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SUMMARY 

The paper reviews some applications of the well-established analytical and domain discretisation 

methods (finite difference method-FDM, finite element method-FEM) in the modelling of the 

magnetohydrodynamics (MHD) phenomena for the fusion-related research and quantum 

structures for use in nanodevices. Hence, Grad-Shafranov Equation (GSE) for the plasma 

equilibrium has been implemented for certain simple excitation forms, and the results obtained 

for the rectangular plasma have been presented. Furthermore, the stationary Schrödinger 

equation is solved analytically and numerically via FDM and FEM, respectively. 

KEY WORDS: finite difference method;, finite element method; Grad-Shafranov equation; 
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1. INTRODUCTION 

The shape of the real-world geometries in most of the realistic scenarios in physics and 

engineering practice are usually highly irregular. There are also difficulties due to non-

homogeneities, anisotropy, non-linearity, prescribing appropriate boundary conditions, etc. A 

way to overcome at least some of the aforementioned difficulties is to implement certain 

numerical modelling techniques. One of the most general classifications of numerical methods 

is to domain discretisation methods (based on the solution of a certain partial differential 

equations (PDE)) and boundary discretisation methods (based on the solution of a given 

integral equation) [1]. A trade-off between the use of domain and boundary methods could be 

found elsewhere, e.g. in [1], [2]. 

On the other hand, a starting point in studying physical phenomena is to find the analytical 

solution for problems involving regular geometries and homogeneous domains. 
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The present paper reviews some analytical approaches, and, in particular, some aspects of the 

use of domain methods (FDM and FEM) in the modelling of some phenomena in 

magnetohydrodynamics (MHD) and quantum mechanics. The paper deals with the solution of 

Grad-Shafranov equation (GSE) arising from the plasma physics and the Schrödinger equation 

stemming from the analysis of nanodevices. 

The principal advantage of domain methods is that the Green function is not used in the 

formulation. The domain methods always result in sparse matrices thus appreciably reducing 

the computational cost. The main drawback of such methods is that they are not suitable for 

the treatment of unbounded domains. 

The use of MHD models is the simplest theory for the description of ionized gasses, i.e. the 

simplest theoretical approach for the analysis of the electrically conducting fluids called 

plasma. Even though the MHD approach is far from the rigorous description of any realistic 

plasma configuration of interest, it still provides the theoretical basis for understanding the 

global configuration of magnetised plasma. As plasma represents a good conductor at high 

temperatures, plasma shaping and confinement can be carried out by high-intensity magnetic 

fields. Particular configurations of plasma are governed by the Grad-Shafranov equation (GSE) 

whose general form cannot be solved analytically [3]-[5]. In the last few decades, there have 

been number of papers dealing with the numerical treatment of tokamak plasma, e.g. [6]-[7]. 

The numerical modelling of the main plasma region is a less difficult task compared to the 

modelling of plasma edge in tokamak [7]. In fact, the problem of prescribing appropriate 

boundary conditions to be imposed at the plasma edge has still not been solved satisfactorily 

in the physical sense. The reasons are manifold and have been discussed elsewhere, e.g. in [7]. 

This paper reviews the use of the standard FDM and FEM procedures featuring isoparametric 

elements for the solution of rectangular plasma assuming the source term (provided in the 

form of current density) to be monomial [5]. 

The obtained results are in a good agreement with the numerical results published in [3]. 

Furthermore, many phenomena in quantum transport, condensed matter physics, optics, 

nanodevices, etc. are governed by the Schrödinger equation [8]-[11]. The main difficulty in the 

realistic scenarios is to prescribe appropriate boundary conditions, as the Schrӧdinger 

equation itself is posed in an unbounded domain. 

The modelling of semiconductor structures is of particular interest in both physics and 

engineering. In some applications, such as the analysis of nanowires, a combined 

classical/quantum physics approach is used featuring the hybrid Poisson/Schrӧdinger 

equation approach, [8]. In fact, as the size of nanowires approaches to nano scales, the 

quantum effects become crucial to understand and design such structures. Hence, the charge 

or scalar potential distribution could be determined by solving the Poisson/Schrӧdinger 

equation. 

