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THE QUOTIENT SHAPES OF lp AND Lp SPACES

Nikica Uglešić

Abstract. All lp spaces (over the same field), p ̸= ∞, have the finite
quotient shape type of the Hilbert space l2. It is also the finite quotient
shape type of all the subspaces lp(p′), p < p′ ≤ ∞, as well as of all their
direct sum subspaces FN

0 (p′), 1 ≤ p′ ≤ ∞. Furthermore, their countable
and finite quotient shape types coincide. Similarly, for a given positive
integer, all Lp spaces (over the same field) have the finite quotient shape
type of the Hilbert space L2, and their countable and finite quotient shape
types coincide. Quite analogous facts hold true for the (special type of)
Sobolev spaces (of all appropriate real functions).

1. Introduction

The shape theory (for compacta in the Hilbert cube) was founded by K.
Borsuk, [1]. The theory was rapidly developed and generalized by many au-
thors. The main references are [2], [3], [5], [6] and, especially, [11]. Although,
in general, founded purely categorically, a shape theory is mostly well known
only as the (standard) shape theory of topological spaces with respect to
spaces having homotopy types of polyhedra. The generalizations founded in
[8] and [16] are, primarily, also on that line.

The quotient shape theory was recently introduced by the author, [13]. It
is, of course, a kind of the general (abstract) shape theory, [I.2, 11]. However,
it is possible and non-trivial, and can be straightforwardly developed for every
concrete category C and for every infinite cardinal κ ≥ ℵ0. Concerning a shape
of objects, in general, one has to decide which ones are “nice” absolutely
and/or relatively (with respect to the chosen ones). In this approach, the
main principle reads as follows: An object is “nice” if it is isomorphic to a
quotient object belonging to a special full subcategory and if it (its “basis”)
has cardinality less than (less than or equal to) a given infinite cardinal. It
leads to the basic idea: to approximate a C-object X by a suitable inverse
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system consisting of its quotient objects Xλ (and the quotient morphisms)
which have cardinalities, or dimensions, in the case of vectorial spaces, less
than (less than or equal to) κ. Such an approximation exists in the form of
any κ−-expansion (κ-expansion) of X,

pκ− = (pλ) : X →Xκ− = (Xλ, pλλ′ ,Λκ−)
(pκ = (pλ) : X →Xκ = (Xλ, pλλ′ ,Λκ)),

where Xκ− (Xκ) belongs to the subcategory pro-Dκ− (pro-Dκ) of pro-D,
and Dκ− (Dκ) is the subcategory of D determined by all the objects having
cardinalities, or dimensions, for vectorial spaces, less than (less than or equal
to) κ, while D is a full subcategory of C. Clearly, if X ∈ ObD and the
cardinality |X| < κ (|X| ≤ κ), then the rudimentary pro-morphism ⌊1X⌋ :
X → ⌊X⌋ is a κ−-expansion (κ-expansion) of X. The corresponding shape
category ShDκ− (C) (ShDκ

(C)) and shape functor Sκ− : C → ShDκ− (C) (Sκ :
C → ShDκ(C)) exist by the general (abstract) shape theory, and they have all
the appropriate general properties. Moreover, there exist the relating functors
Sκ−κ : ShDκ(C) → ShDκ− (C) and Sκκ′ : ShDκ′ (C) → ShDκ(C), κ ≤ κ′, such
that Sκ−κSκ = Sκ− and Sκκ′Sκ′ = Sκ. We should mention that the simplest
and very often interesting case is even D = C. In such a case we simplify the
notation ShDκ− (C) (ShDκ(C)) to Shκ−(C) (Shκ(C)) or to Shκ− (Shκ) when
C is fixed.

Especially, in the case of κ = ℵ0, the κ−-shape is said to be the finite
(quotient) shape, because all the objects in the expansions are of finite (bases)
cardinalities, and the category is denoted by ShD0(C) or by Sh0

¯
(C) ≡ Sh0

only, whenever D = C. The ℵ0-shape is said to be the countable (quotient)
shape, and the quotient shape category is denoted by Shℵ0(C) ≡ Shℵ0 only,
whenever D = C is fixed.

In [13], several well known concrete categories were considered and many
examples are given which show that the quotient shape theory yields classi-
fications strictly coarser than those by isomorphisms. In [14] and [15] were
considered the quotient shapes of (purely algebraic, topological and normed)
vectorial spaces and topological spaces, respectively. In this paper we con-
tinue the studying of quotient shapes of normed vectorial spaces of [Section
4.1, 14], primarily focused to the well known lp and Lp spaces. In the last
section, the same technique is applied to the Sobolev spaces (a special kind,
i.e., including only functions having the usual partial derivatives). The main
results (the continuum hypothesis CH assumed) briefly read as follows:

- all lp spaces, for p ̸= ∞, i.e., 1 ≤ p < ∞, over the same field F ∈
{R,C}, are of the same finite quotient shape type and admit a common
expansion-object consisting of Hilbert spaces;

- to that type belong all the (proper) subspaces lp(p′) E lp′ , p < p′ ≤ ∞,
too, where lp(p′) is lp (algebraically) carrying the norm ∥·∥p′ ;
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- to that type also belong all their direct sum subspaces FN
0 (p′) E lp′ ,

where FN
0 (p′) is FN

0 (algebraically) carrying the norm ∥·∥p′ ;
- for each n ∈ N, all Lp(Kn) spaces (Kn ⊆ Rn)− n-cube), over the same

field, are of the same finite quotient shape type and admit a common
expansion-object consisting of Hilbert spaces;

- given an n ∈ N, for each domain Ωn ⊆ Rn and each k ∈ N, all Sobolev
spaces W (k)

p (Ωn) (consisting of all real functions on Ωn having their
supports in Ωn and all partial derivatives up to order k continuous),
over the same field, are of the same finite quotient shape type and
admit a common expansion-object consisting of Hilbert spaces;

- the countable shape types of all lp spaces, p ̸=∞, (all Lp(Kn) spaces,
n fixed; all W (k)

p (Ωn) spaces, Ωn and k fixed) over the same field reduce
to the unique finite quotient shape type (respectively).

2. Preliminaries

For the sake of completeness, let us briefly repeat the construction of
a quotient shape category and a quotient shape functor ([13], [14]). Given a
category pair (C,D), whereD ⊆ C is full, and a cardinal κ, letDκ− (Dκ) denote
the full subcategory of D determined by all the objects having cardinalities
or, in some special cases, the cardinalities of “bases” less than (less or equal
to) κ. By following the main principle, let (C,Dκ−) ((C,Dκ)) be such a pair
of concrete categories. If

(a) every C-object (X,σ), where σ indicates a structure on the set-object
X, admits a directed set R(X,σ, κ−) ≡ Λκ− (R(X,σ, κ) ≡ Λκ) of
equivalence relations λ on X such that each quotient object (X/λ, σλ)
has to belong to Dκ− (Dκ), while each quotient morphism pλ :
(X,σ)→ (X/λ, σλ) has to belong to C;

(b) the induced morphisms between quotient objects belong to Dκ− (Dκ);
(c) every morphism f : (X,σ)→ (Y, τ) of C, having the codomain in Dκ−

(Dκ), factorizes uniquely through a quotient morphism pλ : (X,σ) →
(X/λ, σλ), f = gpλ, with g belonging to Dκ− (Dκ),

then Dκ− (Dκ) is a pro-reflective subcategory of C. Consequently, there exists
a (nontrivial) “quotient shape” category Sh(C,Dκ− ) ≡ ShDκ− (C) (Sh(C,Dκ) ≡
ShDκ(C)) obtained by the general construction.

Therefore, a κ−-shape morphism Fκ− : (X,σ)→ (Y, τ) is represented by
a diagram (in pro-C)

(X,σ)κ−
pκ−← (X,σ)

fκ− ↓
(Y , τ )κ−

qκ−← (Y, τ)
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(with pκ− and qκ− - a pair of appropriate expansions), and similarly for
a κ-shape morphism Fκ : (X,σ) → (Y, τ). Since all Dκ−-expansions (Dκ-
expansions) of a C-object are mutually isomorphic objects of pro-Dκ− (pro-
Dκ), the composition and identities follow straightforwardly. Observe that
every quotient morphism pλ is an effective epimorphism (if U : C → Set
is the forgetful functor related to the concrete category C, then U(pλ) is a
surjection), and thus condition (E2) for an expansion follows trivially.

The corresponding “quotient shape” functors Sκ− : C → ShDκ− (C) and
Sκ : C → ShDκ(C) are defined in the same general manner. That means,

- Sκ−(X,σ) = Sκ(X,σ) = (X,σ);
- if f : (X,σ) → (Y, τ) is a C-morphism, then, for every µ ∈ Mκ− ,

the composite gµf : (Y, τ) → (Yµ, τµ) factorizes (uniquely) through a
pλ(µ) : (X,σ)→ (Xλ(µ), σλ(µ)), and thus, the correspondence µ 7→ λ(µ)
yields a function φ : Mκ− → Λκ− and a family of Dκ−-morphisms
fµ : (Xφ(µ), σφ(µ))→ (Yµ, τµ) such that qµf = fµpφ(µ);

- one easily shows that (φ, fµ) : (X,σ)κ− → (Y , τ )κ− is a morphism
of inv-Dκ− , so the equivalence class fκ− = [(φ, fµ)] : (X,σ)κ− →
(Y , τ )κ− is a morphism of pro-Dκ− ;

- then we put Sκ−(f) = ⟨fκ−⟩ ≡ Fκ− : (X,σ)→ (Y, τ) in ShDκ− (C).
The identities and composition are obviously preserved. In the same way one
defines the functor Sκ.

