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ABSTRACT 

Noise pollution is one of the most relevant problems in urban area. The main source of noise pollution 

is the number and type of motor vehicles, but other parameters depending on street configuration 

yield to a system hardly to be exactly modelled by classical mathematical methods. Smart cities are 

expected to dynamically control the urban traffic to reduce not just traffic jams, but also to ensure a 

comfortable noise level for inhabitants. 

This article gives a design method for efficient genetic fuzzy modelling of traffic generated smart 

cities noise pollution based on fuzzy logic, multi objective genetic algorithm, gradient descent 

optimisation and singular value decomposition in the MATLAB environment. Genetic algorithms 

with objectives to minimise the maximum absolute identification error, the root mean square of the 

identification error, reduce model complexity and ensure maximal numerical robustness are applied to 

Zadeh type fuzzy partition membership function parameters preliminary identification, and then 

gradient descent method is used for their fine-tuning optimization, while the fuzzy rule consequence 

linear parameters are calculated by singular value decomposition method to find the least squares 

optimal training data fitting of the model. The training data set is built from measured data, combined 

with carefully selected simulation data to ensure the completeness of the model and its numerical 

robustness. 

Detailed analysis of the method and results by computer simulation of the identification process show 

the validity of the proposed method. 
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INTRODUCTION 

Noise pollution is an uncomfortable sound level obstructing the quality of life, typical to 

industrial road side areas with high traffic. Traffic jams and heavy traffic are highly annoying 

and obstructing not just because of time loss and increased engine exhaust air pollution 

effects, but also because of noise pollution. Intelligent, flexible traffic control is one of the 

popular subjects of smart city research. Solutions taking care of the life quality of resident 

people along roads do consider the noise levels. There are many passive construction design 

solutions to reduce the traffic noise starting from building protective walls, changing the road 

surface or planting appropriate vegetation between the road and houses [1]. The bottom line 

is that the traffic nose primarily depends on two hard to change factors – the street width and 

the house heights defining the geometry, the air volume which is subject to the third obvious 

factor, the noise source level itself, which is produced by the number passing vehicles. So a 

smart city traffic control system balancing the nose pollution has to primarily relay on 

balancing the number of vehicles passing by each fixed configuration street. The noise level 

depends not only on the number of vehicles, but also on their type. There are multiple levels 

of differentiations; the most basic is: cars, motorcycles and heavy vehicles [2]. 

This paper presents a design method for efficient genetic fuzzy modelling of the traffic 

generated urban noise pollution. Fuzzy systems are known to be trainable for universal 

nonlinear function approximations even for as complex problems as multi-rotor copter flight 

dynamics modelling [3]. By using Zadeh-type fuzzy partitions for the antecedent part we can 

guarantee the continuity of the fuzzy system output for the complete input space [4]. Genetic 

algorithms are known powerful tools for global nonlinear search, thus suitable for efficient 

preliminary identification of fuzzy membership parameters [5] and also capable of fuzzy 

structure optimisation [6]. We use an alternative multi-objective vector comparison in a 

dominance based ranking method scheme [7], since the two essential quality indicators of any 

function approximation – the maximum absolute error and the root mean square error – are 

independent properties usually competing with the model complexity, while all are to be 

simultaneously minimised. Once the proximity of the global optimum of membership 

parameters is found, we can rely on fast gradient descent methods to pinpoint the exact 

optimal values of membership parameters that minimise the approximation error. Using an 

appropriate representation of the Takagi-Sugeno-Kang type fuzzy logic system the 

calculation of fuzzy rule consequent linear free parameters becomes a high dimensional, but 

still a mere linear equation solving problem, which we can solve by a numerically robust, 

least square error optimal singular value decomposition method [8]. 

Analysing the singular values of fuzzy rule parameters we can also evaluate the quality of the 

used training data relative to the planned antecedent membership function fuzzy-cluster 

complexity, more even we can use this information to select only important samples from the 

training data, thus reducing its size, while maintaining the numerical quality of the solution [9]. 

As the (for us) available measured data is by far insufficient for creating a universal noise 

level model [10], we include to our training set results by other models to obtain a well-defined 

robust complete fuzzy system of continuous output, no worse than the current known models, 

an also having the potential for seamless further quality improvements by training for any 

further real life measured data or any new model data. 