Finally, it should be emphasised that the present paper is a direct extension of the conference 

paper [12], whereas some parts of this review paper are taken from the conference papers 

[13] and [14]. 

2. MODELLING OF GRAD-SHAFRANOV EQUATION 

The behaviour of dynamics phenomena in tokamaks can be analysed by solving the combined 

equations of electromagnetics and fluid dynamics. Electromagnetic modelling of the dynamics 
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phenomena in tokamaks is governed by the quasi-stationary Maxwell equations. MHD 

equilibrium in an axisymmetric plasma shape, as depicted in Figure 1, is considered. 

 

Fig. 1  Toroidal geometry 

The force balance equation is given by Eq. [3]: 

 J B p× = ∇
rv

 (1) 

where J is the current density, B is magnetic flux density and p stands for the kinetic pressure. 

In cylindrical coordinates (r ,φ, z) (1) is expressed, as follows: 

 pol φ φ φ φ polJ B e J e B p× + × = ∇
rv r r

 (2) 

where polJ
v

 is the poloidal current density, polB
r

 is the poloidal magnetic flux density and φe
r

 is 

the unit vector in toroidal direction. 

Now, the poloidal quantities can be written: 

 ( )pol φ

1
B e

r
Ψ= ∇ ×

r r
 (3) 

 ( )pol φ

1
J f e

r
= ∇ ×

r r
 (4) 

where ψ is the poloidal magnetic flux, while f is defined as: 

 
φ

0

rB
f

μ
=  (5) 

Now, taking into account: 

 φ φe e f 0Ψ⋅∇ = ⋅∇ =r r
 (6) 

relation (2) becomes: 

 φ φ

1 1
B f J ψ p

r r
− ∇ + ∇ = ∇  (7) 

By utilising relations: 

 ( ) p
p Ψ Ψ

Ψ
∂∇ = ∇

∂
 (8) 

 ( ) f
f Ψ Ψ

Ψ
∂∇ = ∇

∂
 (9) 
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expression (7) can be written: 

 φ φ 0

p f p 1 f
J r B r μ f

ψ ψ ψ r ψ

∂ ∂ ∂ ∂= + = +
∂ ∂ ∂ ∂

 (10) 

As the magnetic flux density and current density are related by Ampere law: 

 0B μ J∇× =
r v

 (11) 

by taking into account (3) one obtains: 

 
2

0 φ 2

1 ψ ψ
μ rJ r

r r r z

∂ ∂ ∂− = +
∂ ∂ ∂

 (12) 

Finally, by combining (10) and (12) yields: 

 
2

2 2
0 02

1 ψ ψ p f
r μ r μ f

r r r ψ ψz

∂ ∂ ∂ ∂ ∂+ = − −
∂ ∂ ∂ ∂∂

 (13) 

which is one of the commonly used form of the Grad-Shafranov equation (GSE). 

An alternative useful form of GSE is given by using elliptic operator: 

 
2

0 φ2

1 ψ ψ
r μ rJ

r r r z

 ∂ ∂ ∂ + = −  ∂ ∂  ∂  
 (14) 

where J is the toroidal component of the plasma current. 

Equation (14) can be solved analytically only for a few special cases, however for additional 

problems with a higher degree of complexity, the numerical solution is necessary. 

2.1 ANALYTICAL SOLUTION 

Various analytical solutions to the GSE have been derived by researchers through the recent 

years [15]. As it has been stated, the analytical solutions are essential in describing various 

parameters that are involved in real tokamak scenarios as they are well suited for 

benchmarking various numerical codes. In this section, four different analytical solutions will 

be outlined, as well as the emphasis to their applications. 