Furthermore, since (X, σ)κ− is a subsystem of (X, σ)κ (more precisely,
(X, σ)κ is a subobject of (X, σ)κ− in pro-D), one easily shows that there
exists a functor Sκ−κ : ShDκ(C) → ShDκ− (C) such that Sκ−κSκ = Sκ− , i.e.,
the diagram

C
↙ Sκ− Sκ ↘

ShDκ− (C) Sκ−κ←−−−
ShDκ(C)

commutes. Moreover, an analogous functor Sκκ′ : ShDκ′ (C) → ShDκ(C),
satisfying Sκκ′Sκ′ = Sκ, exists for every pair of infinite cardinals κ ≤ κ′.

3. On the quotient shapes of normed and Banach spaces

We shall now apply the quotient shape theory to the category C =
NV ectF of all normed vectorial spaces over F ∈ {R,C} (with D ⊆ C and,
especially, κ = ℵ0; see also [Section 4.1, 14]) and to the category C = BV ectF
of all Banach spaces (with D = C). Clearly, the morphisms of C are all the
corresponding continuous linear functions. Hereby, Dκ− (Dκ) denotes the full
subcategory determined by all the objects having dimension (the cardinal-
ity of an algebraic base) less than (less or equal to) κ. Recall that, by the
results of [14], the algebraic quotient shape type classifications and the iso-
morphism classification of vectorial spaces coincide, while those of the normed
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(and topological as well) vectorial spaces are, in general, strictly coarser than
the isomorphism classification. Hereby we give much more attention to the
Banach spaces, especially to the well known lp and Lp spaces.

We shall frequently use and apply in the sequel several general or special
well known facts without referring to any source. So we remind the readers
that

- our general shape theory technique is that of [11];
- the needed set theoretic (especially, concerning cardinals) and topo-

logical facts can be found in [4];
- the facts concerning functional analysis are taken from [9], [10] or [12];
- our category theory language follows that of [7].

Since we are dealing with the quotient spaces, recall that the “quotient” norm
on the quotient normed space X/Z (Z is a closed subspaces of X) is defined
by

∥[x]∥ = inf{∥x+ z∥ | z ∈ Z}.
By Theorem 4.2 of [14], for every κ ≥ ℵ0, the subcategories

(NV ectF )κ− , (NV ectF )κ ⊆ NV ectF
are pro-reflective, i.e., every normed vectorial spaceX admits an (NV ectF )κ− -
expansion and an (NV ectF )κ-expansion. The following needed fact is a con-
sequence of that theorem and its proof (see also Remark (4.9) of [14]).

Theorem 3.1. For every cardinal κ ≥ ℵ0, the subcategories

(BV ectF )κ− , (BV ectF )κ ⊆ BV ectF
are pro-reflective.

Proof. Recall the well known fact that each closed subspace Z of a
Banach space X yields the quotient space X/Z that is a Banach space.

The three following theorems bring the main facts for our purpose.

Theorem 3.2. For every cardinal κ ≥ ℵ0, the subcategories

(BV ectF )κ− , (BV ectF )κ ⊆ NV ectF
are pro-reflective.

Proof. It is a well known fact that every normed vectorial space Y
admits a dense isometric linear embedding into a Banach space X (over the
same field F ∈ {R,C}). So we may assume, without loss of generality, that
Y E X and Cl(Y ) = X. If dim Y < ℵ0, then Cl(Y ) = X means that
Y = X, and we may apply Theorem 3.1 to Y . Let dim Y ≥ ℵ0. Then, clearly,
dimX ≥ dim Y ≥ ℵ0. Let κ ≥ ℵ0 and let

pκ− = (pλ) : X →Xκ− = (Xλ, pλλ′ ,Λκ−)
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be a (BV ectF )κ−-expansion of X, which exists by Theorem 3.1. Notice that
the inclusion i : Y ↪→ X is a continuous linear function. We are to show that
the composite

qκ− ≡ pκ−i = (qλ = pλi) : Y →Xκ− = (Xλ, pλλ′ ,Λκ−)
is a (BV ectF )κ−-expansion of Y . The commutativity condition pλλ′qλ′ = qλ,
λ ≤ λ′, obviously holds. Let Z be a Banach space (over the same F ) such
that dimZ < κ, and let f : Y → Z be a continuous linear function. Since Z is
a Banach space, there exists a unique continuous linear extension g : X → Z
of f , i.e., gi = f . Since pκ− : X → Xκ− is a (BV ectF )κ−-expansion, there
exist a λ ∈ Λκ− and a unique continuous linear function gλ : Xλ → Z such
that gλpλ = g. Then gλqλ = gλpλi = gi = f , which shows that qκ− ≡ pκ−i :
Y →Xκ− is a (BV ectF )κ−-expansion of Y . The proof in the κ-case is quite
similar.

Denote by (NV ectF )κ− and (BV ectF )κ− ((NV ectF )κ and (BV ectF )κ)
the full subcategory of NV ectF and BV ectF , respectively, determined by
all the objects having dimension, i.e., the cardinality of an algebraic base,
less than (less or equal to) κ. If κ = ℵ0, we denote the κ−-case by
(NV ectF )0

¯
and (BV ectF )0

¯
. Since BV ectF ⊆ NV ectF , the “relative” case

(NV ectF , (BV ectF )κ−) ((NV ectF , (BV ectF )κ)) admits to consider the quo-
tient shape of a normed space with respect to Banach spaces, i.e., via a
(BV ectF )κ−-expansion ((BV ectF )κ-expansion).

Theorem 3.3. Let X be a normed vectorial space and let Y E X be a
dense subspace, Cl(Y ) = X. Then

(i) Sh0
¯

(Y ) = Sh0
¯

(X) with respect to (NV ectF , (NV ectF )0
¯

) as well as to
(NV ectF , (BV ectF )0

¯
).

If, in addition, X is a Banach space and dim Y ≥ κ ≥ ℵ0 (dim Y > κ ≥ ℵ0),
then

(ii) Shκ−(Y ) = Shκ−(X) with respect to the category pair (NV ectF ,
(BV ectF )κ−);

(iii) Shκ(Y ) = Shκ(X) with respect to the category pair (NV ectF ,
(BV ectF )κ).

Proof. Statement (i) can be proven likewise the proof of Theorem 3.2. If
dim Y < ℵ0, then Cl(Y ) = X means Y = X. Thus (i) holds true trivially (as
well as (ii) and (iii)). Let dimY ≥ ℵ0. Then, clearly, dimX ≥ dim Y ≥ ℵ0.
Notice that the inclusion i : Y → X is a continuous linear function. Let

p0
¯

= (pλ) : X →X0
¯

= (Xλ, pλλ′ ,Λ0
¯
)

be an (NV ectF )0
¯
-expansion of X. In order to prove statement (i), it suffices

to show that the composite
q0

¯
≡ p0

¯
i = (qλ = pλi) : Y →X0

¯
= (Xλ, pλλ′ ,Λ0

¯
)
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is an (NV ectF )0
¯
-expansion of Y . The commutativity condition pλλ′qλ′ = qλ,

λ ≤ λ′, obviously holds. Let Z be a normed space (over the same F ∈ {R,C})
such that dimZ < ℵ0, and let f : Y → Z be a continuous linear function.
Since Z is finite–dimensional, it is a Banach space. (The same argument
implies that p0

¯
: X → X0

¯
is indeed a (BV ectF )0

¯
-expansion of X.) Then

there exists a unique continuous linear extension g : X → Z of f , i.e., gi = f .
Since p0

¯
: X → X0

¯
is an (NV ectF )0

¯
-expansion, there exist a λ ∈ Λ0

¯
and a

unique continuous linear function gλ : Xλ → Z such that gλpλ = g. Then
gλqλ = gλpλi = gi = f , and the first statement is proven. In light of Theorem
3.2, the proofs of statements (ii) and (iii) hold in the same way, because a
“testing” space Z, dimZ < κ (dimZ ≤ κ), has to be a Banach space.

Notice that statement (ii) of Theorem 3.3 does not hold for the category
NV ectF because the extension property fails when the codomain Z is not a
Banach space. Further, if Y is a dense and closed subspace of a Banach space
X, then Y = X, and statements (ii) and (iii) are trivial. However, if Y is a
non-closed dense subspace in X, then Y is not a Banach space, and thus, if
dim Y = κ ≥ ℵ0, the identity rudimentary morphism ⌊1Y ⌋ : Y → ⌊Y ⌋ (which
obviously is an (NV ectF )κ-expansion of Y ) is not any expansion with respect
to BV ectF . This justifies the conditions ℵ0 ≤ κ ≤ dim Y and ℵ0 ≤ κ < dim Y
in (ii) and (iii) respectively. Nevertheless, in the most interesting application,
the structure of separable or/and complete normed vectorial spaces yields a
significant reduction of the non-trivial possibilities. In a way, it seems that
hereby the completeness takes the role of compactness in the topological case.

