º. Most usual 

software parameters which define the movement of the 
satellite related to the ground station are: AOStime – Acquisition 
of the satellite (time), LOStime – Loss of the satellite (time), 
AOSAz– Acquisition of the satellite (azimuth), LOSAz – Loss of 
the satellite (azimuth), Max El- Maximal Elevation [9]. 

Orbital 

Attitude 

[km] 

H 

600 

[km] 

H 

800 

[km] 

H 

1000 

[km] 

H 

1200 

[km] 

Horizon 

plane          
Elevation (

0 ) Range 

[km] 

Range 

[km] 

Range 

[km] 

Range 

[km] 

Ideal 0˚ 2830 3289 3708 4088 

Designed 5˚ 2333 2784 3197 3574 

Designed 10˚ 1942 2372 2770 3136 

Designed 15˚ 1663 2035 2414 2764 

Designed 20˚ 1386 1765 2120 2453 

Designed 25˚ 1219 1563 1895 2208 

Designed 35˚ 1070 1392 1701 1996 
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Fig. 6.  Radar map display. 

 
The satellite’s movement (satellite’s pass) is presented with 
the satellite’s path in a radar map (red curve) what is in fact 
the satellite’s orbit projection on the ideal horizon plane 
(Figure 3). Because of Earth’s rotation around its N-S axis the 
ground station changes the position relatively to orbital plane, 
so the pointing (azimuth and elevation) from the ground 
station to the satellite is not identical for different satellite 
passes, hence the communication duration between the 
satellite and the appropriate ground station differs under 
different satellite passes, presented in Fig. 6.   

III.    DESIGNED  GROUND STATION HORIZON PLANE  

The outer circle at 0º elevation at radar map display at 

Figure 6 represents the ideal horizon plane.  The ideal 

communication duration between the satellite and the ground 

station is defined by instant of the acquisition and the loss of 

satellite under 0º elevation. The communication duration is the 

difference of the satellite’s acquisition and loss time, as: 

 

        
      

But, practically the acquisition and loss of satellite do not 

occur at 0º elevation, because of natural barriers or too high 

buildings within area of the ideal horizon plane [11]. Further 

the case depicted in Figure 7 is analyzed. Theoretically, based 

on Kepler’s laws for the case in Figure 7 the communication 

between the satellite and the ground station should be 

established at point A (Az ≈ 19º under 0º elevation) and 

communication should be lost at point B (Az ≈ 178º under 0º 

elevation).  But, no contact with the satellite can be established 

under a 0º elevation, because of natural barriers. 
 

 
Fig. 7. Natural barriers impact. 

 

Practical contact between the satellite and the ground 

station is established at point 
1A  and lost at point 

1B  (both 

under elevation of few degrees). Thus, points A and B  belong 

to the ideal horizon plane, while 
1A  and

1B  belong to the 

practical horizon (practical lock/unlock). If it is considered the 

whole horizon in the azimuth range of 0º - 360º, in any 

direction of the horizon plane the natural barriers will differ; 

consequently so will the acquisition and loss elevation (points 

1A  and
1B ). Different points for acquisition and loss, for 

different azimuths creates the broken circle (black one).  The 

broken circle represents the practical horizon impacted by 

natural barriers. Practical horizon it is not a flat plane. Each 

edge point of the broken circle is the practical elevation of 

acquisition or the loss of the satellite. Usually the lock is 

established and lost in average at elevation angles of 1º – 4º 

[10]. This is presented in Figure 8 [11, 12]. For the same 

satellite orbit, the distances between the satellite and the 

ground station, will differ for different satellite passes. This 

difference in distances implies different power from the 

satellite to be transmitted toward the ground station in order to 

keep a similar performance (signal to noise ratio). The lowest 

power is required at 90º elevation and the highest power is 

required when the satellite is at 0º elevation, consequently 

representing the worst propagation case for the link budget. 

Thus, the implementation of a designed horizon plane, in one 

hand avoids the impact of obstacles caused by the natural 

barriers and on other hand applies the minimal power under 

the worst propagation case for the link budget calculations.  
 