Starting from a slightly modified version of (13), i.e. from equation: 

 

2 2
2 2
0 02 2

ψ 1 ψ ψ df dP
μ f μ r

r r dψ dψr z

∂ ∂ ∂− + = − −
∂∂ ∂

 (15) 

in order to obtain any solution corresponding to the realistic source functions that appear on 

the right-hand side of the GSE, it is necessary to determine possible solutions of the 

homogeneous equation: 

 
2 2

2 2

ψ 1 ψ ψ
0

r rr z

∂ ∂ ∂− + =
∂∂ ∂

 (16) 

Solution of (16) can be obtained by the separation of variables and is given by: 

 ( ) ( ) ( )( )( )kz kz
0 1 1 2 1 3 4ψ r ,z c rJ kr c rY kr c e c e−= + +  (17) 

On the other hand, the solutions can also be based on the series expansion [16]: 
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 ( ) n
0 n

n 0 ,2 ,...

ψ f r z

=
= ∑  (18) 

provided that each expansion term satisfies the following Eq. [16]: 

 
( ) ( )( )n

n 2

df rd 1
r n 1 n 2 f ,n 0 ,2,...

dr r dr
+

 
= − + + =  

 
 (19) 

One of the possible solutions satisfying these conditions which is suitable for further 

implementation is given by [16]: 

 ( ) ( ) ( )2 4 2 2 2 2
0 1 2 3 4ψ r ,z c c r c r 4r z c r lnr z= + + − + −  (20) 

The Solov’ev equilibrium is the simplest solution of the inhomogeneous GSE [15], being widely 

used in studies of plasma equilibrium studies, transport and MHD stability analysis, 

respectively. 

The source functions in Solov’ev equilibrium are linear in ψ and are given by [17]: 

 ( ) ( )2 2
0

0

A
P ψ ψ, f ψ 2Bψ F

μ
= = +  (21) 

The use of source functions (20) yields the following variant of the GSE: 

 
2 2

2

2 2

ψ 1 ψ ψ
Ar B

r rr z

∂ ∂ ∂− + = +
∂∂ ∂

 (22) 

with the corresponding solution: 

 ( ) ( ) 4 2
0

A B
ψ r ,z ψ r ,z r z

8 2
= − −  (23) 

It is worth noting that a number of plasma shapes can be generated by using (23). However, 

the current profile of this solution is restricted, as two free parameters A and B allow only the 

selection of the plasma current and the ratio of the volume-averaged particle pressure to the 

average poloidal magnetic field pressure along the plasma boundary. 

The Herrnegger-Maschke solutions of the GSE for a parabolic source functions were originally 

reported in [15] and can be written as follows: 

 ( ) ( )2 2 2 2
0

0

C
P ψ ψ , f ψ Dψ F

2μ
= = +  (24) 

In this case, the GSE simplifies into: 

 
2 2

2

2 2

ψ 1 ψ ψ
Cr ψ Dψ

r rr z

∂ ∂ ∂− + = +
∂∂ ∂

 (25) 

The solution of (25) can be given in the form of Coulomb wave functions: 

 ( ) ( )( ) ( )0 0ψ α F η,x γG η,x cos kz= +  (26) 

As in the case of the Solov’ev equilibrium, the Herrnegger-Maschke solutions have only two 

free parameters (C and D), which enables one to independently specify the plasma current and 

the pressure ratio, respectively. 

Innovative source functions have been introduced by Mc Carthy [15]. These source functions 

involve a linear dependence of pressure and a quadratic dependence of the current profile: 



D. Poljak, S. Sesnić, A. Rubić, E. Maze: A note on the use of analytical and domain discretisation methods for the analysis of some 

phenomena in engineering physics 

48 ENGINEERING MODELLING 31 (2018) 1-2, 43-60 

 ( ) ( )2 2 2
0

0

S
P ψ ψ, f ψ Tψ 2Uψ F

μ
= = + +  (27) 

Inserting (27) in (15) yields: 

 
2 2

2

2 2

ψ 1 ψ ψ
Sr Tψ U

r rr z

∂ ∂ ∂− + = − − −
∂∂ ∂

 (28) 

Note that the term 2Sr U+  satisfies the equation ( )2Sr U 0∗∆ + = , hence the following 

homogeneous equation has to be solved: 

 

2 2
h h h

h2 2

ψ ψ ψ1
Tψ 0

r rr z

∂ ∂ ∂
− + + =

∂∂ ∂
 (29) 

