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Summary

This paper describes a self-contained parallel fluid-structure interaction solver based on a

finite volume discretisation, where a strongly coupled partitioned solution procedure is em-

ployed.The incompressible fluid flow is described by the Navier-Stokes equations in the arbi-

trary Lagrangian-Eulerian form, and the solid deformation is described by the Saint Venant-

Kirchhoff hyperelastic model in the total Lagrangian form. Both the fluid and the solid are

discretised in space using the second-order accurate cell-centred finite volume method, and

temporal discretisation is performed using the second-order accurate implicit scheme. The

method, implemented in open-source software OpenFOAM, is parallelised using the domain

decomposition approach and the exchange of information at the fluid-solid interface is handled

using global face zones. The performance of the solver is evaluated in standard two- and three-

dimensional cases and excellent agreement with the available numerical results is obtained.

Key words: fluid-structure interaction, finite volume method,

partitioned, strongly coupled, parallel, OpenFOAM

1. Introduction

Broadly speaking, there are three different coupling procedures that can be used to solve

fluid-structure interaction (FSI) problems, as shown in Fig. 1 [1]:

1. separate analysis method, or hybrid method,

2. single analysis method,

3. single fluid-structure domain.

The first two belong to the so-called partitioned methods, where the solid and fluid domains

are solved separately with their respective mesh discretisation and numerical method (see [2]

for a comprehensive review). The coupling is performed through the passing of informations

over fluid-solid interface. The difference between the two approaches is in the method used

to discretise the separate domains; in the former, two different methods are used (e.g. Finite

Element (FE) for the solid domain and Finite Volume (FV) for the fluid domain), whereas in the

latter the same method is used for both domains (e.g. FE or FV). The third method is nowadays

commonly known as the monolithic approach, where the coupled problem is solved as one

entity using a single numerical procedure [3, 4, 5, 6]. There are benefits of and drawbacks to
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using both the partitioned and monolithic approaches (see e.g. [5, 6] for details) and the choice

may depend on the FSI problem.

The present study is concerned with the development of a self-contained fluid-structure in-

teraction solver for analysis of the interaction between an incompressible fluid and an elastic

compressible structure exhibiting large displacements and rotations. The solver is based on the

cell-centred finite volume discretisation method for both domains and strongly coupled parti-

tioned solution procedure (Fig. 1b). To the authors’ best knowledge, there are few partitioned

FV-based FSI solvers found in literature [7, 8, 9, 10, 11, 12], with the current work being a

significant extension of the authors’ previous contributions [13, 14, 15, 16, 17]. The main

contribution of this work is the development of an FSI solver that is second-order accurate in

both space and time and capable of exploiting arbitrary polyhedral meshes and modern parallel

computing architectures.

Fluid 

domain

Analysis

 method I 

Interface 

program 

Solid

domain

Analysis

method II

Fluid 

domain

Analysis

 method 

Solid

domain

Fluid 

Analysis

 method 
Solid

domain

+

a) b) c)

Fig. 1 Fluid-structure coupling procedures.

The fluid part of the model is described by the Navier-Stokes equations in the arbitrary

Lagrangian-Eulerian form. The model is discretised on a moving polyhedral mesh using a

second-order accurate FV method; the resulting pressure-velocity coupled system is solved us-

ing the iterative PISO [18] algorithm, where the discretised pressure equation is derived by

combining the discretised momentum and continuity equations with the Rhie-Chow momen-

tum interpolation method [19]. A deficiency of such an approach is temporal inconsistency of

the numerical model, caused by the application of the standard Rhie-Chow interpolation; the

authors have recently proposed a remedy to this problem by deriving a consistent Rhie-Chow

interpolation on moving FV meshes [20, 21]. A detailed interpretation of the proposed consis-

tent Rhie-Chow interpolation and its extension to third-order temporal accuracy was later given

by Gillebaart et al. [7]. As the fluid component of the current FSI solver is well described in

[20, 21], only a concise overview of the method will be given here.

The focus of the present paper is on the structural component of the partitioned FSI proce-

dure, as well as on the coupling of the fluid and solid regions in the context of the parallel com-

puting. As has been stated earlier, the mathematical model governing the structural deformation

is discretised using the cell-centred second-order accurate FV method, echoing closely the fluid

model discretisation. The origin of the current structural numerical approach is the model firstly

proposed by Demirdžić and Muzaferija [22, 23]; this FV structural model was later extended

and implemented in the OpenFOAM framework and used as a part of the OpenFOAM toolbox

by many researchers [24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. In the aforementioned works, the

second-order accuracy in space is acheived by using the mid-point rule to approximate the sur-

face and volume integrals of the mathematical model. A deficiency in the approach that affects

the accuracy of the method is the interpolation of the cell-centred displacement gradient to the

faces, rather than the direct calculation of the gradient at the faces; this has a negative impact

on the accuracy, especially at the boundary faces, where the tangential gradient is extrapolated
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using zero-order extrapolation. In the present work, an improvement over previous methods

is proposed, which aims to increase the accuracy of the discretisation on arbitrary polyhedral

meshes. The new discretisation is achieved by directly calculating the gradient at the inter-

nal and boundary faces using central differencing for the normal gradient and a vertex-based