If (C,D) and (C,D′) are pro-reflective category pairs, where D′ ⊆ D, and
the naturally induced functor Sh(C,D) → Sh(C,D′) is an equivalence of the
categories (i.e., there is a canonical bijection between all the corresponding
pairs of morphism sets), then we say that the quotient shape theory of (C,D)
reduces to that of (C,D′).

Recall that every finite-dimensional normed space is a Banach space and
that there is no Banach space having (algebraic) dimension countable infi-
nite ([10], 7.2., Zad. 4., p. 338). Therefore, (NV ectF )0

¯
= (BV ectF )0

¯
=

(BV ectF )ℵ0 , and we have established the following facts.

Theorem 3.4. The quotient shape theory of
(i) (NV ectF , (NV ectF )0

¯
) reduces to (NV ectF , (BV ectF )0

¯
),

(ii) (NV ectF , (BV ectF )ℵ0) reduces to (NV ectF , (BV ectF )0
¯

),
(iii) (sNV ectF , (BV ectF )ℵ0) reduces to (sNV ectF , (BV ectF )0

¯
);

(iv) (BV ectF , (BV ectF )ℵ0) reduces to (BV ectF , (BV ectF )0
¯

),
where sNV ectF ⊆ NV ectF denotes the full subcategory of all separable spaces.
Consequently, the only non-trivial quotient shape theory of Banach spaces
having the algebraic dimension less or equal to 2ℵ0 (for instance, the separable
ones) is the finite one.
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Remark 3.5. There are Banach (Hilbert) spaces having the algebraic
dimension greater than 2ℵ0 (see [10], Teorem 4 and Korolar 2 of paragraph
8, Section 7). For instance, given an F ∈ {R,C} and a p ∈ R, 1 ≤ p < ∞,
the direct sum of the family F = (Fj = F, j ∈ J), where J is the well ordered
set of all countable ordinals j (i.e., all j < ω1 - the first uncountable ordinal),
endowed with the norm ∥·∥p, is a Banach (Hilbert, if p = 2) space, denoted
by lp(F). More precisely, the vectors of lp(F) are all the functions

x : J → ∪j∈JFj

such that, for every j ∈ J , x(j) ∈ Fj and∑
j∈J

|x(j)|p <∞,

while
∥x∥p = (

∑
j∈J

|x(j)|p)
1
p .

(Clearly, every x is a function having at most countably many non-zero values,
x(j) ̸= 0.) With the general continuum hypothesis assumed (GCH),

dim(lp(F)) ≤ |lp(F)| ≤ (|J | · |F |)|J| = |J ||J| = 2|J| = 2ℵ1

holds. Further, it is evident that dim lp(F) > ℵ0, and thus (by the continuum
hypothesis, CH),

|F | = 2ℵ0 ≤ dim lp(F).
Hence, by Lemma 3.2. (iv) of [14] (and GCH),

dim(lp(F)) = |lp(F)| ≥ |2J(ℵ0)| = |2J | = 2|J| = 2ℵ1 ,

where 2J(ℵ0) is the set of all countable subsets of (the uncountable set) J
(and thus, 2J (ℵ0) is of the same cardinality as 2J ). Therefore,

dim(lp(F)) = 2ℵ1 = 22ℵ0
> 2ℵ0 .

Notice that, generally, |J | = κ implies dim(lp(F)) = 2κ, confirming that there
is no countable infinite-dimensional Banach (Hilbert) space.

In the remark below we point out several misprints and two errors in
[14] (the basic article for this work).

Remark 3.6.
(a) In the first part of the proof of Lemma 3.2 should stay |F | > ℵ0 instead

of |F | ≥ ℵ0 (at three places);
(b) In the construction of the canonical quotient expansion of a vectorial

space X (Section 3, Theorem 3.1; and in [13], Section 12, Theorem
12.1), the condition dimZλ = dimX is accidently dropped;

(c) Statement (ii) of Corollary 4.3 in [14], is false. Consequently the ne-
cessity part of Corollary 4.16 in [14] is false;
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(d) There is a gap in the proof of Corollary 4.4. in [14]. Namely, the
projection pλ : X → Xλ might not belong to qκ− . Nevertheless, its
statement in the case of κ− when κ = ℵ0 (the only one that is used
in the sequel) is valid. The correct reformulation and a rather explicit
proof of that case is given by Proposition 3.7 below.

Proposition 3.7. Let X = (V, ∥·∥) and Y = (V, ∥·∥′) be normed vectorial
spaces over the same field F ∈ {R,C}. If the identity function 1V : X → Y
is continuous, then S0

¯
(1V ) : X → Y is an isomorphism of Sh0

¯
(NV ectF ).

Proof. In the finite-dimensional case, there is nothing to prove. So
assume thatX and Y are infinite-dimensional, i.e., dimX = dim Y = dim V ≥
ℵ0. Let

p0
¯

= (pλ) : X →X0
¯

= (Xλ, pλλ′ ,Λ0
¯
),

q0
¯

= (qµ) : Y → Y 0
¯

= (Yµ, qµµ′ ,M0
¯
),

be the canonical (NV ectF )0
¯
-expansions of X, Y respectively. Recall that

Xλ = (X/Zλ, ∥·∥λ), where Zλ E V is closed in X, dimZλ = dimV and
dim(V/Zλ) < ℵ0, and similarly for Yµ (by means of Zµ E V closed in Y ).
Since 1V : X → Y is continuous, M0

¯
is a subset of Λ0

¯
, and 1V yields a unique

inv-(NV ectF )0
¯
-morphism

(i, iµ) : X0
¯
→ Y 0

¯
,

where i : M0
¯
→ Λ0

¯
, i(µ) = λµ is the inclusion, and

iµ : Xλµ
= (Vλµ

= Vµ, ∥·∥λµ
)→ (Vµ, ∥·∥′

µ) = Yµ, i([x = v]λµ
) = [v = y]µ,

is the induced isomorphism of (NV ectF )0
¯
. (Actually, iµ is the identity on the

same finite-dimensional quotient space V/Zµ. ) More precisely, iµpλµ = qµ1V

means that
iµpλµ

(x = v) = iµ([v]λµ
) = [v]µ = qµ(v = y) = qµ1V (v = x), v ∈ V,

while iµpλµλµ′ = qµµ′iµ′ , µ ≤ µ′, means that, for every [x = v]λµ′ ∈ Xλµ′ ,

iµpλµλµ′ ([x = v]λµ′) = iµ([v]λµ) = [v]µ = qµµ′([v = y]µ′) = qµµ′iµ′([v = x]λµ′).
Denote by

1V = [(i, iµ)] : X0
¯
→ Y 0

¯
the equivalence class of (i, iµ), i.e., the corresponding morphism of pro-
(NV ectF )0

¯
. Notice that Y = Zµ

·
+Wµ, X = Zλµ

·
+ Wµ and Xλµ

∼= Wµ
∼= Yµ,

where Wµ E V is a finite-dimensional (hence, closed in Y and X) direct
complement of the both Zµ, Zλµ E V .

Conversely, given a λ ∈ Λ0
¯
, Xλ = X/Zλ, where Zλ E V is closed in X,

dimZλ = dimX and dim(X/Zλ) < ℵ0. Since Zλ is closed subspace of X
and dim(X/Zλ) < ℵ0, there exists a closed direct complement Wλ E X of
Zλ (see [10], Section 8.11,(b), p. 440, that holds true for a normed space as
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well, because Wλ is finite-dimensional). Thus X = Wλ

·
+ Zλ, and clearly,

Wλ
∼= X/Zλ = Xλ. Then V = Wλ

·
+ Zλ, and Wλ E V is a finite-dimensional

(and hence, closed) subspace of Y . It follows that there exists a closed direct
complement Zµλ

of Wλ in Y , i.e., Y = Wλ

·
+ Zµλ

(see [10], Section 8.11(c),
p. 440, or Section 6.5, Zad. 4., p. 286). By the canonical construction of
Y 0

¯
, Yµλ

= Y/Zµλ
, and Yµλ

∼= Wλ
∼= Xλ. Since Wλ is a common closed direct

summand of X and Y , it follows that, for every λ ∈ Λ0
¯

and each v ∈ V , the
both equivalence classes [x = v]λ = v+Zλ ∈ Xλ and [y = v]µλ

= v+Zµλ
∈ Yµλ

canonically corresponds to a unique vector w[v] ∈ Wλ. More precisely, for
every λ ∈ Λ0

¯
, there exist two canonical linear bijections

ϕλ : Wλ → Xλ, ϕλ(w[v]) = [v]λ = v + Zλ

ψλ : Wλ → Yµλ
, ψλ(w[v]) = [v]µλ

= v + Zµλ
.

