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ABSTRACT 

Social choice decision aggregation is a form of complex system modelling which is based upon 

voters’ rankings over a set of candidates. Different social choice functions, such as Borda count, 

plurality count or Condorcet methods models different aspects of social choice decision criteria. One 

of such criteria which has not been fully described or modelled, is the notion of compromise. This 

article aims to define a measure which would capture the notion of compromise on a given profile of 

voter preferences, about certain candidate being appointed to a certain position by a certain social 

welfare function. The goal is to define what compromise should mean, and proposes the so-called 

“d-measure of divergence” as a measure of divergence for some candidate to be positioned to a 

certain position. This study compares the results of two well-established social welfare functions, 

Borda and plurality count d-measure of divergence. 
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INTRODUCTION 

Basis of this article is the mathematical description of the notion of compromise. The need to 

formally determine how we should interpret the notion of compromise comes from the 

following example. Let there is an election in which one hundred voters should choose 

between three candidates: A, B and C. Each voter places its vote by ordering those 

candidates. That ordering we will call a preference, and denote it αi. Set of all preferences for 

those hundred voters, a profile is given in Table 1, in which fifty one voters have preference 

A ├ B ├ C, while forty nine voters have preference C ├ B ├ A. 

Table 1. Basic motivation profile. 

51 49 

A C 

B B 

C A 

Given the profile α, which candidate should win? Most of the classical social choice 

functions would say – candidate A. Borda count would produce A ├ B ├ C linear ordering, 

result of plurality count would be A ├ C ├ B (with A winning the most first places, and B the 

least). Condorcet method would duel all candidates, and those duels would yield A ├ B ├ C 

ordering. All those classical methods have one thing in common: winner should be candidate 

A. Nevertheless, that is a candidate that 49% of voters see as the worst choice. Should A then 

be a winner? What should be result if we approach to a profile α looking for compromise? If 

we want from social choice function to address notion of compromise, would it be better if 

candidate B is declared as a winner? This leads us to the main topic of this article: finding a 

way for determining a value which should capture notion of compromise on a given profile, 

for placing a candidate on a certain position in linear ordering. 

Let us concentrate on the example in Table 1. If we take a look at candidate A, in a given 

profile he/she is placed first in 51 preferences, and placed third in 49 preferences. Therefore, 

in 51 preferences, distance between his position and the first place is 0 (places), and in 49 

preferences that distance equals 2 (places). If we simply sum all those distances (for each 

candidate) over profile, we would get a measure of distance between profile placements of a 

candidate and a first place. But, for such a measure, one can easily prove that ranking based 

on it gives result equivalent to Borda count. 

In the core of the notion of compromise, however, lays a need to punish of discourage bigger 

distances; this means that when we are looking for a way to describe compromise about a 

candidate being placed at the winning position, each position should contribute to a sum (of 

distances) with more than its linear contribution. Therefore, we will take a look at a sum of 

weighted distances, that is, distances to the power of d, d being a real number greater than 1. 

If we sum such weighted distances from the first place over profile α for a candidates A, B 

and C, we get the following expression: 

 

𝛽1
𝑑(𝐴) = 51 ∙ 0𝑑 + 49 ∙ 2𝑑 = 49 ∙ 2𝑑 ,

𝛽1
𝑑(𝐵) = 51 ∙ 1𝑑 + 49 ∙ 1𝑑 = 100,

𝛽1
𝑑(𝐶) = 51 ∙ 2𝑑 + 49 ∙ 0𝑑 = 51 ∙ 2𝑑 .

  

We introduced notion β1
d
(Mi) for some candidate Mi, which we will call a d-measure of 

divergence from the first position. The idea is that smaller value of β1
d
(Mi) captures notion of 

the greater level of compromise on a given profile for a candidate to be placed on a first place 



Borda and plurality comparison with regard to compromise as a Sorites paradox 

467 

of linear ordering. Unlike distance function from works of Seiford and Cook [1], we do not 

form measure of distance between preferences. Rather than that, we establish measure 

divergence from compromise (or consensus) that certain candidate should be positioned on 

certain position. But the goal is similar: it is in interest of society to minimize that measure. 

This leads us to the basic definitions, as done in [2]. 

BASIC DEFINITIONS 

Definition 1.1 

(d-Measure of divergence from the first position.) Let M = {M1; …; Mm} be set of m 

candidates, and let α  L(M)
n
 be a profile of n voters over those candidates. We define a d-

measure of divergence from the first position for a candidate Mk, β1
d
(Mi), as a 

 𝛽1
𝑑(𝑀𝑘) = ∑ |𝛼𝑖

𝑘 − 1|
𝑑𝑛

𝑖=1 , (1) 

where αi
k
 stands for a position of the candidate Mk in a preference of i-th voter αi, and for 

some real value d > 1. 

Now we can easily extend definition to a d-measure of divergence from a j-th position of the 

k-th candidate. 

Definition 1.2 

(d-Measure of divergence from the j-th position.) Let M = {M1; …; Mm} be set of m 

candidates, and let α  L(M)
n
 be a profile of n voters over those candidates. We define a 

d-measure of divergence from a j-th position for a candidate Mk, βj
d
(Mk), as a 

 𝛽𝑗
𝑑(𝑀𝑘) = ∑ |𝛼𝑖

𝑘 − 𝑗|
𝑑𝑛

𝑖=1 , (2) 

where αi
k
 stands for a position of the candidate Mk in a preference of i-th voter αi, and for 

some real value d > 1. 

Given this definition, it is only natural to gather βj
d
(Mk), values in a form of a matrix. 

Definition 1.3 

(d-Measure of divergence matrix.) Let M = {M1; …; Mm} be set of m candidates, and let α  

L(M)
n
 be a profile of n voters over those candidates. We define a d-measure of divergence 

matrix: 

 𝑴𝑑 =

[
 
 
 
𝛽1
𝑑(𝑀1) 𝛽2

𝑑(𝑀1)

𝛽1
𝑑(𝑀2) 𝛽2

𝑑(𝑀2)

… 𝛽𝑚
𝑑 (𝑀1)

… 𝛽𝑚
𝑑 (𝑀2)

⋮ ⋮
𝛽1
𝑑(𝑀𝑚) 𝛽2

𝑑(𝑀𝑚)
⋱ ⋮
… 𝛽𝑚

𝑑 (𝑀𝑚)]
 
 
 

, (3) 

for some real value d > 1. 