Gauss-Green method for the tangential gradient. This approach requires an interpolation of

the displacement field from the cell-centres to the vertices, which is far from a trivial task in

the context of parallel computing. The proposed approach has proven to provide significant

increases in the accuracy on tetrahedral as well as arbitrary polyhedral meshes.

An additional contribution of the current work is the development of a new concept of the

FSI model set-up using the domain decomposition parallel execution. The fluid and struc-

tural parts of the computational mesh are constructed and separately decomposed, which means

that one fluid and one structural sub-mesh are assigned to each CPU processor. The interface

between the fluid and the structure regions is represented by a pair of so-called global face

zones that are present on all processors. The global face zone point and face fields are recon-

structed individually on each processor and, subsequently, global synchronisation is performed

for points/faces shared by multiple processors. The impact of such an approach on the parallel

calculation performance is investigated in one of the presented cases.

Finally, it should be noted that the presented solver is a part of an open-source framework

(OpenFOAM). As such, it is open to scrutiny by other researchers and available for further

developments and modifications, e.g. for new types of FSI problems (such as [34], where the

turbulent flow of compressible fluid is considered), with no additional costs.

The article is organised as follows: Section 2 outlines the mathematical model derived from

the governing momentum and continuity equations and constitutive relations, where a total

Lagrangian mathematical model is employed for the structural model. The discretisation of

the mathematical model is given in Section 3, where the newly developed tangential gradient

calculation method is presented; Section 4 presents the application of the method to a number

of benchmark cases, where the accuracy, order of accuracy and parallel efficiency of the method

are demonstrated.

2. Mathematical model

In the current article, the interaction between an incompressible Newtonian fluid and a hy-

perelastic solid is considered, where a FV discretisation and a partitioned approach are em-

ployed. Mathematical models governing the mechanical behaviour of the fluid and the solid are

solved separately, and coupling is acheived by the enforcement of proper boundary conditions

at the interface.

2.1. Fluid governing equations

Fluid flow is considered on a spatial domain whose shape is changing in time due to the

deformation of the fluid-solid interface. Isothermal flow of an incompressible Newtonian fluid,

inside an arbitrary volume V bounded by a closed moving surface S, is governed by the mass

and the linear momentum conservation laws:

∮

S

n ·v dS = 0 (1)
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d

dt

∫

V

v dV +

∮

S

n · (v− vs)v dS

=

∮

S

n · (ν∇v) dS −
1

ρ

∫

V

∇p dV,

(2)

where n is the outward pointing unit normal to S, v is the fluid velocity, vs is the velocity of

surface S, ν is the fluid kinematic viscosity, p is the fluid pressure, and ρ is the fluid density.

The relationship between the rate of change of the volume V and the velocity vs is defined by

the geometric (space) conservation law (GCL, see [35, 36]):

d

dt

∫

V

dV −

∮

S

n ·vs dS = 0. (3)

The mathematical model presented in Eq. (3) is usually referred to as the arbitrary Lagrangian-

Eulerian (ALE) formulation.

2.2. Solid governing equations

The deformation of the solid, assumed to be elastic and compressible, can be described by

the linear momentum conservation law in the total Lagrangian form:

∫

V0

ρ0
∂

∂t

(

∂u

∂t

)

dV =

∫

S0

n ·
(

Σ ·FT
)

dS +

∫

V0

ρ0b dV, (4)

where subscript 0 indicates the quantities related to the initial (undeformed) configuration, u is

the displacement vector, F = I + (∇u)T is the deformation gradient tensor, I is the second-

order identity tensor, and Σ is the second Piola-Kirchhoff stress tensor, which is related to the

Cauchy stress tensor σ by the following expression:

σ =
1

detF
F · Σ ·FT. (5)

To account for finite strains, the St. Venant-Kirchhoff constitutive material model is used;

this model connects the second Piola-Kirchhoff stress tensor with the Green-Lagrange strain

tensor as follows

Σ = 2µE+ λ tr (E) I, (6)

where µ and λ are the Lamé coefficients. The Green-Lagrange strain tensor is defined as

E =
1

2

[

∇u+ (∇u)T +∇u · (∇u)T
]

. (7)

Substituting the constitutive relation, Eq. (6), into the governing equation, Eq. (4), one

obtains the linear momentum conservation equation for a St. Venant-Kirchhoff hyperelastic

solid in the total Lagrangian form, where the displacement vector u is the primitive variable:

ρ0

∫

V0

∂

∂t

(

∂u

∂t

)

dV −

∮

S0

n · (2µ+ λ)∇u dS =

∮

S0

n ·q dS + ρ0

∫

V0

b dV. (8)
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where

q = µ(∇u)T + λ tr (∇u) I− (µ+ λ)∇u

+ µ∇u · (∇u)T +
1

2
λ tr [∇u · (∇u)T]I+ Σ ·∇u.