NOISE POLLUTION MODELLING 

Noise pollution sound pressure systems have very complex structure and therefore it is very 

hard to identify. Previous efforts [1, 2] have been devoted to determining linear 
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representations and linear combinations of the system parameter logarithmic values in the 

following general form: 

 𝐿𝐴𝑒𝑞𝑇  =  𝛼0  + 𝛼1𝑛𝑒𝑞  +  𝛼2𝑋 , (1) 

where 𝐿𝐴𝑒𝑞𝑇  is the equivalent continuous sound level in decibel (dB), 𝛼𝑖  denotes 

identification parameters, neq is the number of or the logarithm of the number of equivalent 

vehicles per hour, X is a function of the observer distance from the noise source or W that is 

either the width or the logarithm of the width of the road, advanced models also account for 

H, the average height or the logarithm of the height of buildings in the considered road 

section, which is responsible for the sheer air volume where the noise is distributed, and also 

the refraction surface, further on some models also include dampening and amplifying 

modifiers as the road surface quality, the elevation of the road, distance from junctions and 

other vehicle velocity factors. The equivalent number of vehicles neq, the most important 

factor for the noise level can be in general defined as: 

 𝑛𝑒𝑞 = 𝑛𝑐 + 𝛽1𝑛𝑚𝑐 + 𝛽2𝑛ℎ𝑣, (2) 

where nc is the number of passing cars, nmc of motorcycles, nhv of heavy vehicles, and ci are 

multiplication coefficients usually 𝛽1 is between 2 and 4, 𝛽2 is between 8 and 16. Such linear 

models are often used because they are easy to implement, albeit they allow only an 

approximate modelling of the real urban traffic noise pollution. For more accurate results in 

modelling real nonlinear systems it is advised to use nonlinear models [11-13]. 

NOISE MEASUREMENT 

The set of measurements is performed on various street roads of a typical medium-size 

northern Serbia town of Subotica. The suitable method for determining the noise pollution is 

the measurement of the effective equivalent A-weighted energy-average sound pressure level, 

with the following approximation: 

 𝐿𝐴𝑒𝑞𝑇  = 10log (
1

𝑇
∑ 10𝐿𝑖/10𝑇
𝑖=1 ), (3) 

where T is the observation time, the number of sound level samples to be accumulated, Li is 

the A-weighted sound level in dB(A), defined in the sound level meter standards IEC 60651, 

IEC 60804, IEC 61672, ANSI S1.4. The number of cars, motorcycles and heavy vehicles per 

minute was visually monitored in person, and manually counted. 

FUNCTION IDENTIFICATION BY ZADEH-TYPE FUZZY PARTITIONS 

For the noise pollution model identification method we use fuzzy logic systems (FLSs) with 

Zadeh-formed membership functions (MFs). More exactly we use Takagi-Sugeno-Kang 

(TSK) type FLSs having n=3 inputs and 1 output. These FLSs can be expressed as: 

 𝑓(𝒙) = ∑ 𝜔𝑙(𝒙) ∙ 𝑦𝑙(𝒙)
𝑀
𝑙=1 /∑ 𝜔𝑙(𝒙)

𝑀
𝑙=1 , (4) 

where M is the number of fuzzy rules, x is the vector of n input variables, 𝑦𝑙  is a scalar 

function of n input variables, and y is a linear function of inputs for the first order TSKs. Thus 

𝑦𝑙 is defined by n + 1 parameters, respectively. The antecedent, the premise part of a fuzzy 

rule is defined by MFs as: 

 𝜔𝑙(𝒙) = ∏ 𝜇𝐹𝑙(𝑖)(𝑥𝑖)
𝑛
𝑖=1 , (5) 

where 𝜇𝐹𝑙(𝑖)(𝑥𝑖) is the membership function of the i
th

 input variable in the l
th

 rule that defines 

the linguistic value Fl(i). The human readable, intuitive linguistic form of the l
th

 rule from the 

previously described first order TSK FLS is [14]: 
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 IF (x1 is Fl(1)) AND (x2 is Fl(2))… AND (xn is Fl(n)) THEN 𝑦𝑙 = ∑ 𝑐𝑙(𝑗) ∙ 𝑥𝑗 + 𝑐𝑙(0)
𝑛
𝑗=1 . (6) 