As we can see, in j-th column of a matrix M
d
 we have d-measures of divergence from j-th 

position for all candidates, while in i-th row of matrix M
d
, we have d-measures of divergence 

from all positions for a candidate Mi. 

COMPROMISE AS A SORITES PARADOX 

Before proceeding, let us say something about the value of parameter d. In the example given 

in the Table 1 we see that, if we want candidate B to have smaller d-measure of divergence 

from a first position than candidate A (which means, if we want candidate B to be declared a 

compromise winner on a given profile), it should be 
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 𝛽1
𝑑(𝐵) < 𝛽1

𝑑(𝐴)   𝑑 >  log2100 − log249. (2) 

But, what is the value of d that should be used generally? Answering to that question requires 

finding an answer to the following version of a Sorites paradox [3]: Let us say that n voters 

are voting through strict linear ordering over the set of three candidates, {A, B, C}. For some 

k  N, ⌈𝑛/2⌉ ≤ 𝑘 ≤ 𝑛, they form a profile αbasic given in Table 2. 

Table 2. Basic definition profile. 

k n – k 

A C 

B B 

C A 

Let us accept reasoning that candidate B should be a compromise winner on profile αbasic 

given in Table 2 for 𝑘 = ⌈𝑛/2⌉, and that candidate A should be a compromise winner on 

profile αbasic for k = n. Sorites paradox arises from question: what is the value of k for which 

we should consider candidate B compromise winner on a given profile αbasic, while for value 

k + 1 a compromise winner should be candidate A? 

This question can be seen as a version of a classical Sorites paradox given by Megarian 

logician Eubulides of Miletus about a number of grains which are (not) forming a heap. 

Phenomenon that lies at a heart of the paradox is recognized as the phenomenon of 

vagueness; the concept of heap appears to lack sharp boundaries, just as the concept of 

compromise winner does in our case. Nevertheless, we will approach to the issue not as to a 

paradox, but (same as Eubulides did) as a puzzle. 

From statement that for a value of 𝑘 = ⌈𝑛/2⌉ we have one candidate as a compromise winner 

on a given profile, while for a value of k = n we have another candidate as a compromise 

winner, using the Least-number principle, we shall conclude that there is some k0 between 

those two values, such that for k0 compromise winner on a profile basic is a candidate B, and 

for k0 + 1 compromise winner is candidate A. Value k0 should be result of an a priori social 

choice of a group which is about to use this model. 

There are numerous situations in which similar social choices are being made. For instance, in a 

number of states two-third parliament majority is needed to make constitution changes, as opposed 

to simple majority needed for other type of decisions. So, why 2/3? Why not 3/4 or 4/7? 

Measure of majority needed for such constitutional changes represents similar social decision, 

as one presented in this article – society decided where to draw the line. Similarly, social 

decision should be made about value of k0. When value for k0 is determined, for d we have: 

  log2
𝑛

𝑛−𝑘0
< 𝑑 < log2

𝑛

𝑛−𝑘0−1
. (2) 

d-MEASURE OF DIVERGENCE FROM THE FIRST POSITION 

If we interpret d-measure of divergence from the first position as a measure of compromise 

for a social function choice winner selection, we can compare results of the classical social 

choice function. For instance Borda count is usually considered as a social choice function 

that emphasize compromise candidate as a winner, especially when compared to the plurality 

winner. Does this thesis hold if we use d-measure of divergence from the first position as a 

measure for selection of the compromise candidate for a winner? 

In this section we will provide an answer to that question. To do that, we will first consider 

three candidate scenario, followed by scenarios with more candidates. Let us consider a 

Theorem 2.1. 



Borda and plurality comparison with regard to compromise as a Sorites paradox 

469 

2.1. Theorem. Let be a profile over the set of candidates M = {A, B, C}. Let WBC stands for 

a unique Borda count winner candidate and WPC for a unique plurality winner candidate (if 

there is such) over some profile α. For every d > 1 there is 

 𝛽1
𝑑(𝑊BC) ≤ 𝛽1

𝑑(𝑊PC).  

Equality holds if and only if WBC = WPC. There is a combinatorial proof of this theorem. 

Although there are six different preferences over the set of three candidates, number of all 

possible combinations of preferences that can form a profile can be reduced. 

Two profiles, 𝛼1
𝐶 and 𝛼2

𝐶 (Table 3) we will call Condorcet triples. Those profiles consist of 

three preferences on which neutral and anonymous social choice function should form a tie 

(or a cycle) as a result. As Saari showed [5], all scoring point functions are invariant in regard 

of Condorcet triplet removal, which includes both Borda and plurality count. Furthermore, it 

is easy to prove that a d-measure of divergence from the j-th position preserves ordering 

among candidates when profile is reduced for the Condorcet triple: 

2.2. Lemma. Let A and B be any two candidates from the set of candidates M. For a 

d-measure of divergence from the j-th position 𝛽𝑖
𝑑, and profiles α and α’, α’ being the profile 

derived from α by removal of one Condorcet triple, we have 

 𝛽𝑖
𝑑(𝐴,) < 𝛽𝑖

𝑑(𝐵,)𝛽𝑖
𝑑(𝐴,′) < 𝛽𝑖

𝑑(𝐵,′).  

With removal of one Condorcet triple from the profile , every of three candidates loses 

exactly one first placement, one second placement and one third placement. Therefore all 

candidates lose same amount of points in Borda count, as well as same amount of first places 

count in plurality count. That means that their placements remain the same in both Borda and 

plurality count. Same applies to the d-measure of divergence from the j-th place: all three 

candidates lose same values in calculation of 𝛽𝑗
𝑑, which means that their relative position in 

regard to d-measure of divergence from the first position remains the same. 

Table 3. Condorcet triples: profiles of 𝛼1
𝐶 (left) and 𝛼2

𝐶 (right). 