The designed horizon plane is defined by the minimal 

elevation considered for the acquisition and the loss of 

satellite, based on records done at the site (known as ground 

station mask), where the ground station is going to be 

established. For different purposes of the satellite systems, the 

minimal elevation value for the designed horizon plane ranges 

on (5-30)º, what is considered at Table 1 (For  example,  the 

NOAA’s search and rescue  ground stations apply 5º for the 

designed horizon plane [12]).   

 

 
   

  Fig. 8. Ideal, practical, and designed horizon plane. 
 

In Figure 9 the LEO satellite is seen from the ground station 

six times during the day (86400s),  where the longest 

communication  is achieved due to the fifth pass under 

elevation of 45º and the shortest communication due to the 

forth pass under elevation of 5º.  
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Mathematically, these planes are expressed by the range 

from the ground station to the satellite (circle’s radius), as 

follows: For the ideal horizon plane, the radius dI  is: 
                 

                                                    (5) 
                         

 
For the designed horizon plane the radius dD is: 

     

                 (6) 
 

where X is minimal determined elevation for designed horizon 

plane.  
 

For any point of practical horizon with elevation of x, the 
distance dP  is: 

 

        (7) 

For the case under 90º elevation, the distance is fixed and 

denoted as dH (the lowest possible range) expressed as:  

 

                                                                   (8)       

 

The mathematical correlation of practical horizon related to 

ideal and designed horizon planes is expressed as follows: 
                        

                                       (9) 
                    

                                        (10) 
                                                      

 
 

Fig. 9. Communication duration between the satellite and the ground station 

(simulation). 

These two equations (Eqn. 9, Eqn. 10) confirm that any point 
of the practical horizon lies within a ring made by designed 
and ideal horizon planes (Figure 8).  

Further, this paper discusses the savings on transmitted 
power from the satellite toward the ground station, by 
implementation of designed horizon plane compared to the 
case of ideal horizon plane and practical horizon. 

IV. DOWNLINK BUDGET 

For downlink budget calculations, of the greatest interest is 
the receiving system signal to noise ratio [(S/N) or (S/N0)] 
expressed by range equation [13-15], as: 
 
 

                                    

00

)/(

LkL

TGEIRP

N

S

S

S                         (11) 

 

where EIRP is Effectively Isotropic Radiated Power from the 
satellite transmitter. Considering that N=N0B, N0=kT where, 
N0 is spectral noise density, B ground station receiver 

bandwidth, W/HzK1038.1 23k is Boltzmann’s constant 

yields out:  
 

                                     BNSNS  )/(/ 0
                     (12) 

Expressing (11) in decibels yields: 

           6.228// 0

0

 SS TGLLEIRPHzdB
N

S      (13) 

 

LS is free space loss, 
0L  denotes other losses (atmospheric loss, 

polarization loss, misspointing etc) and
STG is Figure of merit. 

The reception quality of the satellite receiving system is 
commonly defined through a Receiving System Figure of 
Merit as 

STG [10, 14]:  

                                       
compAS TTT                                (14) 

where G is receiving antenna gain, 
ST  is receiving system 

noise temperature, 
AT  is antenna noise temperature and 

compT  is 

composite noise temperature of the receiving system, 
including lines and equipment [10,14].  

The Figure of Merit 
STG /  expresses the impact of external 

and internal noise factors.  Free space loss (LS) is the greatest 
loss in transmitted power due to the long distance between the 
satellite and a ground station. This loss is displayed as [14]: 

                                         
2

2)4(



d
LS                                  (15) 

where d  is the distance (slant range)  between the satellite and 
a ground station, and   is the signal wavelength. The free 

space loss 
SL  is often convenient to be expressed as function 

of distance d and signal frequency f , and then 
SL  is [12],         

                                )(
4

)( 0

2

2

0 


 d
c

f
LS 








                       (16) 

where )( 0d  is represented by (2). Free space loss increases by 

both, frequency and the distance.  