Since these spaces are finite-dimensional, ϕλ and ψλ are isomorphisms of the
normed spaces. Put

g : Λ0
¯
→M0

¯
, g(λ) = µλ

and
gλ = ϕλψ

−1
λ : Yg(λ) = Yµλ

→ Xλ, λ ∈ Λ0
¯
.

Then gλ is an isomorphism of the Banach spaces and
gλ([y = v]µλ

) = ϕλψ
−1
λ ([y = v]µλ

) = ϕλ(w[v]) = [v = x]λ.
Further, for every related pair λ ≤ λ′ in Λ0

¯
and every v = y ∈ Y ,

gλqµλ
(y = v) = ϕλψ

−1
λ ([v]µλ

) = [v = x]λ
and

pλλ′gλ′qµλ′ (y = v) = pλλ′ϕλ′ψ−1
λ′ ([v]µλ′ ) = pλλ′([v]λ′) = [v = x]λ.

Therefore,
gλqµλ

= pλλ′gλ′qµλ′ : Y → Xλ.

Since q0
¯

: Y → Y 0
¯

is an (NV ectF )0
¯
-expansions of Y and Xλ is finite-

dimensional, there exist a µ ∈ M0
¯

and a unique continuous linear function
hµ : Yµ → Xλ such that

gλqµλ
= hµqµ = pλλ′gλ′qµλ′ : Y → Xλ.

We may assume, without loss of generality, that µ ≥ µλ, µλ′ . Then
gλqµλµqµ = gλqµλ

= hµqµ = pλλ′gλ′qµλ′ = pλλ′gλ′qµλ′ µqµ.

Since each qµ is an epimorphism, it follows that
gλqµλµ = pλλ′gλ′qµλ′ µ.

In this way we have proven that
(g, gλ) : Y 0

¯
→X0

¯
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is a morphism of inv-(NV ectF )0
¯
. Denote by g = [(g, gλ)] : Y 0

¯
→ X0

¯
the

induced morphism of pro-(NV ectF )0
¯
. We are to prove that S0

¯
(1V ) : X → Y

is an isomorphism of Sh0
¯
(NV ectF ) by showing that g = (1V )−1 in pro-

(NV ectF )0
¯
. Namely,

(g, gλ)(i, iµ) = (ig, gλiµλ
) ∼ (1Λ0

¯
, 1λ)

in inv-(NV ectF )0
¯
. Indeed, given a λ′′ ≥ λ, λ′ ≡ λµλ

, one readily verifies that
gλiµλ

pλ′λ′′ = pλλ′′

holds true. Similarly,
(i, iµ)(g, gλ) = (gi, iµgλµ) ∼ (1M0

¯
, 1µ)

in inv-(NV ectF )0
¯
. Indeed, given a µ′′ ≥ µ, µ′ ≡ µλµ , one easily sees that

iµgλµqµ′µ′′ = qµµ′′ .

holds true. Therefore, 1V : X0
¯
→ Y 0

¯
is an isomorphism of pro-(NV ectF )0

¯
,

which completes the proof.

4. The quotient shape classification of lp spaces

Let us consider, for all 1 ≤ p ≤ ∞, the well known normed vectorial
spaces lp (over F ∈ {R,C}). Recall that, for every 1 ≤ p <∞,

lp = ({x = (ξi) ∈ FN | Σi∈N
∣∣ξi
∣∣p <∞}, ∥·∥p),

∥x∥p = (Σi∈N
∣∣ξi
∣∣p)

1
p ,

while
l∞ = ({x = (ξi) ∈ FN | (|ξi|) bounded}, ∥·∥∞),

∥x∥∞ = sup{|ξi| | i ∈ N}.

The algebraic operations are coordinatewise. Of course, no pair lp, lp′ , p ̸= p′,
is mutually isomorphic in NV ectF . Namely, they are not homeomorphic as
the topological (metric) spaces. However, algebraically, for all 1 ≤ p ≤ p′ ≤
∞, it holds

FN
0 E l1 E lp E lp′ E l∞ E FN

(in V ectF ; FN
0 is the direct sum space). Furthermore, one readily sees that

dimFN
0 = ℵ0, while, for every p, dim lp > ℵ0. Since |F | ≤ 2ℵ0 , Lemma 3.3

(ii) of [14] implies that, for every p, dim lp = dimFN = 2ℵ0 . (In general, with
CH assumed, for a separable Banach space X, dimX = ∞ is equivalent to
dimX = 2ℵ0 .) Therefore, for every p, FN

0 � lp ∼= FN algebraically (in V ectF ).
Now, for every related pair p ≤ p′, denote by

FN
0 (p′) E lp(p′) E lp′

the corresponding normed vectorial subspaces of lp′ (the vectorial spaces FN
0

and lp carrying the norm ∥·∥p′). Clearly, lp(p) = lp, while FN
0 (p) is not
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isomorphic (in NV ectF ) to lp nor to any lp(p′), neither lp(p′) is isomorphic
to lp or to lp′ , whenever p < p′. Notice that, in general, the normed spaces
FN

0 (p′) and lp(p′) are not closed in lp′ , and therefore, they are not Banach
spaces.

Although all the considered spaces, but l∞, are separable, and all but
FN

0 (p) and lp(p′) are complete, our common framework will be the category
NV cetF with respect to Banach spaces. Then, according to Theorem 3.4, the
quotient shape classifications of all FN

0 (p), lp and lp(p′) spaces reduce to their
finite shape classification.

By Example 4.8 of [14] (followed now by Proposition 3.7), for all 1 ≤
p ≤ p′ ≤ ∞, the normed vectorial spaces lp and lp(p′) have the same finite
quotient shape, i.e.,

Sh0(lp(p′)) = Sh0(lp).
Further, by Example 4.10 of [14] (followed now by Proposition 3.7), all the
normed vectorial spaces FN

0 (p) are of the same finite quotient shape, i.e., for
all 1 ≤ p, p′ ≤ ∞,

Sh0(FN
0 (p)) = Sh0(FN

0 (p′)).
An appropriate shape relationship between lp(p′) and lp′ . p < p′, i.e., between
lp and lp′ , p ̸= p′, remained as an open problem (see Remark 4.9 of [14]). In
solving the problem, the following topological facts are crucial.

Lemma 4.1.
(i) For each p, 1 ≤ p <∞, lp = Cl(FN

0 (p)). Consequently, for all 1 ≤ p ≤
p′ <∞, Cl(lp(p′)) = lp′ .

(ii) For each p, 1 ≤ p < ∞, Cl(lp(∞)) = Cl(FN
0 (∞)) (in l∞). Conse-

quently, for all 1 ≤ p, p′ < ∞, Cl(lp(∞)) = Cl(lp′(∞)), which are
proper (and Banach) subspaces of l∞.

Proof. Clearly, for every 1 ≤ p ≤ ∞, Cl(FN
0 (p)) E lp and FN

o (∞) ▹
lp(∞), and thus, Cl(FN

0 (∞)) E Cl(lp(∞)) in l∞. Further, for all 1 ≤ p ≤
p′ ≤ ∞, Cl(lp(p′)) E lp′ , and Cl(FN

0 (∞)) ▹ l∞ since l∞ is not separable. We
need to prove the appropriate converses.

(i) Let 1 ≤ p < ∞ and let x ∈ lp. Since all these spaces are metric,
we have to find a sequence (xn) in FN

0 (p) such that lim(xn) = x in lp.
Recall that x = (ξi), ξi ∈ F ∈ {R,C}, i ∈ N, such that Σi∈N

∣∣ξi
∣∣p <∞.

Put, for each n ∈ N,

xn = (ξ1, . . . , ξn, 0, 0, . . .) ∈ FN
0 .

Then
∥x− xn∥p = (Σi>n

∣∣ξi
∣∣p)

1
p ,

and thus,
(∥x− xn∥p)p = Σi>n

∣∣ξi
∣∣p .
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Since the series Σi∈N
∣∣ξi
∣∣p converges in R, the rest Σi>n

∣∣ξi
∣∣p is arbi-

trarily small when n is large enough. This means that

(∀ε > 0)(∃n0(ε) ∈ N)(∀n ≥ n0)(∥x− xn∥p)p < ε.

Since p ≥ 1, it implies that ∥x− xn∥p < εp < ε, whenever ε < 1, and
hence lim(xn) = x in lp.

(ii) It suffices to prove that, for each p, 1 ≤ p < ∞, Cl(lp(∞)) ⊆
Cl(FN

0 (∞)) holds true. Let us firstly prove that

Cl(FN
0 (∞)) = {y = (ηi) ∈ FN | lim(ηi) = 0 in F} ≡ c0 ▹ l∞.

Notice that FN
0 (∞) ⊆ c0 holds trivially and that c0 is complete ([10],

2.6., Zad. 1. p. 86) and hence closed in l∞. We are to prove that
c0 ⊆ Cl(FN

0 (∞)). Let y = (ηi) ∈ c0. It suffices to find a sequence (yn)
in FN

0 (∞) such that lim(yn) = y in l∞. This means that

(∀ε > 0)(∃n0(ε) ∈ N)(∀n ≥ n0)
∥y − yn∥∞ = sup{|ηi − ηi

n| | i ∈ N} < ε.

must hold. Let us put, for each n,

yn = (η1, . . . , ηn, 0, 0, . . .) ∈ FN
0 .