1 1 1  1 1 1 

A C B  C A B 

B A C  B C A 

C B A  A B C 

Since both Borda and plurality count, as well as d-measure of divergence from the j-th 

position relations among candidates, are Condorcet triple invariant, we can reduce a set of all 

possible combinations of voters preferences to a set of preferences without Condorcet triples. 

This means that largest profile we should analyse consists of (some number of) two 

preferences from 1
𝐶  and two from 2

𝐶 . Beside profiles that reduce to one-preference profiles, 

Table 4 shows all possible two-preference profiles without Condorcet triples. 

Profiles in Table 4 are same up to the permutation of candidates; each of profiles in one 

group of profiles can be obtained from the other by some permutations of the candidates. 

There are 15 different profiles, which equals to ( ), the number of possible ways to choose 

two from six preferences. Same way, three and four preference reduced profiles are grouped 

up to the permutation of candidates in Tables 5 and 6. 

In Table 5 we have all together 18 profiles which equals to ( ) – 2, that is all three preference 

combinations except for Condorcet triples. In Table 6 there are 9 four-preference profiles which 

equals to ( )( ) , number of way we can select two preferences out of each Condorcet triple. 

Proof of the Theorem 2.1 now follows from Lemmas 1-11 given in the Appendix. 

6 
2 

3 
2 

3 
2 

6 
3 
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Table 4. Two-preference reduced profiles. 

n m  n m  n m 

A A  B B  C C 

B C  A C  A B 

C B  C A  B A 

 

n m  n m  n m 

A C  B A  B C 

B B  C C  A A 

C A  A B  C B 

 

n m  n m  n m 

A B  A C  B C 

B A  C A  C B 

C C  B B  A A 

 

n m  n m  n m 

A C  A B  B C 

B A  C A  A B 

C B  B C  C A 

 

n m  n m  n m 

B A  C B  C A 

C B  A C  B C 

A C  B A  A B 

In case with more than three candidates, similar claim cannot be proven. If there are four 

candidates, there are profiles on which plurality count produces different winner than Borda 

count, and with smaller d-measure of divergence form the first position. Consider the 

following theorem. 

2.3. Theorem. Let M = A, B, C, D be the set of candidates, and let WBC stands for a 

unique Borda count winner candidate and WPC for a unique plurality winner candidate over 

some profile . For every d > 1 there is a profile  such that WBC  WBC, and for d-measures 

of divergence from the first position there is 

 𝛽1
𝑑(𝑊PC) ≤ 𝛽1

𝑑(𝑊BC).  

Proof of the Theorem 2.3. For given d > 1, we will construct profile  such that it holds 

𝛽1
𝑑(𝑊PC) ≤ 𝛽1

𝑑(𝑊BC). Let us analyse following profile: 

m i j  

A B D  

B C C  

C A A  

D D B . 

We will show that there are natural numbers m, i and j such that Theorem 2.3. holds for given 

d > 1. First, we will set 

 m > i,  m > i. (4) 

This makes candidate A plurality winner on a profile. Now, let candidate B be Borda winner 

on the same profile. In that case we have 

1. 

2. 

3. 

4. 

  

  

  

  

  

 

 
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Table 5. Three-preference reduced profiles. 

1. k l m  k l m  k l m  

 A C C 
 

B C C 
 

C A A 
 

 B A B A B A B C B 

 C B A  C A B  A B C  
             

 k l m  k l m  k l m  

 
B A A 

 
A B B 

 
C B B  

C C B C A C A C A  

 A B C  B C A  B A C  
             

2. k l m  k l m  k l m  

 A C A 
 

A B A 
 

B C B 
 

 B A C B A C A B C 

 C B B  C C B  C A A  
             

 k l m  k l m  k l m  

 A C A 
 

A B A 
 

B C B  

B A C B A C A B C  

 C B B  C C B  C A A  
             

3. k l m  k l m  k l m  

 A C B 
 

A C B 
 

B A C 
 

 B A A C A A C B B 

 C B C  B B C  A C A  
             

 k l m  k l m  k l m  

 
B C A 

 
C A B 

 
C B A  

A B B B C C A C C  

 C A C  A B A  B A B  

Table 6. Four-preference reduced profiles. 

1. k l m n 

 

k l m n 

 

k l m n  

 
A C C A A B B A B C C B 

 
B A B C C A C B A B A C 

 C B A B B C A C C A B A  
                

2. k l m n 

 

k l m n 

 

k l m n  

A C C B A B B C B A A C  

B A B A C A C A A B C B 

C B A C B C A B C C B A  
                

3. 

 

k l m n 

 

k l m n 

 

k l m n  

A C A B B A B C C A C B  

B A C A C B A B B C A C 

C B B C A C C A A B B A  
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 2m + 3i > 3m + i + j  2i > m + j, (5) 

 2m + 3i > m + 2i + 2j  m + i > 2j, (6) 

 2m + 3i > 3j  
2

3
m + i > j. (7) 

From condition (4) follows 

 m > i  m + i > 2i 
(5)
⇒  m + i > m + j  i > j,  

so we have 

 m + i > j + j = 2j,  
2

3
m + i > 

2

3
m + j > j.  

Therefore, if conditions (4) and (5) are satisfied, then conditions (6) and (7) are met. Let us 

set a value for m which satisfies condition (5): 

 2i = m + j + 1  m = 2i – j – 1.  

Because of condition (4) we have 

 2i – j – 1 > i  i > j + 1. (8) 

 2i – j – 1 > j  i > j + 1/2. (9) 

Let us just point out, that from condition (8) follows fulfilment of condition (9). We want to 

construct profile , such that for a given d > 1 we have 

 𝛽1
𝑑(𝐴) < 𝛽1

𝑑(𝐵)  (i + j)2
d
 < m + j3

d
.  

with m, i and j satisfying (4) and (5). Now we have 

 i2
d
 + j2

d
 < m + j3

d
,  

 i2
d
 < m + j(3

d
 – 2

d
),  

 i2
d
 < 2i – j – 1 + j(3

d
 – 2

d
),  

 i(2
d
 – 2) + 1 < j(3

d
 – 2

d
 – 1).  