We can use fuzzy partitions defined by Zadeh-formed MFs. For 𝒃 parameters 𝑏1 ≤ 𝑏2 ≤
𝑏3 ≤ 𝑏4 defining the MFs, which are non-linear second order polynomial, so called Z-, S-, 

and 𝜋-functions, named after their shape, defined respectively as: 

 

𝑚𝑓𝑧(𝑥, 𝑏1, 𝑏2) =

{
 

 
1 𝑥 ≤ 𝑏1

1 − 2((𝑥 − 𝑏1)/(𝑏2 − 𝑏1))
2 𝑏1 < 𝑥 ≤ ½(𝑏2 + 𝑏1) 

2((𝑏2 − 𝑥)/(𝑏2 − 𝑏1))
2 ½(𝑏2 + 𝑏1) < 𝑥 ≤ 𝑏2

0 𝑥 > 𝑏2
𝑚𝑓𝑠(𝑥, 𝑏1, 𝑏2) = 1 −𝑚𝑓𝑧(𝑥, 𝑏1, 𝑏2)

𝑚𝑓𝜋(𝑥, 𝑏1, 𝑏2, 𝑏3, 𝑏4) = {
𝑚𝑓𝑠(𝑥, 𝑏1, 𝑏2)

1
𝑚𝑓𝑧(𝑥, 𝑏3, 𝑏4)

𝑥 ≤ 𝑏2
𝑏2 < 𝑥 ≤ 𝑏3
𝑥 > 𝑏3.

 (7) 

For setups when more than one value x exists, such that the degree of membership of x is 

equal to one, the interval where the 𝜇𝑘(𝑥, 𝒃) = 1 (the interval [b2, b3] for 𝑚𝑓𝜋 type 𝜇𝑘) is the 

so-called plateau of the 𝜇𝑘 MF. When having for example three naturally ordered linguistic 

values l ∈ {𝛼 , 𝛽 , 𝛾} (for example 𝛼  = ‘low’, 𝛽  = ‘medium’, 𝛾  = ‘large’) there are hard 

constraints on bi parameters to preserve the natural linguistic ordering: 

 

𝑏𝑎1 < 𝑏𝑏1 < 𝑏𝑐1
𝑏𝑎2 ≤ 𝑏𝑎3 < 𝑏𝑏2 ≤ 𝑏𝑏3 < 𝑏𝑐2 ≤ 𝑏𝑐3
𝑏𝑎4 < 𝑏𝑏4 < 𝑏𝑐4.

 (8) 

When a linguistic variable can be assigned K different linguistic values, each described by a 

MF 𝜇𝑘(𝑥, 𝒃) such that for every input x it holds that ∑ 𝜇𝐾
𝑘=1 𝑘

(𝑥, 𝒃) = 1, the MFs are said to 

form a fuzzy-partition. By imposing restrictions (8) on all linguistic variables of the FLS, and 

assuming the rule base is complete – it covers the whole input domain – it follows that the 

TSK model structure (4) for a multi-input x vector simplifies to [15]: 

 𝑓(𝒙) = ∑ 𝜔𝑙(𝒙, 𝒃𝒍) ∙ 𝑦𝑙(𝒙, 𝒄𝒍)
𝑀
𝑙=1 = 𝑾(𝒙, 𝒃) ∙ 𝒄, (9) 

where c is the compound vector of all the so called linear cl and b is the compound vector of 

non-linear bl parameters (parameters defining the linear and non-linear sub-functions) of the 

fuzzy system and W is the appropriate compound coefficient matrix such that equation (9) 

holds. This way the resulting formula is simple, still guarantying uniform input coverage and 

continuous system output – TSK FLSs of fuzzy partitions can even be made periodic [3, 18]. 

MULTI-OBJECTIVE GENETIC ALGORITHMS 

A genetic algorithm (GA) is constructed on bases of imitating natural biological processes 

and natural Darwinian evolution. GAs are widely used as a search and optimisation tool [16]. 

Real-life optimisation problems often have multiple objectives. The comparison of two 

vectors in this case is not trivial. Multiobjective optimisation can be defined as the problem of 

finding a vector of decision variables which satisfies constraints and optimises a vector 

function whose elements represent the objective functions. These functions form a 

mathematical description of performance criteria that are usually in conflict with each other. 