Then

∥y − yn∥∞ = sup{|ηi − ηi
n| | i ∈ N} = sup{|ηi| | i > n}.

Since lim(ηi) = 0 in F is equivalent to lim(|ηi|) = 0 in R, it follows
that ∥y − yn∥∞ becomes arbitrarily small when n → ∞. Therefore,
lim(yn) = y in l∞, that completes the proof of the statement.

It remains to prove that, for each p, 1 ≤ p < ∞, Cl(lp(∞)) ⊆
c0. Let x ∈ Cl(lp(∞)). Then there exists a sequence (xn) in lp(∞)
such that x = lim(xn) in l∞. Recall that, for every n ∈ N, xn =
(ξi

n), Σi∈N
∣∣ξi

n

∣∣p < ∞ (while ∥xn∥∞ = sup{|ξi
n| | i ∈ N}). Since

Σi∈N
∣∣ξi

n

∣∣p converges in R, the rest Σi>i0(n)
∣∣ξi

n

∣∣p becomes arbitrarily
small when i0(n) → ∞. Consequently, limi(

∣∣ξi
n

∣∣p) = 0 in R. Since
p ≥ 1, limi(

∣∣ξi
n

∣∣) = 0 in R as well, which is equivalent to limi(ξi
n) = 0

in F . Therefore, for every n ∈ N, xn ∈ c0. Since c0 is closed in l∞,
x = lim(xn) ∈ c0 holds true, that completes the proof of the lemma.

Corollary 4.2. All the spaces lp, 1 ≤ p < ∞, lp(p′), 1 ≤ p < p′ ≤ ∞,
FN

0 (s), 1 ≤ s ≤ ∞, and c0 have the same finite quotient shape, that is also
their countable quotient shape type (with respect to BV ectF ). Explicitly, if
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1 ≤ pi <∞, i = 1, 2, then, for all p′
i, p

′′
i , 1 ≤ pi ≤ p′

i, p
′′
i ≤ ∞,

Sh0
¯

(lp1) = Sh0
¯

(lp1(p′
1)) = Sh0

¯
(FN

0 (p′′
1)) = Sh0

¯
(c0)

= Shℵ0(lp2) = Shℵ0(lp2(p′
2)) = Shℵ0(FN

0 (p′′
2)) = Shℵ0(c0).

Proof. The first equality follows by Example 4.8 of [14], the second and
third by Example 4.10 of [14], Lemma 4.1 and Theorem 3.3, while the rest
follows then by Theorem 3.4.

Since every space Cl(lp(∞)), p ̸=∞, is a proper closed subspace of (non-
separable) l∞, it seems that Sh0

¯
(l∞) might differ from (the unique) type

Sh0
¯
(lp). We now have only the following fact.

Corollary 4.3.

Shℵ0(l∞) = Sh0
¯

(l∞) = Sh0
¯

(FN
0 (∞))∗∗) = Shℵ0(FN

0 (∞))∗∗),

where “ ∗∗” indicates the second dual (normed) space.

Proof. The first and third equality follow by Theorem 3.4. Let us prove
the second one. Firstly, if Y is a dense subspace of a normed vectorial space
X, i.e., Cl(Y ) = X (over F ∈ {R,C}) then, by the Hahn-Banach theorem
and by the uniqueness of extension of an continuous functional on Y onto
Cl(Y ) = X, one can straightforwardly prove that Y ∗ ∼= X∗ (the first dual
spaces). Then, clearly, Y ∗∗ ∼= X∗∗. Recall that Cl(FN

0 (∞)) = c0 (see the
proof of Lemma 4.1) and c∗

0
∼= l1 ([10], 2.6., Zad. 6., p. 86). Therefore,

FN
0 (∞)∗∗ ∼= Cl(FN

0 (∞))∗∗ = c∗∗
0
∼= l∗1

∼= l∞,

proves the second equality.

Remark 4.4. Recall that the subspace c E l∞ (of all convergent se-
quences in F ) is isomorphic to its subspace c0 (in BV ectF ). Therefore, all the
above proven quotient shape facts relating c0 to lp, lp(p′) and FN

0 (p′) spaces
hold true for c as well.

Recall that, in general, if p : X → X, p′ : X ′ → X ′ are expansion of
X, X ′ respectively, and f : X → X ′ is an isomorphism, then fp : X → X ′

and f−1p′ : X ′ → X are also expansions of X and X ′ respectively. Hence,
X and X ′ admit the same expansion systems. By Corollary 4.2, all lp and
lp(p′) spaces, 1 ≤ p < p′ ≤ ∞, and all direct sum spaces FN

0 (s), 1 ≤ s ≤ ∞,
admit (BV ectF )0

¯
-expansions, all having a common expansion systems. Let

us determine one of such common systems. It is much easier to consider
a unitary or the Hilbert case (FN

0 (2) or l2) than a general one. Although
dim(FN

0 (2)) = ℵ0 < 2ℵ0 = dim l2, we choose the Hilbert space l2 because
there are orthogonal complements in it. So, let us construct the canonical
(BV ectF )0

¯
-expansion of l2.
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Let {Zλ | λ ∈ Λ} be the set of all closed subspaces Zλ of l2. Then, for
every λ ∈ Λ, l2 = Zλ⊕Z⊥

λ (the orthogonal sum), where Z⊥
λ is the orthogonal

complement of Zλ in l2. Define
λ ≤ λ′ ⇔ Zλ′ E Zλ.

Then, obviously, (Λ,≤) is a partially ordered set. Furthermore, it is directed
because the intersection of two closed subspaces is a closed subspace which is
a subspace of both of them. Notice that the quotient functions

qλ : L2 → l2/Zλ, λ ∈ Λ,
qλλ′ : l2/Zλ′ → l2/Zλ, λ ≤ λ′,

are continuous open linear surjections satisfying qλλ′qλ′ = qλ and qλλ′qλ′λ′′ =
qλλ′′ , λ ≤ λ′ ≤ λ′′. Notice that, for each λ, l2/Zλ

∼= Z⊥
λ . Put Yλ = l2/Zλ,

λ ∈ Λ. Then
q = (qλ) : l2 → Y = (Yλ, qλλ′ ,Λ)

is a morphism of pro-BV ectF . Let

Λ0
¯

= {λ ∈ Λ | dim(l2/Zλ) <∞} ⊆ Λ,
carrying the partial order of Λ. Then Λ0

¯
is a directed partially ordered set as

well. Namely, dim(l2/Zλ) < dimZ⊥
λ = dim Yλ <∞, λ ∈ Λ0

¯
, implies that, for

every pair λ, λ′ ∈ Λ0
¯
, the intersection subspace Zλ ∩ Zλ′ is of the same kind,

i.e.,
dim(l2/(Zλ ∩ Zλ′)) <∞,

and thus there exists a λ′′ ≥ λ, λ′, λ′′ ∈ Λ0
¯

(with Yλ′′ ≡ l2/(Zλ ∩ Zλ′) and
max{dim Yλ, dimXλ′} ≤ dim Yλ′′ <∞). Let

q0
¯

= (qλ) : l2 → Y 0
¯

= (Yλ, qλλ′ ,Λ0
¯
)

to be the restriction of q : l2 → Y . It remains to verify that q0
¯

has the
factorization property (E1) with respect to every finite–dimensional Banach
space W . We may assume, without loss of generality, that W = Fn, for some
n ∈ N. Let f : l2 → Fn be a continuous linear function. Then the kernel
N(f) = f−1[{θ}] is a closed subspace of l2 implying that there exists a λ ∈ Λ
such that Zλ = N(f). Since l2/N(f) ∼= Im(f) and dim(Im(f)) ≤ n < ∞,
it follows that λ ∈ Λ0

¯
, i.e., l2/N(f) = Yλ is a term of Y 0

¯
. Now the desired

factorization of f through qλ and a unique continuous linear fλ : Yλ → Fn,
f = fλqλ, is the well known fact. Observe that the expansion system Y 0

¯
, as

an object, belongs to the pro-category pro-(HV ectF )0
¯

of all finite-dimensional
Hilbert spaces. Hence, q0

¯
: l2 → Y 0

¯
is also the canonical (HV ectF )0

¯
-

expansion of l2. (Caution! Hereby HV ectF ⊆ UV ectF denotes the full
subcategories of BV ectF ⊆ NV ectF respectively, i.e., all the continuous lin-
ear functions are included. Especially, for every pair X,Y ∈ Ob(UV ectF ),
X ∼= Y in UV ectF if and only if X ∼= Y in NV ectF .) Further, the cardi-
nal |Λ0

¯
| = 2ℵ0 = |l2| = dim l2, and it is minimal for all 0

¯
-expansions of the
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considered spaces. Namely, |Λ0
¯
| ≥ 2ℵ0 obviously holds. On the other hand,

the cardinality of the set of all closed subspaces of l2, each providing the
finite-dimensional quotient space, and the cardinality of the set of all finite-
dimensional subspaces of l2 equals (via orthogonal complements). Since each
finite-dimensional vectorial space is determined by a finite subset of a chosen
basis B (infinite) and by a finite subset of the field F (infinite), the cardinality
of the set of all finite-dimensional subspaces of l2 is less than or equal to

|F(F(B)×F(F ))| = |F(B)×F(F )| = |F(B)| · |F(F )| = |B| · |F |
= 2ℵ0 · 2ℵ0 = 2ℵ0

(F indicates the set of all finite subsets), and the conclusion follows. Notice
that, though FN

0 (2) admits a countable orthonormal basis, dim(FN
0 (2)) = ℵ0,

the analogous canonical construction for FN
0 (2) cannot yield the countable

cardinality of the index set. Namely, in this unitary non-Hilbert case, one
has to take into account all the direct complements of a Yλ. Or, in a more
general way, the countable cardinality of an index set implies that the system
is isomorphic to an inverse sequence. Then every such a candidate, for this
case, should be isomorphic to (Fn, qnn′ ,N), which cannot be an expansion
of any normed space on the direct sum vectorial space FN

0 (see also Lemma
3.4 of [14]) Finally, by Theorem 3.4, qℵ0

= q0
¯

: l2 → Y 0
¯

= Y ℵ0 is also
the canonical (BV ectF )ℵ0-expansion of l2, and consequently, the canonical
(HV ectF )ℵ0-expansion of l2 too.