It is easy to show that 2
d
 – 2 > 0 and 3

d
 – 2

d
 – 1 > 0 for all d > 1 (see proof of the Lemma 12 

in the Appendix), so it follows: 

 j > 
2𝑑–2

3𝑑–2𝑑–1
𝑖 +

1

3𝑑–2𝑑–1
.  

Shortly, we are looking for i, j and m such that m = 2i – j – 1 and 

 
2𝑑–2

3𝑑–2𝑑–1
𝑖 +

1

3𝑑–2𝑑–1
 < j < i – 1. (10) 

On the left side of inequality (10) we have linear expression (with regard to i), which can be 

interpreted as a line. Lemma 12 proofs that coefficient of that straight line is less than 1 for 

all d > 1 (with coefficient of the straight line on the right side of the inequality (10) being 

equal to 1). Therefore, there must exist solutions i and j, for i being large enough. To make 

sure that in the solution span for j there is at least one integer value, we will set a condition 

that right side of inequality must be greater than the left side for at least 1: 

 
2𝑑–2

3𝑑–2𝑑–1
𝑖 +

1

3𝑑–2𝑑–1
 + 1 < i – 1.  

 𝑖 >
23𝑑–22𝑑–1

3𝑑–22𝑑+1
. (11) 

Finally, we pick i such that it satisfies (11), j such it satisfies (10), while for m we have 

m = 2i – j – 1, which proves the Theorem 2.3. 

Let us demonstrate construction of the profile on which Borda winner has a greater 

d-measure of divergence from the first position than a plurality winner with an example. 
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2.4. Example. Let M = {A, B, C, D} be set of candidates, and let d = 1,05. According to 

Theorem 2.3, values m, i and j from a profile  are equal to m = 44, i = 43 and j = 44. On this 

profile plurality winner is candidate A, while Borda winner is candidate B (with Borda score 

217, while Borda scores of candidate A and C equals to 216 and 212). d-Measures of 

divergence from the first place are equal to: 

 𝛽1
1,05(𝐴) = (43 + 41)21,05

 = 173,9245,  

 𝛽1
1,05(𝐵) = 44 + 4131,05

 = 173,9455.  

Construction from the Theorem 2.3 can be expanded to the arbitrary large set of candidates. 

With first four positions of the candidates that remain the same, all other candidates can be 

arbitrary placed below 4
th

 position in preferences of the constructed profile. 

2.5. Theorem. Let M = {M1, M1, …, Mk} be set of candidates, and let WBC stands for a 

unique Borda count winner candidate and WPC for a unique plurality winner candidate over 

some profile . For every d > 1 there is a profile  such that WBC  WPC, and for d-measures 

of divergence from the first position there is 

 𝛽1
𝑑(𝑊𝑃𝐶) < 𝛽1

𝑑(𝑊𝐵𝐶).  

Proof of the Theorem 2.5. follows the construction of the proof of Theorem 2.3, leading to 

the same conditions for construction of the profile which satisfy Theorem. 

CONCLUSIONS 

This article presents one possible mathematical look at the notion of compromise in social 

choice theory. Notion of a d-measure of divergence is introduced as a measure of divergence 

from (predetermined level of) compromise. If we accept concept of compromise as a Sorites 

paradox, with level of compromise as a social decision, we can compare results of established 

social choice function in a new light. 

As shown in this article, Borda count always produces a winner with smaller d-measure of 

divergence from the first place than plurality count winner – but only in three candidates 

scenarios. We also proved that, if there are four or more candidates, there are profiles on 

which Borda winner can have greater d-measure of divergence from the first place than 

plurality winner. This result makes us to think again about wildly accepted opinion of Borda 

count as a more compromise social function of those two. Furthermore, introduced concept of 

a compromise as a Sorites paradox offers more room for further research. Object of further 

study should not be only d-measure of divergence from the first place, since concept offers 

much richer data to analyse and interpret. One of such goal could be utilization of d-measure 

matrix for construction social choice function(s) which would (in some sense) minimise 

d-measure of divergence. 

APPENDIX 

LEMMA 1. 

Let 1 be a profile over the set of candidates M = {A, B, C}, without any Condorcet triples. 

Furthermore, let 1 be a profile of a form 

n  

(A)  

(B)  

(C) , 
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with  being some permutation over the set M. Then, for every profile  obtained as a union 

of 1 and some number of copies of Condorcet triples 𝛼1
𝐶 and 𝛼2

𝐶 it follows 

 𝛽1
𝑑(𝑊𝐵𝐶) < 𝛽1

𝑑(𝑊𝑃𝐶),  

for some WBC, WPC  M, winners by Borda and plurality count respectively over the profile 

, where WBC,  WPC, if such WPC exists. 

PROOF OF THE LEMMA 1. 

Proof of the Lemma is trivial, since Borda and plurality winner on the profile 1 are the same. 

It follows that both methods have same winner on all profiles obtained by addition of some 

number of Condorcet triples. 

LEMMA 2. 

Let 1 be a profile over the set of candidates M = {A, B, C}, without any Condorcet triples. 

Furthermore, let 1 be a profile of a form 

m n  

(A) (A)  

(B) (C)  

(C) (B) , 

with  being some permutation over the set M. Then, for every profile  obtained as a union 

of 1 and some number of copies of Condorcet triples 𝛼1
𝐶 and 𝛼2

𝐶 it follows 

 𝛽1
𝑑(𝑊𝐵𝐶) < 𝛽1

𝑑(𝑊𝑃𝐶),  

for some WBC, WPC  M, winners by Borda and plurality count respectively over the profile 

, where WBC,  WPC, if such WPC exists. 

PROOF OF THE LEMMA 2. 

Same as for Lemma 1., proof is trivial, since both the Borda and the plurality count produce 

same winner on a given profile for all n, m  N. 

LEMMA 3. 

Let 1 be a profile over the set of candidates M = {A, B, C}, without any Condorcet triples. 

Furthermore, let 1 be a profile of a form 

m n  

(A) (C)  

(B) (B)  

(C) (A) , 

with  being some permutation over the set M. Then, for every profile  obtained as a union 

of 1 and some number of copies of Condorcet triples 𝛼1
𝐶 and 𝛼2

𝐶 it follows 

 𝛽1
𝑑(𝑊𝐵𝐶) < 𝛽1

𝑑(𝑊𝑃𝐶),  

for some WBC, WPC  M, winners by Borda and plurality count respectively over the profile 

, where WBC,  WPC, if such WPC exists. 