Hence, the term “optimise” means finding such a solution that would give the values of all 

the objective functions acceptable to the designer [17]. 

Introduced in [5] and elaborated in [18] the idea behind the definition of a new vector 

comparison algorithm, named quality-dominance is to extend the Pareto-dominance relation 

in a way that a domination decision could be also made for vectors, which are not comparable 
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by Pareto dominance, while a human heuristic would name a clear preference. Defining a 

dominance relation <q(r, s) (or briefly g <q s) between two vectors of n elements r = (ri) and s 

= (si), for i=1..n, n ∈ ℕ+, where each i
th

 element type has a well-defined scalar ‘<’ (less than) 

strict partial order binary endorelation and also the equivalence relation ‘=’ is defined. 

Defining a helper function #q<(r, s), which for vectors r and s defines two values (gr, lr) = 

#q<(r, s), where gr, lr ∈ ℕ0 and gr is equal to the cardinality of set Grs={ ri | si < ri }, i=1..n; 

and lr is equal to the cardinality of set Lrs={ rj | rj < sj }, j=1..n. For a minimisation problem 

vector r quality-dominates vector s, or briefly: r <q s if gr < lr or in case of gr = lr r quality-

dominates vector s if ∑ (𝑟𝑖 − 𝑠𝑖)𝑖 < ∑ (𝑠𝑗 − 𝑟𝑗)𝑗 , where i is such that 𝑟𝑖 ∈ 𝐺𝑟𝑠 and j is such that 

𝑟𝑗 ∈ 𝐿𝑟𝑠. In [5] a measurement value for <q(r, s) is defined as 

 d<q(r, s) = {
𝑙𝑟 − g𝑟 ,   for g𝑟 < 𝑙𝑟 ,

∑
(𝑠𝑗−𝑟𝑗)

𝑙𝑟
− ∑

(𝑟𝑖−𝑠𝑖)

g𝑟
,   for g𝑟 = 𝑙𝑟 ,𝑖𝑗

 (10) 

where i is such that 𝑟𝑖 ∈ 𝐺𝑟𝑠 and j is such that 𝑟𝑗 ∈ 𝐿𝑟𝑠. 

We use the dominance measurement based ranking method [18]. At generation t the 

dominance measurement based rank of the i
th

 individual ri
t
 in a GA population, which 

dominates all sj
t
 individuals in the current population is the i

th
 individual current position, the 

individual’s rank is defined as: 

ranki(ri
t
) is the sum of the dominated comparison measurements for every other sj

t
 individual 

of generation t in correlation to the i
th

 individual. 

rank(ri
t
) = ∑ 𝒅<∗(𝒓𝒊

𝒕, 𝒔𝒋
𝒕)𝑛

𝑗=1 , where ‘*’ can stand for any comparison method (the classical 

Pareto vector-, the new quality vector-, or the simple weighted sum scalar-comparison) [18]. 

The key question for a GA is the coding of possible solutions, which will evolve through 

several generations. Fundamental schemata theory suggests that small alphabets are good, 

because they maximise the number of schema available for genetic processing, so binary 

coding is implemented [16]. To avoid Hamming cliffs Gray coding is used. Low probability 

(1 %) mutation is an important part of every GA. The chromosomes are simply the 

concatenated bit strings of all the parameters with fixed position for every gene, high 

probability (0.8) simple two point crossover will ensure low disruptiveness and high rate of 

inheritance during the reproductive phase. Stochastic universal sampling having minimal 

spread and zero bias is used for selection with a rather low (1.2) selection pressure. 

Continuous exploration of the search space is achieved together with consistent convergence 

by the combination of genetic operators in this manner [3-5, 7-9, 18]. 

SINGULAR VALUE DECOMPOSITION AND GRADIENT DESCENT 
BASED FUZZY MODELLING 

We use the minimal universal representation of Zadeh partitions, by which it can be easily 

optimised without any constraints, the method as introduced in [3, 4] and elaborated in [18]. 