We summarize the obtained results in the following theorem.

Theorem 4.5. For all p and all ordered pairs (p, p′), 1 ≤ p < p′ ≤ ∞,
and all s, 1 ≤ s ≤ ∞, there exist (BV ectF )0

¯
-expansions (the case κ−, when

κ = ℵ0)

q(p)0
¯

= (q(p)λ) : lp → Y 0
¯

= (Yλ, qλλ′ ,Λ0
¯

),
q(p, p′)0

¯
= (q(p, p′)λ) : lp(p′)→ Y 0

¯
and

q′(s)0
¯

= (q′(s)λ) : FN
0 (s)→ Y 0

¯
,

such that all of them share the same inverse system Y 0
¯

of (HV ectF )0
¯
⊆

(BV ectF )0
¯

, which has for its terms Yλ all the finite-dimensional quotient
spaces by all appropriate closed subspaces of l2, and for the bonds qλλ′ the
corresponding quotient functions, and the index set Λ0

¯
is of the minimal car-

dinality |Λ0
¯
| = 2ℵ0 among all their expansions. Those expansions are also

their (HV ectF )0
¯

-expansions as well as their expansions in the countable case
(the case κ, when κ = ℵ0, with respect to (BV ectF )ℵ0 and to (HV ectF )ℵ0).

Remark 4.6. The finite quotient shape classifications obtained in Exam-
ples 4.8 and 4.10 of [14] are valid for every F ∈ {Q,R,C} However, the im-
provements obtained hereby for F ∈ {R,C} are not valid for F = Q. Namely,
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no (metric) completion of a normed vectorial space over Q is a normed space
over Q (but a complete metric space only!).

5. The quotient shape classification of Lp spaces

We shall firstly recall and briefly consider the needed (algebraic) objects.
Given an n ∈ N, let Kn denote the n-cube

[a1, b1]× · · · × [an, bn] ⊆ Rn,

where ai, bi ∈ R and ai < bi, i = 1, . . . , n. Denote by C(Kn) the vectorial
space of all mappings (i.e., continuous functions) x : K → F (over F ∈ {R,C},
with the usual addition and multiplication by scalars). Then C(Kn) is a
proper subspace of the vectorial space FKn of all functions of Kn to F . Notice
that (CH assumed), |F | = 2ℵ0 and dim(FKn) > ℵ0, i.e., dim(FKn) ≥ 2ℵ0 .
and hence, |F | ≤ dim(FKn). Then, by Lemma 3.2. (iv) of [14] (and the
general continuum hypothesis GCH), for every n ∈ N,

dim(FKn) = |FKn | = |F ||Kn| = (2ℵ0)2ℵ0 = 22ℵ0 = 2ℵ1 .

Further, it is obvious that, for every n ∈ N, dimC(Kn) ≥ 2ℵ0 = |F |. There-
fore, by Lemma 3.2. (iv) of [14], dimC(Kn) = |C(Kn)|. Finally, since |C(Kn)|
< |FKn |, it follows (by GCH) that, for every n ∈ N, dimC(Kn) = 2ℵ0 . Con-
sequently, for every n ∈ N (and every n-cube Kn ⊆ Rn), C(Kn) ∼= FN

(algebraically).
For each p ∈ R, p ≥ 1, let, for every x ∈ C(Kn),

∥x∥p = (
∫

Kn

|x(t)|p dt)
1
p .

Then (C(Kn),∥·∥p) ≡ Cp(Kn) is a normed vectorial space (separable, non-
complete) and, for every pair p ̸= p′, the spaces Cp(Kn) and Cp′(Kn) are not
mutually isomorphic in NV ectF . (One may think that Cp(Kn) is a gener-
alized analogue of l1(p): Kn, mapping, definite integral versus N, absolutely
summable sequence, series.) Our first goal is to prove that, for a given n ∈ N,
all the normed spaces Cp(Kn) are of the same finite quotient shape type. In
the simplest case of n = 1 and F = R, we already know (Example 4.7 of [14])
that, for a given [a, b] ⊆ R, all the normed spaces Cp([a, b]) have the same
finite quotient shape type, i.e.,

(∀p, p′ ∈ R, p, p′ ≥ 1)Sh0
¯
(Cp([a, b])) = Sh0

¯
(Cp′([a, b])).

In the proof we have applied Jensen’s inequality

φ(
∫ b

a

f(t)dt) ≤
∫ b

a

φ(f(t))dt,
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(f ≥ 0 and φ convex). Namely, by means of φ(t) = t
p′
p , p ≤ p′, we have

shown that there exists an α > 0 such that, for every x ∈ C([a, b]),

∥x∥p ≤ α ∥x∥p′

holds. This has implied that the identity function on C([a, b]) becomes the
continuous

1p′

p : Cp′([a, b])→ Cp([a, b]),
whenever p ≤ p′. Then the conclusion has followed by the special 0

¯
-case of

Corollary 4.4 of [14], which is correctly proven by Proposition 3.7 hereby. One
readily sees that the same result holds for the complex functions x : [a, b]→ C,
in the case F = C, as well.

We shall hereby apply the same technique for every n ∈ N. Firstly, let us
make a small technical simplification by reducing an n-cube Kn to the unit
n-cube

In = [0, 1]n ⊆ Rn.

Recall that there exists a unique linear homeomorphism hn : In → Kn (given,
in the canonical basis of Rn, by its diagonal matrix Hn having all the diagonal
elements αii ̸= 0). It induces an (algebraic, linear) isomorphism

hF
n : C(Kn)→ C(In), hF

n (x) = xhn,

of the vectorial spaces (having the inverse (hF
n )−1 = (h−1

n )F ).

Lemma 5.1. For every n ∈ N and each p ∈ R, p ≥ 1, hF
n : Cp(Kn) →

Cp(In) is an isomorphism of NV ectF .

Proof. It suffices to prove that hF
n and (hF

n )−1 are continuous. The
continuity of hF

n immediately follows by the next fact:

(∃M > 0)(∀x ∈ Cp(Kn)) ∥xhn∥p = M ∥x∥p .

This fact is a consequence of Change of variables theorem (the change by hn).
Namely,∫

Kn

|x(t)|p dt =
∫

In

|x(hn(τ))|p · |det(hn)| dτ = |det(dhn)|
∫

In

|(xhn)(τ))|p dτ,

because det(dhn) ∈ R (the product of the diagonal elements of the matrixHn).
Thus, M = |det(dhn)|−

1
p > 0 is the desired constant. Since (hF

n )−1 = (h−1
n )F ,

the continuity of hF
n )−1 follows in the same way.

By Lemma 5.1, for every n ∈ N and every pair of n-cubes Kn,K
′
n ⊆ Rn,

and for each p ∈ R, p ≥ 1, the normed spaces Cp(Kn) and Cp(K ′
n) are

mutually isomorphic, i.e.,

Cp(Kn) ∼= Cp(In) ∼= Cp(K ′
n)
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in NV ectF holds true. Therefore, without loss of generality, we may consider
the normed space Cp(In) only, shortly denoted in the sequel by Cp(n). We
also include in our consideration the well known Banach space

C∞(Kn) ≡ (C(Kn), ∥·∥∞), ∥x∥∞ = max{|x(t)| t ∈ Kn}.
As before, the unique linear homeomorphism hn : In → Kn induces an (alge-
braic, linear) isomorphism

hF
n : C∞(Kn)→ C∞(In) ≡ C∞(n), hF

n (x) = xhn,

of the vectorial spaces, and (hF
n )−1 = (h−1

n )F . Hereby, for every n ∈ N, hF
n is

an isomorphism of Banach spaces. Indeed, one straightforwardly verifies that
∥xhn∥∞ ≤M ∥x∥∞ ,

where M = max{|αii| | i = 1, . . . , n} (αii - diagonal elements of the matrix
Hn).