PROOF OF THE LEMMA 3. 

Because of symmetry of the positions of the candidates (A) and (C) in a profile 1, without 

loss of generality we can assume that m > n. It follows that candidate (A) is Borda winner, 
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since because of 2m > m + n he/she has better Borda score than candidate (B), and because 

of 2m > 2n he/she has better Borda score than candidate (C). Plurality count under the same 

assumption produces (A) as a plurality winner, which proves the Lemma 3. 

LEMMA 4. 

Let 1 be a profile over the set of candidates M = {A, B, C}, without any Condorcet triples. 

Furthermore, let 1 be a profile of a form 

m n  

(A) (B)  

(B) (A)  

(C) (C) , 

with  being some permutation over the set M. Then, for every profile  obtained as a union 

of 1 and some number of copies of Condorcet triples 𝛼1
𝐶 and 𝛼2

𝐶 it follows 

 𝛽1
𝑑(𝑊𝐵𝐶) < 𝛽1

𝑑(𝑊𝑃𝐶),  

for some WBC, WPC  M, winners by Borda and plurality count respectively over the profile 

, where WBC,  WPC, if such WPC exists. 

PROOF OF THE LEMMA 4. 

Because of symmetry of the positions of the candidates (A) and (B) in a profile 1, without 

loss of generality we can assume that m > n. For Borda count we have (A) ├ (B)  2m+n 

> 2n + m, because of m > n. Since (C) cannot be Borda winner, it follows that candidate 

(A) is both the Borda and the plurality winner on the profile 1, which proves the Lemma 4. 

LEMMA 5. 

Let 1 be a profile over the set of candidates M = {A, B, C}, without any Condorcet triples. 

Furthermore, let 1 be a profile of a form 

m n  

(A) (B)  

(B) (C)  

(C) (A) , 

with  being some permutation over the set M. Then, for every profile  obtained as a union 

of 1 and some number of copies of Condorcet triples 𝛼1
𝐶 and 𝛼2

𝐶 it follows 

 𝛽1
𝑑(𝑊𝐵𝐶) < 𝛽1

𝑑(𝑊𝑃𝐶),  

for some WBC, WPC  M, winners by Borda and plurality count respectively over the profile 

, where WBC,  WPC, if such WPC exists. 

PROOF OF THE LEMMA 5. 

Without loss of generality, Lemma 5 is proven for the profile 

m n  

A B  

B C  

C A . 

First, let us assume that m  n. Then plurality winner is candidate B. Candidate C cannot be 

Borda winner, since B is better ranked candidate in on preferences. For candidate A to be a 
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Borda winner, we should have 2m > m+2n  m > 2n, which contradicts m  n. Therefore, 

plurality winner is in that case also a Borda winner, which proves the Lemma 5. 

In case of m > n, plurality winner is candidate A. If in that case holds m + 2n > 2m  

n > m/2, we have a candidate B winning by Borda score (otherwise, candidate A is also a 

Borda winner, which proves the Lemma 5). Does then exist d > 1 for which candidate A has 

smaller d-measure of divergence from the first position than candidate B? Let us analyse 

corresponding d-measures of divergence from the first position: 

 𝛽1
𝑑(𝐴) < 𝑛 ∙ 2𝑑 > 𝑛 ∙ 2 > 𝑚 = 𝛽1

𝑑(𝐵),  

which holds for all d > 1. This means that Borda winner has smaller d-measure of divergence 

from the first position than plurality winner, for all d > 1, which proves the Lemma 5. 

LEMMA 6. 

Let 1 be a profile over the set of candidates M = {A, B, C}, without any Condorcet triples. 

Furthermore, let 1 be a profile of a form 

k l m  

(A) (C) (C)  

(B) (A) (B)  

(C) (B) (A) , 

with  being some permutation over the set M. Then, for every profile  obtained as a union 

of 1 and some number of copies of Condorcet triples 𝛼1
𝐶 and 𝛼2

𝐶 it follows 

 𝛽1
𝑑(𝑊𝐵𝐶) < 𝛽1

𝑑(𝑊𝑃𝐶),  

for some WBC, WPC  M, winners by Borda and plurality count respectively over the profile 

, where WBC,  WPC, if such WPC exists. 

PROOF OF THE LEMMA 6. 

Without loss of generality, we will prove Lemma 6. for the profile 

k l m  

A C C  

B A B  

C B A . 

On that profile, plurality winner can be candidate A or candidate C. First, let us assume that 

plurality winner is candidate A. It follows k > l + m. From there we have: 

 k > l + m  2k > 2l + 2m  2k + l > 3l + 2m.  

Since Borda score of candidate A equals to 2k + l, and Borda score of candidate C equals to 

2l + 2m, it follows 2k + l > 3l +2m > 2l +2m, which means that candidate A has a higher 

Borda score than candidate B. In the same time, we have 2k + l > k + m , k + l > m, because 

of k > l + m, so candidate A has higher Borda score than candidate B, which makes candidate 

A both plurality and Borda winner, and proves the Lemma 6. 

If, however, we assume that candidate C is plurality winner on a given profile, then we have 

 k < m + l. (12) 

In this case, if candidate A is Borda winner, it should have higher Borda score than candidate 

B, which yields 

 2k + l > k + m  l + k > m, (13) 

and higher Borda score than candidate C 
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 2k + l > 2l + 2m  k > m + l/2. (14) 

If this condition is met, candidate C is plurality, and candidate A Borda winner. Let us examine 

whether in that case the candidate C can have lower d-measure of divergence from the first 

place than candidate A. In other words, whether there is d > 1 such that 𝛽1
𝑑(𝐶) < 𝛽1

𝑑(𝐴),? In 

that case we have (with k > m) 

 𝑘 ∙ 2𝑑 < 𝑙 + 𝑚 ∙ 2𝑑   2𝑑 <
𝑙

𝑘−𝑚
.  