Once ψh is found, the solution can be written in the form: 

 
2

h

S U
ψ ψ r

T T
= − −  (30) 

and the following differential equation is obtained: 

 
2 2

2

2 2

ψ 1 ψ ψ
Tψ Sr U

r rr z

∂ ∂ ∂− + = − − −
∂∂ ∂

 (31) 

Equation (31) can be solved by the separation of variables which yields the following two 

ordinary differential equations: 

 
( ) ( )

2
2

2

H z
k H z 0

z

∂
+ =

∂
 (32) 

 
( ) ( ) ( ) ( )

2
2

2

G r G r1
k T G r 0

r rr

∂ ∂
− − − =

∂∂
 (33) 

The corresponding solutions of (32) and (33) are given by: 

 ( ) jkz jkz
1 2H z c e c e−= +  (34) 

 ( ) ( )1G r rB ar=  (35) 

where B1 represents the family of Bessel functions and parameter a satisfies the Eq. [15]: 

 ( )2 2a T k= ± −  (36) 

More details can be found in [15]. 

This family of solutions has a current profile with 3 independent parameters thus providing 

one to independently specify the plasma current density, pressure ratio and one shape 

moment such as the internal inductance [15]. Consequently, it is possible to fit experimental 

configurations in a manner consistent with the external magnetic measurements. 

In order to obtain the exact solution out of Eqs. (34) and (35) for various real scenarios, the 

numerical solution of the free boundary problem (with a conventional equilibrium solver) and 

the subsequent projection of the numerically calculated solution onto the exact solutions via 

the least squares fitting procedure is implemented [15]. The obtained solution can be 

described as: 
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( )( )
( )

( )( )
( )( )
( )( )
( )( )

2
1 2 1 3 4 5 6

2 2 2
7 8 9

2 2
10 1 11 12

1 13 14

1 15 16

1 17 18

ψ c c r rJ pr c c z c cos pz c sinpz

r c cos pz c sinpz c cos p r z

c sinp r z rJ vr c cosqz c sinqz

rJ qr c cosvz c sinvz

rY vr c cosqz c sinqz

rY qr c cosvz c sinvz

= + + + + + +

+ + + + +

+ + + + +

+ + +

+ + +

+ + +

 (37) 

where the vector of coefficients ci can be found in [15]. 

An example of a predictive reversed shear equilibrium using ASDEX upgrade field coils and 

vessel can be described in a similar fashion with the Eq. [15]: 

 

( )( )
( )

( )( )
( )( )
( )( )
( )( )

2
1 2 1 3 4 5 6

2 2 2
7 8 9

2 2
10 1 11 12

1 13 14

1 15 16

1 17 18

ψ c c r rI pr c c z c coshpz c sinhpz

r c coshpz c sinhpz c coshp r z

c sinhp r z rI vr c coshqz c sinhqz

rI qr c coshvz c sinhvz

rK vr c coshqz c sinhqz

rK qr c coshvz c sinhvz

= + + + + + +

+ + + + +

+ + + + +

+ + +

+ + +

+ + +

 (38) 

More mathematical details are available in [15]. 

2.2 COMPUTATIONAL EXAMPLES 

The results presented in this subsection correspond to the results for the tokamak equilibrium 

obtained by using analytical solutions (37) and (38) derived by Mc Charty. In Figure 2, the 

results for poloidal flux contours for ASDEX Upgrade discharge # 10 966, t=1.242 s, calculated 

by using (37), are presented. 

 

Fig. 2  Exact GSE solution for ASDEX Upgrade discharge # 10 966, t=1.24 s 
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The highest value for the poloidal magnetic flux ψmax=1.3 Tm2 is observed at the centre of the 

tokamak plasma, as it is expected, whereas the final contour (called separatrix) defines the 

area where the value of the magnetic flux is equal to zero. 

For the solution depicted in Figure 3, the similar behaviour of the plasma flux can be observed, 

with a somewhat different shape of plasma which is governed by the specifics of the defined 

discharge pulse. 