The downlink margin (DM) is defined as: 

                                                (17) 

where the r indicates expected signal to noise ratio to be 
received at receiver, and rqd means required signal to noise 
ratio requested by customer, as  in  advance defined 
performance criteria. The positive value of DM is indicates 
that the link is closed (communication is established). 
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V. POWER SAVING  SIMULATION  

The further simulation elaborates the EIRP savings by 
implementing the designed horizon plane instead of ideal one, 
due to keeping constant downlink receiving margin. For 
simulation purposes are considered altitudes of 600km, 
800km, 1000km and 1200km as typical LEO altitudes. For 
these altitudes applying (2) it is calculated the range from a 
hypothetical ground station to the satellite at appropriate 
altitudes, and presented at Table 1. Table 1 gives ranges for 
ideal    horizon plane at 0º, and designed horizon plane starting 
at 5º up to 30º.  The designed horizon plane is changed by 
steps of 5º.   

Table 1. shows that the distance (slant range) between the 
LEO satellite and the ground station changes and depends on 
elevation angle. This causes different free space loss and 
consequently different signal to noise ratio (see Eqn. (13)) and 
different downlink margin, respectively.  

     The idea behind this paper is the assumption of keeping the 
constant downlink margin over different distances between the 
LEO satellite and the appropriate ground station.  Thus,   

            

                                  (18) 
 

Considering that the required (S/N) level is in advance 
determined by user requirements, yields out that must be:  

                                                                (19) 
 
and since it is  

                                                         (20)  

                    
 

where B  is  determined receiving system bandwidth, and the 
simulation  is applied for the ground system with already 
determined bandwidth, yields out that should be:      

                                   

                                                               (21) 

The LEO satellite path over the ground station is 
characterized by two typical events (extreme cases), the first 
one, when the satellite is seen due to the longest distance from 
the ground station (for ideal horizon plane under 0º elevation,   
or for designed horizon plane under Xº elevation), and the 
second one, when the satellite is seen perpendicularly from the 
ground station (under 90º elevation).  To fulfill the condition 
expressed by (21), the lowest EIRP is required under 90º 
elevation and the highest EIRP is required for ideal horizon 
plane under 0º, or for designed horizon plane under Xº. The 
lowest required EIRP, for the both, ideal or designed horizon 
plane, is the same since in both cases the range is H (satellite’s 
altitude).                                                           

Under elevation xº and neglecting other loss the range 
equation (13) becomes as: 
 

 

            (22) 
 

(G/TS) it is not indexed by elevation, since the environmental 
factors and technical equipment parameters do not depend on 
elevation (See Eqn. (14)). Then, (21) becomes: 
 

      (23) 

Being aware that the elevations of 0, x, X, and 90 refer 
respectively to ideal horizon plane (I), practical horizon (P), 
designed horizon plane (D) and to the perpendicular distance 
(H), the Eqn. (23) can be rewritten as: 

 

                                     (24) 

Applying (22) will have following four equations:  

                  

                  

                  

                               (25)                   

For the communication between the satellite and the ground 
station, the EIRP transmitted from the satellite toward the 
station should vary respectively as follows, for ideal horizon 
plane, for designed horizon plane and practical horizon.  

 

                           

                           
                            
   

                         (26) 
 

Applying (24) yields out as:    
          

 (27) 

Above Eqn. tells us that larger free space loss (larger 
distance) more power is needed to be radiated from the 
satellite in order to keep very constant performance.  

Since this paper is concerned about the comparison on the 
power saving under the circumstances of ideal and designed 
horizon plane, further is considered:  

                                             (28)                                                                        

        For:                                                                                            

                                                        (29) 
                 

                                                            (30) 

Finally, applying (16)  for the case of  the ideal horizon (0 

elevation) and for the designed horizon plane (X elevation),  

than the saving on EIRP for the designed horizon plane 

considered under the minimal elevation of X, compared to the 

power needed for the communication at circumstances of ideal 

horizon plane (0 elevations) is expressed as: 
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                                                (31) 

Applying distances from Table 1 at Eqn. (31), results in 

Table 2 represent the EIRP savings for designed horizon 

planes determined by different minimal elevation compared to 

ideal horizon plane. These results are also given in Figure 10. 
 