But, from condition (14) one has: 

 𝑘 > 𝑚 +
𝑙

2
  

𝑙

𝑘−𝑚
< 2,  

so we conclude that there is no such d > 1, which proves the Lemma 6. 

LEMMA 7. 

Let 1 be a profile over the set of candidates M = {A, B, C}, without any Condorcet triples. 

Furthermore, let 1 be a profile of a form 

k l m  

(A) (C) (A)  

(B) (A) (C)  

(C) (B) (B) , 

with  being some permutation over the set M. Then, for every profile  obtained as a union 

of 1 and some number of copies of Condorcet triples 𝛼1
𝐶 and 𝛼2

𝐶 it follows 

 𝛽1
𝑑(𝑊𝐵𝐶) < 𝛽1

𝑑(𝑊𝑃𝐶),  

for some WBC, WPC  M, winners by Borda and plurality count respectively over the profile 

, where WBC,  WPC, if such WPC exists. 

PROOF OF THE LEMMA 7. 

Without loss of generality, we can drop permutation function . On a given profile, plurality 

winner can be candidate A or C. If A is plurality winner, it follows k + m > l. For A to be 

Borda winner it should have greater Borda score than C, so 2k + l + 2m > 2l + m, i.e. 

2k + m > l which holds because of plurality winning condition. Therefore, if A is plurality 

winner, then it is also Borda winner, which proves the Lemma 7. 

On the other hand, if C is plurality winner, then we have: 

 k + m < l. (15) 

For A to be Borda winner (compared to C), we have 

 2k + l + 2m < 2l + m  2k + m > l. (16) 

Conditions (15) and (16) result in m + k < l < m + 2k. For a profile 1 and d > 1 for which 

d-measure of divergence form the first place for a candidate C is smaller than the one for the 

candidate A, must hold: 

 𝛽1
𝑑(𝐶) < 𝛽1

𝑑(𝐴)  𝑚 + 𝑘 ∙ 2𝑑 < 𝑙.  

But from the condition (16) it follows that m + k2d
 > m + 2k > l, which leads to the 

conclusion that C cannot have smaller d-measure of divergence from the first place than 

candidate A, which proves the Lemma 7. 

LEMMA 8. 

Let 1 be a profile over the set of candidates M = {A, B, C}, without any Condorcet triples. 

Furthermore, let 1 be a profile of a form 
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k l m  

(A) (C) (B)  

(B) (A) (A)  

(C) (B) (C) , 

with  being some permutation over the set M. Then, for every profile  obtained as a union 

of 1 and some number of copies of Condorcet triples 𝛼1
𝐶 and 𝛼2

𝐶 it follows 

 𝛽1
𝑑(𝑊𝐵𝐶) < 𝛽1

𝑑(𝑊𝑃𝐶),  

for some WBC, WPC  M, winners by Borda and plurality count respectively over the profile 

, where WBC,  WPC, if such WPC exists. 

PROOF OF THE LEMMA 8. 

Without loss of generality, we will prove Lemma 8. for the profile 

k L m  

A C B  

B A A  

C B C . 

On that profile, every candidate can be a plurality winner. First, let us assume that plurality 
winner is candidate A. If so, then next conditions hold: 

 k > l, (17) 

 k > m. (18) 

Let us prove that in this case, candidate A is also the Borda winner. He/she will have higher 
Borda score than candidate B if and only if 

 2k + l + m > k + 2m  k + l > m,  

which holds because of condition (18). On the other hand, candidate A will have higher 
Borda score than candidate C if and only if 

 2k + l + m > 2l  2k + m > l,  

which holds because of condition (17). We conclude that in that case candidate A is both 
Borda and plurality winner, which proves the Lemma 8. 

Secondly, let us now assume that candidate B is plurality winner. It follows: 

 m > k, (19) 

 m > l. (20) 

Candidate B has higher Borda score than candidate C, that is, k + 2m > l because of condition 
(18). But for candidate B does not have to have higher Borda score than candidate A. For A 

to have higher Borda score than B, it must hold 

 2k + l + m > k + 2m  k + l > m. (21) 

There are integer solutions for conditions (19)-(21), for instance k = 3, l = 4 and m = 5 is one 
of such solutions. We will show, that in this case (with B being plurality, and A being Borda 
winner), candidate A has smaller d-measure of divergence from the first position for all d > 1. 
One has: 

 𝑙 + 𝑚 < {(21)} < l + (𝑘 + 𝑙) = 𝑘 + 𝑙 ∙ 2 < 𝑘 + 𝑙 ∙ 2𝑑,  

which proves the Lemma 8. 

Thirdly, let us now assume that candidate C is plurality winner. It follows: 

 l > k, (22) 

 l > m. (23) 
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Candidate C does not have to be Borda winner; both A and B can have higher Borda score. 

Candidate A has higher Borda score than candidate C if: 

 2k + m > l. (24) 

That is, together with conditions (22) and (23) fulfilled for k = 2, m = 3 and l = 4). 

Conversely, candidate B has higher Borda score than C if k/2 + m > l (which is, together with 

conditions (22) and (23) fulfilled for k = 4, m = 5 and l = 6). Yet, candidate A will always 

have higher Borda score than B. It follows from 2k + l + m > k + 2m  k + l > m, which 

holds because of condition (23). Therefore, between A and B, only candidate A can be Borda 

winner. We will prove that in this case, candidate A as a Borda winner, has smaller 

d-measure of divergence from the first place than candidate C for all d > 1, that is 

 𝛽1
𝑑(𝐴) < 𝛽1

𝑑(𝐶)  𝑙 + 𝑚 < (𝑘 +𝑚) ∙ 2𝑑.  

Now we have: 

 𝑙 + 𝑚 < {(24)} < (𝑘 + 𝑚)2 = (𝑘 + 𝑚) ∙ 2𝑑,  

for all d > 1, which proves the Lemma. 

LEMMA 9. 

Let 1 be a profile over the set of candidates M = {A, B, C}, without any Condorcet triples. 