To represent a fuzzy partition of K membership functions we take K pieces of rational, 

positive or zero parameters 𝑎𝜅 ∈ 𝑅0
+, 𝜅 = 1,… , 𝐾 and form the bk nonlinear parameters of the 

Zadeh-type MFs forming fuzzy-partitions as: 

 𝑏𝑘 = ∑ 𝑎𝑗
𝑘
𝑗=1 /∑ 𝑎𝜅

𝐾
𝜅=1 . (11) 

For cases when an 𝑎𝜅= 0 we obtain 𝑏𝑘 = 0, thus the fuzzy partition structure complexity is 

reduced by one MF, thus the complete fuzzy system structure complexity, the number of rules 

are significantly reduced. In cases when there remains only a single 𝑎𝜅 > 0 the fuzzy system 
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rule degrades to a simple linear equation. Finally, in the case when all K pieces of 𝑎𝜅 = 0 the 

fuzzy partition and the whole fuzzy consequent degrades to a constant, and the fuzzy system 

becomes indifferent to the reduced input channel; it becomes independent of the corresponding 

input variable. These 𝑎𝜅 parameters are suitable for efficient stochastic global search as by 

GAs, and can be freely fine-tuned with any gradient descent-based method [3-5, 8, 18]; also 

the Jacobian of the FLS can be calculated with regards to 𝑎𝜅 for advanced nonlinear least 

squares data fitting methods. 

The proposed fuzzy-partition representation has been used in a multi-objective genetic 

algorithm [5, 18]. One chromosome consists of the number of MFs for every input and the 

corresponding parameters as in equation (11) for every possible MF partition of each input. 

The population size is selected to be 50 times the number of parameters. For parameter coding 

we use 16 bit binary Grey-coded chromosomes. The objective functions we have used are: 

 maxE – the maximum absolute error of the identification, 

 MSE – the mean squared error of the identification, 

 RuleN – the number of used fuzzy rules for the identification divided by the maximum 

possible number of rules for the selected design, 

 RankW – is calculated from the matrix rank of 𝑾(𝒙, 𝒃) of equation (9), which is normed 

to the theoretically maximal possible rank of the same FLS structure. 

Based on the transformation of the TSK FLS equation (9) to the 𝑓(𝒙) =  𝑾(𝒙, 𝒃) ∙ 𝒄 format, 

we split the identification into two problems: First part is the nonlinear problem of finding 

optimal  𝑾(𝒙, 𝒃(𝒂𝜿)) values, which are defined as a function of system input vector 𝒙 and 

the nonlinear MF 𝑏𝑘 parameters of equation (7). By representing 𝑏𝑘 as a function of 𝑎𝜅 via 

equation (11) any numerical nonlinear unconstrained optimisation can be applied to 𝑎𝜅 

parameters. The second part, when 𝑾(𝒙, 𝒃) is fixed (by selected optimal, or candidates for 

optimal b parameters) to constant values, of the problem is a ‘simple’ solution to a linear 

equation system, which is best solved for a given training data set of {input, output} sample 

vectors of {𝒙𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈, 𝒇𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 } time series in an error square optimal manner by the 

numerically robust, general SVD decomposition method as: 𝒄 = 𝑽𝑺−1𝑼𝑇 ∙ 𝒇𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 for the 

SVD decomposition of 𝑾𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈(𝒙𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈, 𝒂𝜿) = 𝑼𝑺𝑽
𝑇. 

In the applied GA chromosomes are evaluated through the following eight steps. 

1.) For each i of n inputs: Ki, number of MFs of the i
th

 input is decoded from the chromosome. 

2.) For each Ki : corresponding  𝒂𝜿 parameters are decoded from the chromosome. 

3.) All required parameters b of Zadeh-formed MFs of equation (7) that form fuzzy partitions 

are calculated as proposed in (11). 

4.) Using training inputs 𝒙𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈, all possible training antecedents 𝜔𝑙(𝒙𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈) are formed 

from are evaluated as in equation (5) to get 𝑾𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈(𝒙𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈, 𝒂𝜿) of equation (9). 

5.) 𝑦𝑙(𝒙𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈) , the corresponding fuzzy rule training consequent parts for all training 

numerical inputs are evaluated by SVD based LS method as: 

 𝒄 = 𝑽𝑺−𝟏𝑼𝑻 ∙ 𝒇𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈, (12) 

by the SVD of the compound antecedent matrix of 𝑼𝑺𝑽𝑇 = 𝑾𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈(𝒙𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈, 𝒂𝜿) and 

𝒇𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 is the measured training noise level. 

