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The contribution presents some results achieved by the authors during several years of research of the process of 
rotary drilling of rocks by using metric spaces. The authors successfully apply this approach in the solution of spe-
cific problems in geophysics and also metallurgy. The authors use abstract structures – so called Hilbert spaces - for 
the implementation of process signals as algebraic vectors. The geometric structure of these spaces enables mutual 
metric comparisons of geophysical signals in relation to the rock type and the mode of drilling. Some space is also 
given to the visualization of the degree of divergence between geophysical or process signals being analyzed.
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INTRODUCTION

Many technological processes in the area of mining 
and processing of raw materials are problematic from 
the viewpoint of their direct control. Complications are 
often related to the impossibility to directly measure 
key process quantities. Into this category belong e.g. the 
processes of separation of rocks in mining and tun-
neling, metallurgical processes in heating machinery, 
but also some methods of testing the quality of casts. 
The solution can be reading the vibro-acoustic expres-
sions of the process. Such a suitably read physical sig-
nal can represent an integrated information source 
which, with a suitable method of processing, enables 
classification of the process and subsequently the con-
trol of the process with state space methods.

Functional analysis is a significant part of so-called 
modern mathematics the beginnings of which date back 
to the early 20th century. The theory of functional anal-
ysis is based upon the abstraction and generalization of 
the classical Euclidean physical 3-dimensional space E3 
[1-5]. The elements of the space E3 are the points that 
are uniquely identified by an ordered triple of real coor-
dinates relating to the corresponding mutually ortho-
normal unit vectors ex, ey, ez.

The elements of abstract spaces in functional analy-
sis are functions (so-called functional spaces). The co-
ordinates of functions in such functional space are di-
rectly their functional values from the definition inter-
val as relative coordinates corresponding to the chosen 
orthonormal or orthogonal base of the space.
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Functional spaces have a defined set, topological, 
algebraic, and geometric structure. These structures 
were obtained by generalization and abstraction of cor-
responding structures of the Euclidean space E3.

In practice it means that the function f  (f (t); 
t : a b) as an element of the functional space can be 
viewed as an algebraic vector with corresponding alge-
braic operations of vector addition and multiplication 
of vector with a scalar.

HILBERT SPACE

The highest degree of generalization and abstraction 
of the physical space E3 represent the classes of func-
tional spaces called Hilbert spaces. The definition of Hil-
bert space is the following: Hilbert space is a complete 
space with inner product. It can be infinite-dimensional 
and complex. This definition contains notions whose de-
tailed explanation at this point is not possible. For a sig-
nificant class of functional spaces (so-called L2 spaces) it 
is a necessary condition for the functions as elements of 
the space to be integrable. That is because the definition 
of the inner product in these spaces has the form of an 
integral. The explicitely stated condition of the existence 
of inner product in the definition of Hilbert space shows 
its significance for these spaces since the inner product 
generates the norm of the space and the norm in turn gen-
erates its metric. Consequently Hilbert space is a normed 
linear vector space with metric.

HILBERT SPACE AS SIGNAL SPACE 

AND ITS GEOMETRY

The properties of functional spaces, especially Hil-
bert spaces, yield many application possibilities. A con-
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dition for using the theory of Hilbert functional spaces 
in signal processing is that the signal could be inter-
preted as a function that satisfies conditions for being 
an element of Hilbert space of the corresponding class. 
Therefore it is useful to study general properties of 
each physical signal.

Each electrical signal of the sensor has the follow-
ing properties:

• Signal is a physical manifestation of physical 
quantity of the process,

• Signal can take on nonzero values only in finite 
time interval (physical signal is finite),

• Signal values – amplitudes are bounded (finite),
• No physical signal has complex character,
• Signal can be described with a unique continuous 

real function of time.
Only signals with these properties can be technically 

realized.
Computer implementation of methods based on Hil-

bert L2-space requires digitization of the process signal. 
The result of this digitization is an n-component algebra-
ic vector x  (x1, x2, ..., xn)  Cn as an ordered sequence of 
n real samples of the signal. With this algebraic vector x 
we substitute the continuous analog signal x  x (t)  L2 
and Hilbert space of class L2 we substitute with unitary 
space Cn. It is also a Hilbert space whose points are all 
possible n-tuples of complex scalars. The operation of 
inner product here has the form of a sum.

From the mathematical viewpoint, this process of 
digitization is an n-point approximation of the continu-
ous function x.