Furthermore, let 1 be a profile of a form 

k l m n  

(A) (C) (C) (A)  

(B) (A) (B) (C)  

(C) (B) (A) (B) , 

with  being some permutation over the set M. Then, for every profile  obtained as a union 

of 1 and some number of copies of Condorcet triples 𝛼1
𝐶 and 𝛼2

𝐶 it follows 

 𝛽1
𝑑(𝑊𝐵𝐶) < 𝛽1

𝑑(𝑊𝑃𝐶),  

for some WBC, WPC  M, winners by Borda and plurality count respectively over the profile 

, where WBC,  WPC, if such WPC exists. 

PROOF OF THE LEMMA 9. 

As before, without loss of generality we will prove Lemma 9. for the profile 

k l m n  

A C C A  

B A B C  

C B A B . 

In this case we have symmetry between positions of candidates A and C. Therefore, it is 

sufficient to analyse situation in which is candidate A plurality winner. In that case we have: 

 k + n > l + m. (25) 

Plurality winner A has higher Borda score than candidate B, because of 

 k + 2n + l > (k + n) + n + l > {(25)} > (l + m) + n + l = 2l + n + m > m.  

But candidate A does not have to have higher Borda score than C. Namely, C is Borda 

winner if 

 2l + 2m + n > 2k + 2n + l,  l + 2m > 2k + n, (26) 

which can be fulfilled (together with condition (25)) for m > k. For instance k = 1, l = 3, m = 4 

and n = 7 meet conditions (25) and (26). In such profiles A is the plurality and C the Borda 

winner. We will prove that in this case, candidate C has lower d-measure of divergence from 

the first place than candidate A, for all d > 1. Let R  N be a natural number such that 
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 k + n = l + m + R  n = l + m – k + R.  
Such a number exists because of condition (25). From (26) it follows 

 l + 2m > 2k + n  l + 2m > 2k + l + m – k + R,  m> k + R.  

If we compare d-measures of divergence from the first place for A and C, we have: 

 𝛽1
𝑑(𝐶) < 𝛽1

𝑑(𝐴)  𝑛 + 𝑘 ∙ 2𝑑 < 𝑙 + 𝑚 ∙ 2𝑑 . 

From condition (27) one has m > k, and therefore 

     n < l + (m – k)2
d
  l + m – k + R < l + (m – k)2

d
  m – k + R < (m – k)2

d
  1+

𝑅

𝑚−𝑘
 < 2

d
. (27) 

Since from condition (27) it follows that R/(m – k) < 1, Lemma 9. is proven for all d > 1. 

LEMMA 10. 

Let 1 be a profile over the set of candidates M = {A, B, C}, without any Condorcet triples. 

Furthermore, let 1 be a profile of a form 

k l m n  

(A) (C) (C) (B)  

(B) (A) (B) (A)  

(C) (B) (A) (C) , 

with  being some permutation over the set M. Then, for every profile  obtained as a union 

of 1 and some number of copies of Condorcet triples 𝛼1
𝐶 and 𝛼2

𝐶 it follows 

 𝛽1
𝑑(𝑊𝐵𝐶) < 𝛽1

𝑑(𝑊𝑃𝐶),  

for some WBC, WPC  M, winners by Borda and plurality count respectively over the profile 

, where WBC,  WPC, if such WPC exists. 

PROOF OF THE LEMMA 10. 

Without loss of generality we will prove Lemma 10. for the profile 

k l m n  

A C C B  

B A B A  

C B A C . 

Here, all three candidates can be plurality winner. Since there is symmetry between positions 
of candidates A and B, we will analyse two situations: one in which A is plurality winner, 
and other in which C is plurality winner. Furthermore, all claims proven for candidate A can 
be easily transformed into claims for candidate B. 

First let us assume that candidate A is plurality winner. In that case we have: 
 k > l + m, (28) 

 k > n. (29) 
Let us show that C has lower Borda score than A: 

 2k + l + n > 2l + 2m  2k + n = l + 2m.  
Now we have 

 2k + n > {(28)} > 2(l + m) + n = 2l + 2m + n > l + 2m.  

But candidate B can have higher Borda score than plurality winner A. For that, it must hold 

 2n + k + m > 2k + l + n  n + m > k + l. (30) 

Conditions (28)-(30) can be met in the same profile. For instance l = 2, m = 5, n = 6 and k = 8 
satisfy these conditions. In such profiles candidate A is plurality, and candidate B is Borda 

winner. We will prove that for all d > 1 we have 𝛽1
𝑑(𝐵) < 𝛽1

𝑑(𝐴). With addition of conditions 
(29) and (30) we get 
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 k + n + m > n + k + l  m > l. (31) 

Now we have 

 𝛽1
𝑑(𝐵) < 𝛽1

𝑑(𝐴) k + m + l2
d
 > l + n + m2

d
.  

If k + m  l + n, then because of (31) follows l2
d
 < m2

d
, which proves the claim. Let us 

therefore assume that k + m > l + n. Thus, we have 

 k + m – l – n < (m – l)2
d
  

𝑘+𝑚−𝑙−𝑛

𝑚−𝑙
 < 2

d
.  

This claim holds for all d > 1 if 

 
𝑘+𝑚−𝑙−𝑛

𝑚−𝑙
 < 2  k + m – l – n < (m – l)2  k + l < m + n,  

which follows from condition (30). This proves that Borda winner B has lower d-measure of 

divergence from the first place for all d > 1 than plurality winner A (because of symmetry same 

claim holds for Borda winner A and plurality winner B). 

Last thing to do, is to analyse profiles 1 for which candidate C is plurality winner. In these 

cases we have: 

 l + m > k, (32) 
 l + m > n. (33) 

But C does not have to be Borda winner. For A to be a Borda winner (similar analysis can be 

made for B because of symmetry), we should have: 

 2k + l + n > 2n + k + m  k + l > n + m, (34) 

for A to have higher Borda score than B, and 

 2k + l + n > 2l + 2m  2k + n > l + 2m, (35) 

for A to have higher Borda score than C. Existence of such profile (with A Borda, and C 

plurality winner) demonstrates example of profile 1 in which we have k = 2, l = 3, m = 1 and 

n = 3. These values satisfy conditions (32)-(35). We will prove that for profiles that satisfy 

these four conditions, for all d > 1 we have: 

 𝛽1
𝑑(𝐴) < 𝛽1

𝑑(𝐶) l + n + m2
d
 > (k + n)2

d
.  