Theorem 5.2. Given n ∈ N, for every x ∈ C(In) and each related pair
p ≤ p′, the inequalities

∥x∥p ≤ ∥x∥p′ ≤ ∥x∥∞

hold true. Consequently, the identity functions 1p′

p (n) : Cp′(n) → Cp(n),
p ≤ p′, and 1∞

p (n) : C∞(n)→ Cp(n) are continuous.

Proof. We firstly need Jensen’s inequality for real multivariable map-
pings, i.e., for every mapping

f : Kn → R, f(t) = f(t1, . . . , tn) ≥ 0, n ∈ N

(though In would do). The basic case n = 1 holds true because it is Jensen’s
original inequality. Notice that, in a proof by induction, one may reduce
(by Fubini’s theorem) the proving of the inductive step n 7→ n + 1, to the
verification of the first step 1 7→ 2. Denote

g(t1) ≡
∫ b2

a2

f(t1, t2)dt2, t1 ∈ [a1, b1].

Then g(t1) ≥ 0, and thus for every convex function φ,

φ(
∫

K2

f(t)dt) = φ(
∫ b1

a1

(
∫ b2

a2

f(t1, t2)dt2)dt1) = φ(
∫ b1

a1

g(t1)dt1)

≤
∫ b1

a1

φ(g(t1))dt1 =
∫ b1

a1

φ(
∫ b2

a2

f(t1, t2)dt2)dt1

≤
∫ b1

a1

(
∫ b2

a2

φ(f(t1, t2))dt2)dt1

=
∫ b1

a1

(
∫ b2

a2

(φf)(t1, t2))dt2)dt1 =
∫

K2

(φf)(t)dt,
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that verifies the first step, and proves the inequality by induction. Now ob-
serve that the function

φ : R+ ∪ {0} → R, φ(τ) = τ
p′
p ,

is convex, whenever p ≤ p′. By Jensen’s inequality from above, it follows that

(∥x∥p)p′
=
(∫

In

|x(t)|p dt
) p′

p = φ(
∫

In

|x(t)|p dt)

≤
∫

In

φ(|x(t)|p)dt =
∫

In

|(x(t)|p)
p′
p dt =

∫
In

|x(t)|p
′
dt = (∥x∥p′)p′

.

Hence, ∥x∥p ≤ ∥x∥p′ .Further, for every 1 ≤ p <∞,

∥x∥p =
(∫

In

|x(t)|p dt
) 1

p ≤
(∫

In

(max{|x(t)|}pdt
) 1

p

= (max{|x(t)|}p

∫
In

dt)
1
p = (max{|x(t)|}p · 1)

1
p = ∥x∥∞ .

We have achieved our first goal by the following

Corollary 5.3. Given an n ∈ N, all the normed vectorial spaces Cp(Kn)
and C∞(K ′

n) are of the same finite quotient shape type. More precisely,
(∀n ∈ N)(∀Kn,K

′
n ⊆ Rn, n-cubes)(∀p, p′ ∈ R, p, p′ ≥ 1)

Sh0
¯

(Cp(Kn)) = Sh0
¯

(Cp′(K ′
n)) = Sh0

¯
(C∞(Kn)) = Sh0

¯
(C∞(K ′

n)).

Proof. Recall that Cp(Kn) ∼= Cp(n) ∼= Cp(K ′
n) and C∞(Kn) ∼=

C∞(n) ∼= C∞(K ′
n), and then apply Theorem 5.2 and Proposition 3.7.

We can now pass to the Lp spaces. Recall that Lp(Kn), 1 ≤ p < ∞, is
the completion of Cp(Kn) in its second dual space Cp(Kn)∗∗, i.e.,

Lp(Kn) = Cl(j[Cp(Kn)]),
where j : Cp(Kn) → Cp(Kn)∗∗ is the canonical embedding via the first dual
space Cp(Kn)∗. The normed space Lp(In) = Cl(j[Cp(n)]) is denoted by
Lp(n). Each Lp(Kn) is separable Banach space, L2(Kn) is a Hilbert space,
and the (algebraic) dimension dim(Lp(Kn)) = 2ℵ0 .

Lemma 5.4. For every n ∈ N, and every pair of n-cubes Kn,K
′
n ⊆ Rn

and each p ∈ R, p ≥ 1, the normed vectorial spaces Lp(Kn) and Lp(K ′
n) are

mutually isomorphic, Lp(Kn) ∼= Lp(K ′
n).

Proof. Notice that there exists the completion functor
Cl : NV ectF → BV ectlF

determined by X 7→ Cl(X) ⊆ X∗∗ and (f : X → Y ) 7→ (f̄ : Cl(X) : Cl(Y ))
(the unique continuous linear extension of jf : X → Cl(Y )). By Lemma
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5.1, hF
n : Cp(Kn) → Cp(n), hF

n (x) = xhn, is an isomorphism of NV ectF . By
applying functor Cl to hF

n , it follows that

hF
n : Lp(Kn)→ Lp(n)

is an isomorphism of BV ectF . Then the conclusion
Lp(Kn) ∼= Lp(n) ∼= Lp(K ′

n)
follows obviously.

In order to establish the final results about the quotient shapes of Lp

spaces, we only need include within some general facts obtained in Section 3.

Theorem 5.5. For every n ∈ N, all the normed vectorial spaces Lp(Kn),
Cp′(K ′

n) and C∞(K ′′
n), where Kn,K

′
n,K

′′
n ⊆ Rn are n-cubes and 1 ≤ p, p′ <

∞, have the same finite quotient shape type, that is also their countable quo-
tient shape type (with respect to BV ectF ). Explicitly, for all all n-cubes
Kn,K

′
n,K

′′
n ⊆ Rn and all 1 ≤ pi, p

′
i, p

′′
i , p

′′′
i <∞, i = 1, 2,

Sh0
¯

(Lp1(Kn)) = Sh0
¯

(Lp′
1
(n)) = Sh0

¯
(Cp′′

1
(K ′

n)) = Sh0
¯

(Cp′′′
1

(n))
= Sh0

¯
(C∞(n)) = Sh0

¯
(C∞(K ′′

n)) = Shℵ0(C∞(n))
= Shℵ0(Lp2(Kn)) = Shℵ0(Lp′

2
(n)) = Shℵ0(Cp′′

2
(K ′

n))
= Shℵ0(Cp′′′

2
(n)).

Proof. By Theorem 3.3 (index i = 1 is omitted), Sh0
¯
(Lp(Kn)) =

Sh0
¯
(Cp(Kn)), while by Corollary 5.3, Sh0

¯
(Cp(Kn)) = Sh0

¯
(Cp′(n)) =

Sh0
¯
(C∞(n)). Then, by Theorem 3.3 again, Sh0

¯
(Lp(Kn)) = Sh0

¯
(Lp′(n)).

Further, in the same way (by applying Theorem 3.3 and Corollary 5.3),
Sh0

¯
(Lp′(n)) = Sh0

¯
(Cp′(n)) = Sh0

¯
(Cp′′(K ′

n)) = Sh0
¯
(Cp′′′(n)) = Sh0

¯
(C∞(n))

= Sh0
¯
(C∞(K ′′

n)). The rest follows then by Theorem 3.4.

Since every L2(Kn) is a Hilbert space, we can easily establish an analogue
of Theorem 4.5 for Lp spaces. Let

u(n)0
¯

= (u(n)µ) : L2(n)→ L(n)0
¯

= (L(n)µ, u(n)µµ′ ,M(n)0
¯
)

be the canonical (BV ectF )0
¯
-expansion of L2(n). Then L(n)0

¯
is actually

an object of (HV ectF )0
¯
⊆ (BV ectF )0

¯
, and u(n) : L2(n) → L(n)0

¯
is an

(HV ectF )0
¯
-expansion of L2(n) as well. Then Theorem 5.5 yields the follow-

ing consequence.

Corollary 5.6. Let n ∈ N. For all n-cubes Kn,K
′
n,K

′′
n ⊆ Rn and all

1 ≤ p, p′ <∞, there exist (BV ectF )0
¯

-expansions (the case κ−, when κ = ℵ0)
u(n, p)0

¯
= (u(n, p)µ) : Lp(Kn)→ L(n)0

¯
= (L(n)µ, uµµ′(n),M(n)0

¯
),

u(n, p′)0
¯

= (u(n, p′)µ) : Cp′(K ′
n)→ L(n)0

¯
and

u′(n)0
¯

= (u′(n)µ) : C∞(K ′′
n)→ L(n)0

¯
,
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such that all of them share the same inverse system L(n)0
¯

of (HV ectF )0
¯
⊆

(BV ectF )0
¯

, which has for its terms L(n)µ all the finite-dimensional quotient
spaces by all appropriate closed subspaces of L2(n), and for the bonds u(n)µµ′

the corresponding quotient functions, and the index set M(n)0
¯

is of the min-
imal cardinality |M(n)0

¯
| = 2ℵ0 among all their expansions. Those expan-

sions are also their (HV ectF )0
¯

-expansions as well as their expansions in the
countable case (the case κ, when κ = ℵ0, with respect to (BV ectF )ℵ0 and to
(HV ectF )ℵ0).