6.) parameters 𝒂𝜿 of step 2.) are further optimised by a gradient decent based method for no 

more than ∑ 𝐾𝑖
𝑛
𝑖=1  steps, where n is the dimension of the input space and Ki is the number 

of used MFs. For every gradient descent iteration step 4.) and 5.) are repeated. 



A. Nemes, Gy. Mester and T. Mester 

308 

7.) The resultant fuzzy system 𝑓(𝒙) is evaluated by equation (9) for the test data set, which is 

disjunct to the training data set – separated randomly from available samples before the 

identification process starts – and its cardinality is 10% of the training data set. 

8.) For the test data set the maxE, MSE, RuleN/maxRuleN, RankW/maxRankW of the 

identification is calculated, where 

maxRuleN = ∏ 𝐾𝑖
𝑛
𝑖=1 , and maxRankW = (n+1) ∙maxRuleN. 

To increase the efficiency of the GA after each evaluation the initial chromosome defining a 

fuzzy system used in step 1.) and 2.) is updated with its optimised MF parameter values 

resulting from step 6.). 

FUZZY SYSTEMS TRAINING DATA SET QUALITY ANALYSIS AND 
REDUCTION 

Training data set, a prerequisite for system identification is a set of measurements of system 

responses, outputs to be modelled – ftraining – while the system is being driven along a pre-

defined trajectory of inputs – xtraining. As this input training path must be sufficiently exiting 

so that all system output characteristics can be observed, it is natural that for a good quality 

identification we must operate with very large input-output training data sets. Evaluating 

models, iteratively optimising parameters along large training sets and especially performing 

SVD of large matrices is extremely time consuming. Thus, it is always a challenge for 

identification tasks to find sufficiently exciting, but not an oversized training data set. In case 

of modelling complex systems filtering out unnecessary samples, while still leaving all the 

necessary data for good quality identification is not a trivial strait forward process. In case of 

every identification problem, specific approaches are used when deemed necessary. 

The condition number of a matrix – in our case the compound antecedent data set 

𝑼𝑺𝑽𝑇 = 𝑾𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 – which defines a linear system of equations – in our case equation (9) – 

is called the condition number of the equation; it is the ratio of the largest and the smallest 

singular value – in our case for S = [sij] it is 𝑐𝑜𝑛𝑑(𝑾𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈) = max(𝑠𝑖𝑖) /min(𝑠𝑖𝑖). The 

higher the condition number, the more uncertain the solution is; the more chaotic, the more 

sensitive the solution is to small disturbances of system parameters. The natural goal for a 

good quality, robust linear system solution is to have as small a condition number as possible. 

A very well-conditioned linear system of equations has a condition number of three orders of 

magnitude less than the reciprocal of the numerical precision of our calculations. In case of 

double precision floating point digital computer calculous we can rely on a numerical 

precision of at least ~10
-16

, which means that any condition number < 10
10

 will already result 

in a sufficient precision of up to six decimal places, but of course a < 10
3
 condition number 

will be preferred. Rank deficiency of 𝑾𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 is obviously out of question when the goal is 

to get a complete fuzzy system with no undefined rules – no undefined outputs for any input 

region. 

For an identification error least squares (LS) optimal c vector one can use the SVD 

transformation property as in equation (12) 𝒄 = 𝑽𝑺−𝟏𝑼𝑻 ∙ 𝒇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔.𝑓𝑢𝑙𝑙  for the SVD 

decomposition of 𝑾𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔.𝑓𝑢𝑙𝑙 = [𝑾(𝒙𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔.𝑓𝑢𝑙𝑙, 𝒃)] = 𝑼𝑺𝑽𝑻, where 𝒇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔.𝑓𝑢𝑙𝑙 is the 

vector of all available training data, for the input training series [𝒙𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔.𝑖], i = 1, .., N; 

where N is the number of all available training data inputs. As introduced in [9] and 

elaborated in [18] we apply a greedy selection algorithm to [𝒙𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔.𝑖] and thus to the 

corresponding 𝒇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔.𝑖 training data set, such that we can determine an arbitrary ‘quality 

per size’ balanced, but reduced training data set 𝒙𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔.𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = [𝒙𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔.𝑗]  and a 

corresponding 𝒇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔.𝑟𝑒𝑑𝑢𝑐𝑒𝑑 for FLS based function identifications. The objective of the 
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greedy search is to select input-output training data pairs ([𝒙𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔.𝑗], 𝒇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔.𝑗), such that 

they maximise the condition number decrease of the 𝑾𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔.𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = [𝑾(𝒙𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔.𝑗 , 𝒃)] 

of the FLS antecedent matrix [18]. 