Let us first show that k + n > m. Because of condition (35) we have 2k + n > l + 2m. If we 

subtract k from both sides of that inequality (which is something we are allowed to do, 

because from (32) follows k < l + m), we have k + n > m + (l + m – k). Since l + m – k is a 

positive number (because of (32)), it follows that k + n > m  (k + n)2
d
 > m2

d
. 

Now we have 

 l + n < (k + n – m)2
d
,  

𝑙+𝑛

𝑘+𝑛−𝑚
 < 2

d
.  

These inequalities hold for all d > 1 if there is 

 
𝑙+𝑛

𝑘+𝑛−𝑚
 < 2,  l + 2m < 2k + n,  

which follows from condition (35). We conclude that, in this case also, Borda winner has lower 

d-measure of divergence from the first place than plurality winner, which proves the Lemma 10. 

LEMMA 11. 

Let 1 be a profile over the set of candidates M = {A, B, C}, without any Condorcet triples. 

Furthermore, let 1 be a profile of a form 

k l m n  

(A) (C) (A) (B)  

(B) (A) (C) (A)  

(C) (B) (B) (C) , 
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with  being some permutation over the set M. Then, for every profile  obtained as a union 

of 1 and some number of copies of Condorcet triples 𝛼1
𝐶 and 𝛼2

𝐶 it follows 

 𝛽1
𝑑(𝑊𝐵𝐶) < 𝛽1

𝑑(𝑊𝑃𝐶),  

for some WBC, WPC  M, winners by Borda and plurality count respectively over the profile 

, where WBC,  WPC, if such WPC exists. 

PROOF OF THE LEMMA 11. 

Without loss of generality we will prove Lemma 11. for the profile 

k l m n  

A C A B  

B A C A  

C B B C . 

Here we also have symmetry between positions of two candidates – this time, candidates B 

and C. Therefore, there are two situations we must analyse: first, in which candidate A is 

plurality winner, and second in which candidate B is plurality winner. For A to be a plurality 

winner, we must have: 

 k + m > l, (36) 

 k + m > n. (37) 

Let us prove, that in this case candidate A is also a Borda winner. For A to have higher Borda 

score than B, it should hold: 

 2k +2m + l + n < 2n + k  k + 2m + l > n,  

which follows from condition (37). On the other hand, for A to have higher Borda score than 

C, it should hold 

 2k +2m + l + n < 2l + m  2k + m + n > l,  

which follows from condition (36). Since plurality winner A is also a Borda winner, Lemma 

10. is proven for such profiles. 

Second, if candidate B is plurality winner, we have; 

 n > k + m, (38) 

 n > l. (39) 

In this case, candidate A can be Borda winner. For A to have higher Borda scores than B and 

C, it should hold: 

 2k +2m + l + n > 2n + k, k + 2m + l > n, (40) 

 2k +2m + l + n > 2l + m, 2k + m + n > l. (41) 

Condition (41) is always fulfilled because of condition (39). Conditions (38)-(40) can be 

satisfied if we choose n which satisfy max{l, k + m} < n < (k + m) + m + l. For instance, these 

conditions are fulfilled for k = 2, l = 1, m = 3 and some n which satisfies 5 < n < 9. On such a 

profile the Borda winner is candidate A and plurality winner is candidate C. We will prove 

that for all d > 1 and d-measure of divergence from the first place holds: 

 𝛽1
𝑑(𝐴) < 𝛽1

𝑑(𝐵) l + n < k + (l + m)2
d
.  

From condition (38) follows n > k, so we have: 

 l + n – k < (l + m)2
d
   

𝑙+𝑛−𝑘

𝑙+𝑚
 < 2

d
.  

Lemma is proven for all d > 1 if we have 

 
𝑙+𝑛−𝑘

𝑙+𝑚
 < 2  n < k + l + 2m,  

which follows from condition (40). This proves that Borda winner, candidate A has lower 

d-measure of divergence from the first place (for all d > 1) than plurality winner, candidate B. 
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Last thing we should consider is whether, with B being plurality winner, can Borda winner be 

candidate C. Answer to this question is – no. In such a scenario, Borda score of candidate C 

should be higher than Borda score of candidate A, so we should have: 

 2l +m > 2k + 2m + l + n  l > 2k + m + n,  

which contradicts the condition (39). Therefore, we conclude that if B is plurality winner, 

only other candidate that can be Borda winner is candidate A, and in that case, we shoved 

that 𝛽1
𝑑(𝐴) < 𝛽1

𝑑(𝐵), which proves the Lemma 10. 

LEMMA 12. 

Let d  R, d > 1. It follows 

 
2𝑑−2

3𝑑−2𝑑−1
 < 1.  

PROOF OF THE LEMMA 12. 

Let us first show that real function f(d) = 3
d
 – 2

d
 – 1 is a monotonically increasing for all d > 1. 

Since we have f
 
’(d) = 3

d
ln 3– 2

d
ln 2, it follows f

 
’(d) > 0 if and only if 3

d
ln 3– 2

d
ln 2 > 0, 

which holds for 

 d > 
ln
ln2

ln3

ln
3

2

 = –1,1358.  

Since f(1) = 0, it follows 3
d
 – 2

d
 – 1 > 0 for all d > 1, so the inequality in Lemma 12. can be 

multiplied with this expression. Now we have: 

 
2𝑑−2

3𝑑−2𝑑−1
 < 1  2

d
 – 2 < 3

d
 – 2

d
 – 1  3

d
 – 22

d
 + 1 > 0.  

Let us show that 3
d
 – 22

d
 + 1 > 0 for all d > 1. If we analyse function g(d) = 3

d
 – 22

d
 + 1, it follows 

g
 
’(d) > 0 (meaning that g() increases monotonically) if and only if 3

d
ln 3– 22

d
ln 2 + 1 > 0. 

Solving that inequality for d we have: 

 d > 
ln
2ln2

ln3

ln
3

2

 = 0,5736.  

so we conclude that g(d) increases monotonically for all d  1. Since g(1) = 0, the Lemma 12. 

follows. 
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