 

Fig. 3  Exact GSE solution for ASDEX Upgrade discharge # 10 958, t=5.20 s 

The maximum value of the magnetic flux is somewhat higher ψmax=1.4 Tm2. 

An example of the predictive reversed shear equilibrium by using ASDEX upgrade field coils 

and vessel geometry is shown in Figure 4 and is calculated by using (38). 

 

Fig. 4  Exact GSE solution for a predictive reversed ASDEX Upgrade equilibrium 
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The value of the maximum flux is significantly lower than in the previous examples and is 

given as ψmax=0.6 Tm2. 

2.3 SOLUTION BY FINITE DIFFERENCE METHOD (FDM) 

For the application of FDM to solve (13), GSE could be written in the following form: 

 
2 2

0 φ2 2

1
μ rJ

r rr z

Ψ Ψ Ψ ∂ ∂ ∂− + − =  ∂∂ ∂ 
 (39) 

Now the FDM discretisation yields: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2

2

0 φ

ψ r r ,z 2ψ r ,z ψ r r ,z

r

ψ r ,z z 2ψ r ,z ψ r ,z z

z

ψ r r ,z ψ r r ,z1
μ rJ

r 2 r

+ ∆ − + − ∆
+

∆
+ ∆ − + − ∆

+ +
∆

+ ∆ − − ∆
+ = −

∆

 (40) 

Finite difference Eq. (40) is applied to each node and can be solved by prescribing certain 

boundary conditions [5]. 

2.4 SOLUTION BY FINITE ELEMENT METHOD (FEM) 

In order to implement the FEM solution, GSE form (39) is also used. Taking the scalar product 

over the calculation domain yields: 

 
2 2

j 0 φ j2 2

1
W d μ rJ W d

r rr zΩ Ω

Ψ Ψ Ψ Ω Ω
 ∂ ∂ ∂− + − =  ∂∂ ∂ 
∫ ∫  (41) 

and the performance of some mathematical manipulations leads to the weak formulation of 

GSE: 

 
j j

j j 0 φ j

W W 1
W d d W d μ rJ W d

n r r z z r r
Γ Ω Ω Ω

Ψ Ψ Ψ ΨΓ Ω Ω Ω
∂ ∂ ∂ ∂ ∂ ∂− + + + =  ∂ ∂ ∂ ∂ ∂ ∂ 

∫ ∫ ∫ ∫  (42) 

By using the triangular elements and linear shape functions, the solution over an element is 

given by: 

 ( ) ( )
3

i i

i 1

ψ r ,z α f r ,z

=
=∑  (43) 

Now, by choosing the same shape and test functions (Galerkin-Bubnov scheme): 

 ( ) ( )j jW r ,z f r ,z=  (44) 

the local matrix system on the element is obtained: 

 [ ]{ } { }A α B=  (45) 

where FEM matrix and excitation vector coefficients are: 
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( ) ( ) ( ) ( ) ( ) ( )

e e

j ji i i
ji e j e

f r ,z f r ,zf r ,z f r ,z f r ,z1
A d f r ,z d

r r z z r r
Ω Ω

Ω Ω
 ∂ ∂∂ ∂ ∂

= + + 
∂ ∂ ∂ ∂ ∂  

∫ ∫  (46) 

 ( )
2

1

x

ji 0 φ j e

x

B μ rJ f r ,z dΩ= ∫  (47) 

Integral (46) is solved analytically, whereas the integral (47) can generally be calculated 

numerically by using the Gaussian quadrature formulas. 

2.5 COMPUTATIONAL EXAMPLES 

The computational examples are related to rectangular plasma. Figures 5 to 7 show the 

distribution of flux Ψ(Wb) for the rectangular plasma obtained by FDM and FEM μ0rJφ=1, 

μ0rJφ=r3z2 and μ0rJφ=r2z3, respectively. 