Considering the proof of the universal fuzzy approximation theorem, for a general case we 

cannot boundlessly ‘generalise’ our fuzzy model, we cannot reduce the number of MFs – and 

by this the required rank of W – to an arbitrary low level, since by this we lose the universal 

function approximation quality of our FLS. On the other hand if we go for a too complex 

fuzzy structure, however large the measured training data set we capture, there is a point after 

which there will be no independent samples (rows of W will not be linearly independent), the 

training path is called ‘insufficiently exciting’, the training data is not fit for defining a 

complete TSK FLS based on fuzzy partition antecedents, the matrix rank of 𝑾 of equation 

(9) will not be complete, it will be rank(𝑾) < (n + 1) ∙ ∏ 𝐾𝑖
𝑛
𝑖=1 , where n is the dimension of 

the input space and Ki is the number of used MFs. Consequences of such an identification 

attempt is popularly called identification ‘overfitting’, where the model can only precisely 

match the training data, while it performs poorly on disjunct test data sets, which did not take 

part in the identification process.  

The approach taken in this paper is to extend the real measured training data set of 120 

samples (Figure 1.) with a carefully reduced set of 800 simulation values based on equations 

(1) and (2) of [1, 2]. The same approach can be taken for any further new measurement data 

or any further new reliable models, which we want to merge in, thus to re-train our model for 

a higher precision or even to include new input regions. 

   

Figure 1. Training data set – measured system inputs of a) average building heights (m), b) 

average Street width (m) and c) number of equivalent vehicles per second. 

IDENTIFICATION RESULTS 

The GA process convergence is presented along the identification error objective changes 

through 50 generations of evolution in Figure 2. 

The selected non-dominated identification solution has 48 rules defined for [4, 3, 4] MFs 

corresponding to inputs [neq, W, H]. The 𝒂𝜿  parameters are [291, 25068, 43316; 30436, 

29813, 0; 29442, 26577, 56388]. The corresponding b parameters are [0, 0.0042, 0.3693, 1; 0, 

0.5052, 1; 0, 0.2619, 0.4984, 1]. The fuzzy partitions are graphically presented in Figure 3. 

The training data had been extended to result in system output as presented on Figure 4., 

which also presents the overlapping output of a selected non-dominated solution and 

separately the corresponding training data identification error. 

The expected system output, the system identification output, and the identification error 

along randomly selected test samples, which did not take part in the training process, are 

presented in Figure 5. 

 

a) b) c) 
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Figure 2. GA convergence a) maximal absolute error evolution, b) mean square error 

evolution. 

Figure 3. Zadeh type fuzzy partitions for the premise part of inputs [neq, W, H]. 

Figure 4. Training data set outputs a) desired and identified output (dBA), b) training error 

(dBA). 
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Figure 5. System identification test results: expected and identified output, dBA (left), 

identification error, dBA (right). 

CONCLUSIONS 

The presented identification method is capable of sufficiently precise modelling of real 

measured systems (which data has noise and measurement error) and approximating 

simulated system (no noise, no measurement error) models to an extreme precision. The 

definition of fuzzy partitions provides a guarantee that the resulting FLS uniformly covers the 

complete defined input space, more even the FLS structure guaranties its output is continuous 

for the complete input space. By extending the measured training data set with simulated 

values, we have ensured that our model output is nowhere significantly worse than a selected 

mathematical model, while it precisely approximates the measured data of the real system for 

all inputs that are in the appropriate range of the provided measured training data set. By 

extending the training data set and repeating the identification process our model is easily 

fine-tuned to match further real data. 

This robust noise pollution model can be used for making traffic control decisions where the 

induced noise levels have to be confined. The controlled street configuration must be defined 

by the street width and average building height, the control input is the equivalent car number 

and the system model output is the resulting noise level. 
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