TABLE II 

POWER SAVINGS (∆EIRP) 

 

From Table 2, it is obvious that for altitude of 800Km, 

under elevation of 10˚, the savings on EIRP are almost 3dB 

(2.85dB), what means that by implementation of designed 

horizon plane the power transmitted from the satellite toward 

the ground station may be approximately a half  of  the power 

needed under the circumstances of the ideal horizon plane.  
Figure 10 shows that for in advance determined satellite 

altitude (H), the power savings due to the implementation of 
designed horizon plane, increases as minimal elevation 
increases. On the right angle of the Figure 10, X denotes 
minimal elevation for designed horizon plane.  In Figure 10, 
for the altitude of 800Km, under elevation of 10˚, the power 
saving is lined as a second brick from the bottom (brown 
colour) identifying exactly the savings of (2.85dB). For the 
altitude of 800Km, “playing” with elevation on the range of 
(5-30) ˚ the length of bricks vary from (1.44 to 7.47) dB, in 
fact representing the range of power savings. The similar 
applies for other altitudes under different elevations. 

 

 
Fig. 10. Power savings (∆EIRP). 

                                            

Further, it is elaborated, how to calculate the minimal 
elevation for the designed horizon plane, for an in advance 
determinated requirement related to the EIRP savings from the 
satellite toward the ground station. Thus further goal is to 
calculate X, for in advanced required ∆EIRP. Thus the minimal 
elevation angle is required to be calculated. Eqn. (31) may be 
rewritten as:  

                                                         (32) 
 

If Eqn. (32) is equalized with (6) and making substitutes as,  

                     

                                              (33) 

 

                                                                     (34)                   
 

stems out, the following equation: 

 

                          (35)  
 
 
 
and the final solution is: 

                                                       (36) 
 

For a satellite orbit of H altitude, can be implemented a 

satellite ground station with designed horizon plane of 

minimal elevation X what will save a ∆EIRP compared to the 

EIRP needed for the ideal horizon plane of the same station. 

Under circumstances of saving a half of EIRP, this means 

savings of 3dB, for different altitudes it is calculated the 

minimal elevation window, and given in Table 3.  

 
TABLE III 

ELEVATION WINDOW             
 

 

Finally, the elevation window for designed horizon plane, 
for LEO altitudes, in order to be transmitted only a half of 
EIRP compared to the case of ideal horizon plane, ranges from 
9.2˚ to 12.9˚. Table 3, shows that for the satellite at altitude of 
800Km, to communicate toward the ground station with the 

Orbital 

Attitude 

[km] 

H 

600 

[km] 

H 

800 

[km] 

H 

1000 

[km] 

H 

1200 

[km] 

Horizon 

plane 

Elevation 

(
0 ) 

∆EIRP 

[dB] 

∆EIRP 

[dB] 

∆EIRP 

[dB] 

∆EIRP 

[dB] 

Designed 5˚ 1.67 1.44 1.28 1.16 

Designed 10˚ 3.27 2.85 2.53 2.30 

Designed 15˚ 4.61 4.16 3.73 3.39 

Designed 20˚ 6.20 5.40 4.85 4.43 

Designed 25˚ 7.31 6.46 5.83 5.35 

Designed 30˚ 8.44 7.47 6.77 6.22 

    Orbital Attitude [km] 

H 

600 

[km] 

H 

800 

[km] 

H 

1000 

[km] 

H 

1200 

[km] 

Designed horizon plane 
∆EIRP= 

3[dB] 

∆EIRP= 

3[dB] 

∆EIRP

= 

3[dB] 

∆EIRP= 

3[dB] 

Estimated minimal 

elevation  
9.2˚ 10.5˚ 11.9˚ 12.9˚ 
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designed horizon plane at elevation of 10.5˚, half of EIRP will 
be needed for the safe communication compared to the case 
under ideal horizon plane at the same ground station. The 
same applies for other altitudes.            

VI. CONCLUSION 

The paper presents an analytical approach about designed 
horizon plane determination related to the ideal one. The 
implementation of a designed horizon plane, in one hand 
avoids the impact of obstacles caused by the natural barriers 
and on other hand applies the minimal power under the worst 
propagation case for the link budget calculations. The paper 
provides methodology on designed horizon plane 
implementation and advantages compared to an ideal horizon 
plane. Calculations about power savings to be transmitted 
from the satellite are given, but also the determination of 
minimal elevation for the designed horizon plane for an in 
advance power requirements are provided.  The elevation 
window for designed horizon plane, for LEO altitudes, in 
order to be transmitted only a half of EIRP compared to the 
case of ideal horizon plane, ranges from 9.2˚ to 12.9˚.  
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