 

 

 

a) FDM solution 

 

b) FEM solution 

Fig. 5  Ψ(Wb) for rectangular plasma –μ0rJφ=1 
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a) FDM solution 

 

 

b) FEM solution 

Fig. 6  Ψ(Wb) for rectangular plasma - μ0rJφ=r
2
z

3
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a) FDM solution 

 

 

b) FEM solution 

Fig. 7  Ψ(Wb) for rectangular plasma - μ0rJφ=r
3
z

2
 

The numerical results obtained by FEM are in a satisfactory agreement with the results 

published in [5]. 

3. MODELLING OF SCHRÖDINGER EQUATION 

The classical form of the time-independent Schrödinger equation can be written as follows 

[11]: 

 Hψ Eψ=  (48) 

where Ψ is the wave function, E is the energy of the quantum particle of mass m moving within 

the interval (0, L) and H is the Hamiltonian: 

 ( )
2 2

2
H V x

2m x

∂= − +
∂

h
 (49) 

where V(x) is the corresponding potential function, while the reduced Planck constant is given 

by: 
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h

2π
=h  (50) 

The energy spectrum of the quantum particle can be determined by solving the Schrödinger 

Eq. (48) provided that the boundary conditions for the wave function Ψ are prescribed. 

3.1 ANALYTICAL SOLUTION 

Assuming the particle to be captured inside the potential well with V=0, and cannot be located 

outside the interval (0, L) with the boundary conditions: 

 ( ) ( )ψ 0 ψ L 0= =  (49) 

One-dimensional Schrödinger equation simplifies into: 

 
2

2

2

ψ
k ψ

x

∂− =
∂

 (50) 

The analytical solution of (50) is given by: 

 ( )ψ x Asinkx Bcoskx= +  (51) 

Inserting the boundary conditions (49) yields: 

 B 0=  (52) 

and from: 

 sinkL 0=  (53) 

The wave number k is obtained: 

 
nπ

k
L

=  (54) 

and the wave function is: 

 ( ) nπ
ψ x Asin k

L

 =  
 

 (55) 

Probability of the existence of the quantum particle within the well, i.e. within the observed 

interval (0, L), is equal to one, i.e. 

 ( )
L

2

0

ψ x dx 1=∫  (56) 

Hence, inserting (55) into (56) one obtains: 

 

L
2 2

0

nπ
A sin k dx 1

L

  = 
 ∫  (57) 

and it simply follows: 

 
2

A
L

=  (58) 

Finally, the solution of the Schrödinger Eq. (48) is: 

 ( ) 2 nπ
ψ x sin x

L L

 =  
 

 (59) 



D. Poljak, S. Sesnić, A. Rubić, E. Maze: A note on the use of analytical and domain discretisation methods for the analysis of some 

phenomena in engineering physics 

56 ENGINEERING MODELLING 31 (2018) 1-2, 43-60 

The Schrödinger equation for the case of the three-dimensional potential well can be handled 

by using a similar procedure. 

3.2 SOLUTION BY FINITE DIFFERENCE METHOD (FDM) 

The application of FDM to the one-dimensional Schrödinger equation: 

 
( ) ( ) ( )

2

2

ψ x
V x ψ Eψ x

2m x

∂
− + =

∂
h

 (60) 

for the case of the particle inside the potential well with V = 0 yields: 

 
( ) ( ) ( ) ( ) ( ) ( )

2

ψ x x 2ψ x ψ x x
V x ψ x Eψ x

2m x

+ ∆ − + − ∆
− + =

∆
h

 (61) 

and results in the system of N equations with N unknowns. 

3.3 SOLUTION BY FINITE ELEMENT METHOD (FEM) 

By applying the weighted residual approach to the Schrödinger Eq. (60), one obtains: 

 ( )
L L L2

j j j2

0 0 0

ψ
W dx V x ψW dx EψW dx

2m x

∂− + =
∂∫ ∫ ∫

h
 (62) 

and by utilising the weak formulation, it follows: 

 ( )
L L L L

j
j j j2 2 2

00 0 0

Wψ 2m 2m 2m ψ
dx V x ψW dx E ψW dx W

x x x

∂∂ ∂+ = +
∂ ∂ ∂∫ ∫ ∫

h h h
 (63) 

The approximate solution is given in terms of the linear combination of coefficients αi and 

shape functions fi: 

 ( ) { } { }T
ψ x f α=  (64) 

where the linear shape functions are given by: 

 ( ) ( )2 1
1 2 2 1

x x x x
f x , f x , x x x

x x

− −
= = ∆ = −

∆ ∆
 (65) 

By discretising the calculation domain and applying the Galerkin-Bubnov procedure Wj = fj, the 

following matrix equation is obtained: 

 [ ]{ } [ ]{ }[ ]A α B α E=  (66) 

where [ ]E is a diagonal matrix representing the particle energy levels in different states. 