Remark 5.7.
(a) In the same manner of Lp spaces, one can establish the quite analogous

finite (equals countable) quotient shape classification of (the complete-
ness’ Lp(Rn) of) the normed vectorial spaces C0p(Rn), 1 ≤ p < ∞, of
all mappings with compact support.

(b) It seems that the quotient shape studying of Banach algebras could
yield very useful results as well.

6. The quotient shapes of Sobolev spaces

We shall now apply the same technique to the more general class of
normed vectorial spaces - the Sobolev spaces (yet, in the special case of real
functions having the continuous partial derivatives up to a given order ([10],
2.8.5., p. 102).

Given an n ∈ N, let Ωn ⊆ Rn be a domain (connected open subspace).
Further, given a k ∈ N, let C(k)

0 (Ωn) be the vectorial space of all functions
x : Ωn → R (over F = R) such that the support

suppf = Cl({t ∈ Ωn | x(t) ̸= 0}) ⊆ Ωn

and that x have all (usual) partial derivatives up to order k continuous on
Ωn. Then, for each p, 1 ≤ p <∞, by

∥x∥p =
(∫

Ωn

|x(t)|p dt
) 1

p +
(∫

Ωn

( ∑
k1+···+kn

( ∂kx(t)
∂tk1

1 · · · ∂t
kn
n

)2) p
2
dt
) 1

p

it is defined a norm on C
(k)
0 (Ωn). The normed space (C(k)

0 (Ωn), ∥·∥p) is de-
noted by C(k)

0p (Ωn).

Lemma 6.1. Let an n ∈ N, a domain Ωn ⊆ Rn and a k ∈ N be given.
Then, for every x ∈ C(k)

0 (Ωn) and each ordered pair p ≤ p′, 1 ≤ p, p′ < ∞,
the inequality

∥x∥p ≤ ∥x∥p′

holds true. Consequently, the identity function 1p′

p : C(k)
0p′ (Ωn) → C

(k)
0p (Ωn) is

continuous, whenever p ≤ p′.
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Proof. According to the definition, ∥x∥p can be written down as the
sum α(x, p) + β(x, p), where

α(x, p) ≡
(∫

Ωn

|x(t)|p dt
) 1

p ≥ 0, and

β(x, p) ≡
(∫

Ωn

( ∑
k1+···+kn

( ∂kx(t)
∂tk1

1 · · · ∂t
kn
n

)2) p
2
dt
) 1

p ≥ 0.

Further, as in the proof of Theorem 5.2, for each pair p ≤ p′,(∫
Ωn

|x(t)|p dt
) p′

p ≤
∫

Ωn

|x(t)|p
′
dt and

(∫
Ωn

( ∑
k1+···+kn

( ∂kx(t)
∂tk1

1 · · · ∂t
kn
n

)2) p
2
dt
) p′

p

≤
∫

Ωn

( ∑
k1+···+kn

( ∂kx(t)
∂tk1

1 · · · ∂t
kn
n

)2) p′
2
dt

hold true by Jensen’s inequality. Therefore,

α(x, p)p′
≤ α(x, p′)p′

and β(x, p)p′
≤ β(x, p′)p′

,

and thus,
α(x, p) ≤ α(x, p′) and β(x, p) ≤ β(x, p′),

and finally,

∥x∥p = α(x, p) + β(x, p) ≤ α(x, p′) + β(x, p′) = ∥x∥p′ .

The conclusion follows immediately.

The closure Cl(j[C(k)
0p (Ωn)]) of C(k)

0p (Ωn), isometrically embedded in the
second dual space C

(k)
0p (Ωn)∗∗, is called the Sobolev space, denoted by

W
(k)
p (Ωn). It is a Banach space, and W

(k)
02 (Ωn) is a Hilbert space.

Theorem 6.2. For every n ∈ N, every domain Ωn ⊆ Rn and every k ∈ N,
all the normed vectorial spaces C(k)

0p (Ωn) and all Sobolev spaces W (k)
p′ (Ωn),

1 ≤ p, p′ < ∞, have the same finite quotient shape type, that is also their
countable quotient shape type (with respect to BV ectF ). Explicitly, for all
1 ≤ pi, p

′
i, p

′′
i , p

′′′
i <∞, i = 1, 2,

Sh0
¯

(W (k)
p1

(Ωn)) = Sh0
¯

(Ω(k)
p′

1
(Ωn)) = Sh0

¯
(C(k)

0p′′
1
(Ωn)) = Sh0

¯
(C(k)

0p′′′
1

(Ωn))

= Shℵ0(W (k)
p2

(Ωn))) = Shℵ0(W (k)
p′

2
(Ωn)) = Shℵ0(C(k)

0p′′
2
(Ωn))

= Shℵ0(C(k)
0p′′′

2
(Ωn)).
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Proof. By Theorem 3.3 (index i = 1 is omitted), Sh0
¯
(W (k)

p (Ωn)) =
Sh0

¯
(C(k)

0p (Ωn)), while by Lemma 6.1 and Proposition 3.7, Sh0
¯
(C(k)

0p (Ωn))) =
Sh0

¯
(C(k)

0p′ (Ωn)). Then, by Theorem 3.3 again,

Sh0
¯
(C(k)

0p′ (Ωn))) = Sh0
¯
(W (k)

p′ (Ωn)),
and so on for the finite shape. The statements concerning the countable shape
follow then by Theorem 3.4.

Since every W (k)
2 (Ωn) is a Hilbert space, we can establish an analogue of

Theorem 4.5 and Corollary 5.6 for the Sobolev spaces W (k)
p (Ωn). Let

w(k,Ωn) = (w(k,Ωn)ν) : W (k)
2 (Ωn)→W (k,Ωn)0

¯
= (W (k,Ωn)ν , r(k,Ωn)νν′ , N(k,Ωn)0

¯
)

be the canonical (BV ectF )0
¯
-expansion of W (k)

2 (Ωn). Then W (k,Ωn)0
¯

is an
object of (HV ectF )0

¯
⊆ (BV ectF )0

¯
, and w(k,Ωn) : W (k)

2 (Ωn) → W (k,Ωn)0
¯

is an (HV ectF )0
¯
-expansion of W (k)

2 (Ωn) as well. Then Theorem 6.2 gives the
following corollary.

Corollary 6.3. Let n ∈ N, Ωn ⊆ Rn a domain and k ∈ N. For all
1 ≤ p, p′ <∞, there exist (BV ectF )0

¯
-expansions (the case κ−, when κ = ℵ0)

w(k,Ωn, p)0
¯

= (w(k,Ωn, p)ν) : W (k)
p (Ωn)→W (k,Ωn)0

¯
= (W (k,Ωn)ν , r(k,Ωn)νν′ , N(k,Ωn)0

¯
)

and
w′(k,Ωn, p

′)0
¯

= (w′(k,Ωn, p
′)ν) : C(k)

0p′ (Ωn)→W (k,Ωn)0
¯

such that all of them share the same inverse system W (k,Ωn)0
¯

of (HV ectF )0
¯⊆ (BV ectF )0

¯
, which has for its terms W (k,Ωn)ν all the finite-dimensional

quotient spaces by all appropriate closed subspaces of W (k)
2 (Ωn), and for the

bonds r(k,Ωn)νν′ the corresponding quotient functions, and the index set
N(k,Ωn)0

¯
is of the minimal cardinality |N(k,Ωn)0

¯
| = 2ℵ0 among all their

expansions. Those expansions are also their (HV ectF )0
¯

-expansions as well
as their expansions in the countable case (the case κ, when κ = ℵ0, with
respect to (BV ectF )ℵ0 and to (HV ectF )ℵ0).

Remark 6.4. In light of Corollary 6.3, for some classes of partial differ-
ential equations, it might exist satisfactory approximate solutions “within the
spectra” of finite-dimensional Hilbert spaces (i.e., Euclidean spaces) coming
from their (HV ectF )0

¯
-expansions. Much more interesting and very useful

quotient shape classification could be that of the general Sobolev spaces Hs

(of all appropriate generalized functions - distributions; [12], Part II, Sections
6 and 8.8). We believe that it is analogous to that of the special Sobolev
spaces W (k)

p (Ωn) established in Theorem 6.2.
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Kvocientni oblici lp i Lp prostora

Nikica Uglešić

Sažetak. Svi lp prostori (nad istim poljem F , p ̸= ∞)
imaju konačni kvocientni oblikovni tip Hilbertova prostora l2. To
je ujedno konačni kvocientni oblikovni tip i svih njihovih pod-
prostora lp(p′), p < p′ ≤ ∞, kao i svih direktnih suma FN

0 (p′),
1 ≤ p′ ≤ ∞. Nadalje, njihovi prebrojivi kvocientni oblikovni
tipovi svode se na onaj konačni. Slično, za dani n ∈ N, svi Lp

prostori (nad istim poljem, p ̸= ∞) imaju konačni kvocientni
oblikovni tip Hilbertova prostora L2, a i njihovi prebrojivi kvo-
cientni oblikovni tipovi se svode na onaj konačni. Analogne tvrd-
nje vriede i za Soboljevljeve prostore realnih funkcija s odgovara-
jućim neprekidnim parcijalnim derivacijama.
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