VISUALIZATION OF SIGNAL DISTRIBUTION 

ON SIGNAL SPACE BASED ON THE MEASURE 

OF THEIR MUTUAL SIMILARITY
Map F3: Cn → E3

This map has the best capability to distinguish indi-
vidual signals. In this case three measures of differenti-
ation of signal location are used at the same time, name-
ly their L2 - norm and a couple of angles subtended with 
two reference signals. The map F3 part of the space E3 
 R3. The procedure is as follows (Figure 1).

In the signal space Cn we define a suitable reference 
signal xref and to the signal we construct an orthogonal 

vector x
ref. We then have for their mutual inner product: 

determines to each signal a location in a bounded

 . (1)

Further let us choose in the space E3 a Cartesian sys-
tem of coordinates (0; ex, ey, ez) with a triple of coordi-
nate axes (X, Y, Z). This way the Euclidean space is di-
vided into eight octants.

Assume that for the location vectors of images of 
both reference signals in the mapping F3 we have:

 , (2)

 . (3)

This way we located the couple of images of mutu-
ally orthogonal reference vectors onto the axes X and Z. 
Let us Figure 1 further introduce in the space E3 a spher-
ical system of coordinates (0; r, φ, ϑ), associated with 
the defined Cartesian coordinate system according to 
Figure 1. Then there are well-known transformation re-
lations between Cartesian coordinates and spherical co-
ordinates of the same point in the space E3.

The location of the signal point x in this Euclidean 
space E3 is then defined in the spherical coordinates by 
its location vector  with the starting 
point at point 0. The length of this location vector is 
equal to the norm  of the vector x in space Cn and 
represents the distance of point x form pole 0 of the 
spherical system of the space E3. The coordinate φ rep-
resents the magnitude of the oriented angle subtended 
by axis X with the vertical projection of the location 
vector rx into the plane (X, Y). It is determined by the 
magnitude of the oriented angle ϕ = ϕ (xref, x) in the 
signal space Cn. The coordinate ϑ represents the magni-
tude of the oriented angle subtended by axis Z with the 
location vector rx. It is determined by the magnitude of 
the oriented angle  =  (x

ref, x) in the signal space Cn.

APPLICATION OF MAP F
3

An experiment was realized with the signal of con-
current vibrations of the process of separation of rock 
massif by rotary drilling on a special drilling stand. The 
map F3 was applied to this concurren vibration signal.

Figure 1  Map F3 of Hilbert signal space L2[0, T]≈ Cn into space E3



122

I. LEŠŠO et al.: ANALYSIS OF GEOPHYSICAL SIGNALS BY USING HILBERT SPACE GEOMETRY

 METALURGIJA 58 (2019) 1-2, 120-122

The process of rotary drilling of rock massif gener-
ates concurrent vibro-acoustic emissions that corre-
spond to the character of the rock separation. The sensor 
of these vibrations (accelerometer) generates at its out-
put random analog signal with the shape of continuous 
random fluctuations [6-8].

The above method was experimentally used in the so-
lution of the task of effective control of the process of 
rotary drilling of rock massif [9-11]. From realizations of 
concurrent vibrations of the process of separation of four 
types of rock (A – andesite, V – limestone, Z – granite, B 
– concrete) were calculated the power spectra. They rep-
resent, in the sense of above considerations, the functions 
– vectors of Hilbert space. In view of random, but sta-
tionary character, these power spectra were averaged for 
each rock from 30 realizations of the signal. The mode of 
drilling (pressure, revolutions) was stabilized during the 
measurement. On the basis of the above procedure, cal-
culation of the triple of digital positional characteristics 
was performed for the centroid of each rock. Those char-
acteristics then determined a unique location in 3-D space 
(Figure 2) for the centroid of each rock.

CONCLUSIONS

The above methods of processing physical signals 
using the so-called new mathematics enable solution of 
many complex problems. Functional analysis, namely 
Hilbert spaces, makes it possible to analyze signals as 

functions and generalize geometric relations among 
them. The proposed method of unique map of vectors of 
Hilbert space into the 3D space was applied on geo-
physical vibration signals from the process of rotary 
drilling of rock. Visualized was the differentiability of 
four kinds of rock on the basis of vibrations and also the 
sensitivity of the location of vibration signal in Hilbert 
space on the mode of drilling.
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Figure 2  3D visualization of four separated rocks represented 
by concurrent vibrations as vectors in Hilbert space 
(n=1024)