FEM matrix and excitation vector coefficients are: 

 

2 2

1 1

x x
j i

ji j i2

x x

f ( x ) f ( x ) 2m
A dx V ( x ) f ( x ) f ( x )dx

x x

∂ ∂
= +

∂ ∂∫ ∫
h

 (67) 

 ( ) ( )
2

1

x

ji j i2

x

2m
B f x f x dx= ∫

h
 (68) 
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Expression (66) is eigenvalue equation. Each element of [ ]E  matrix is then an eigenvalue 

(certain energy level). Number of solutions corresponds to the number of quantised energy 

levels that particle can occupy inside an infinite potential well. 

Figures 8 to 10 show the probability density function 
2

ψ for different values of n calculated 

via FDM and FEM. 

 

Fig. 8  2
ψ

 
Probability density function for N=100 and n=1 

 

Fig. 9  2
ψ Probability density function for N=100 and n=2 
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Fig. 10  2
ψ Probability density function for N=100 and n=3 

The numerical results obtained by FDM and FEM, respectively, agree satisfactorily. The 

analysis presented so far is a useful starting point for the analysis of practical scenarios whose 

solution cannot be obtained in the close form. 

4. CONCLUDING REMARKS 

The paper reviews the use of the standard analytical and domain discretisation methods (FDM 

and FEM), respectively, for the treatment of MHD phenomena for the fusion-related research 

formulated by the Grad-Shafranov equation (GSE) and quantum structures for nanodevices 

formulated by the Schrödinger equation. GSE has been solved for certain simple excitation 

types and the corresponding distribution of flux has been obtained. Some illustrative 

numerical results for the rectangular plasma and infinite potential well have been presented. 

This review paper pertains to rather simple geometries well-known in relevant publications, 

whereas future work will be devoted to more complex geometries corresponding to specific 

realistic scenarios. 

5. APPENDIX: DERIVATION OF SCHRÖDINGER EQUATION 

Electron captured in a small volume can only have discrete energy levels. Discretisation of 

energy levels is obvious if the considered volume of space is comparable to de Broglie 

wavelength. 

It is possible to derive spatially dependent Schrödinger equation starting from the classical 

wave Eq. (Helmholtz equation) [18]: 

 2 2ψ k ψ 0∇ + =  (A.1) 

where ψ is the wave function and k is the wave number: 

 
2π

k
λ

=  (A.2) 

According to de Broglie, particles with energy E and momentum p also have wave properties, 

i.e. wavelength: 
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h

λ
p

=  (A.3) 

where p is the momentum of a wave-particle defined as: 

 p mv=  (A.4) 

Now, it simply follows: 

 
2π 2πp 2πmv

k
λ m h

= = =  (A.5) 

Inserting (A.5) into (A.1) yields: 

 
2 2 2

2

2

4π m v
ψ ψ 0

h
∇ + =  (A.6) 

The total energy of a quantum particle can be expressed as the sum of its kinetic and potential 

energy, respectively: 

 21
E mv V

2
= +  (A.7) 

Now combining (A.6) and (A.7), it follows: 

 
2

2ψ Vψ Eψ
2m

− ∇ + =h
 (A.8) 

where: 

 
h

2π
=h  (A.9) 

Expression (A.8) represents the three-dimensional Schrödinger equation. One-dimensional 

version is then: 

 
( ) ( ) ( ) ( )

22

2

ψ x
V x ψ x Eψ x

2m x

∂
− + =

∂
h

 (A.10) 

and, for some scenarios, it can be solved analytically. 
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