(9)

Tensor q consists of nonlinear and displacement component coupling terms that are treated ex-

plicitly after discretisation, allowing the resulting linear system to be solved using a segregated

algorithm. The diffusivity (2µ + λ) in the Laplacian at the left-hand side of Eq. (8) is used to

maximise the implicit part of the discretised equation [24].

2.3. Conditions at the fluid-solid interface

The fluid and solid models are coupled by kinematic and dynamic conditions which must

be satisfied at the fluid-solid interface. The kinematic condition states that the velocity and

displacement must be continuous across the interface:

vF,i = vS,i, (10)

uF,i = uS,i (11)

where subscripts F and S represent the quantities corresponding to the fluid and solid regions

of the model, respectively, and subscript i represents the quantities at the fluid-solid interface.

The dynamic condition follows from the linear momentum conservation law and states that

forces are in equilibrium at the interface:

ni · σF,i = ni · σS,i, (12)

where ni is the unit normal vector at the interface.

In the partitioned computational approach, force (traction) is usually calculated at the fluid

side of the interface and applied as a boundary condition at the solid side of the interface. The

traction is calculated by using the fluid stress tensor consisting of the isotropic and viscous

components. The viscous (deviatoric) component, defined by Newton’s law of viscosity, is:

τ = µ
[

∇v +∇vT
]

(13)

where µ = ρν is the fluid dynamic viscosity. Hence, the stress tensor for an incompressible

Newtonian fluid reads as follows:

σF,i = −pI + τ = −pI+ µ
[

∇v +∇vT
]

. (14)

and the traction at the interface reads:

tF,i = ni ·σF,i = −pni + µni ·∇vt − 2µ (∇s ·v)ni + µ∇svn, (15)

where vt = (I − nn) ·v is the tangential velocity component, ∇s = ∇− nn ·∇ is the surface

tangential gradient operator and vn = n ·v is the normal velocity component. The third and the

fourth term on the right hand side of equation (15) can usually be omitted; otherwise, these terms

can be calculated directly at the solid side of the interface taking that the kinematic condition is

valid.

3. Numerical model

The discretisation procedure is separated into two distinct parts: discretisation of the com-

putational domain and discretisation of the governing equations.
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3.1. Discretisation of the computational domain

The time interval is split into a finite number of time-steps ∆t and the equations are solved

in a time-marching manner. In general, the computational space is divided into a finite number

of convex polyhedral control volumes (CVs) or cells bounded by convex polygons. Cells do

not overlap and fill the spatial domain completely. Figure 2 shows a polyhedral control volume

VP with the computational point P located in its centroid, f is an arbitrary face with area Sf

and unit normal vector nf , and it is shared with the neighbouring CV with the centroid N . The

geometry of the CV is exactly determined by the position of its vertices.

f

N

df

P

VP

nf

z

y

x

rP

Sf

Fig. 2 Polyhedral control volume (cell).

While the fluid flow mesh changes over time due to the deformation of the fluid-solid inter-

face, the solid mesh is always in its initial (undeformed) configuration due to the use of the total

Lagrangian formulation.

3.2. Discretisation of the governing equations

The discretised fluid mathematical model with a moving polyhedral mesh consists of the

discretised momentum equation and the discretised pressure equation, which is derived from

the discretised continuity equation using the Rhie-Chow momentum interpolation method [19].

The FV discretisation of the fluid model is described in detail in [20]. However, it should

be noted that in [20], emphasis was on the moving interface between two fluid phases, and

boundary conditions on the moving walls were not considered. A comprehensive description of

moving wall boundary conditions used in this work can be found in [7]. One exception is the

calculation of the pressure at walls; instead of the typical practice of calculating pressure using

the zero-gradient extrapolation, pressure is calculated using the linear extrapolation from the

neighbouring cell centre. Fluid mesh deformation is performed using the Laplace mesh motion

equation with variable diffusivity, as described in [20, 37]. Instead of using an FE discretisation

for the Laplace mesh motion equation, this work discretises the motion equation using the

cell-centred FV method, by which vertex displacements are obtained using a reconstruction

procedure described in Appendix A.

In terms of the solid model, the second-order FV discretisation of the integral conservation

equation, Eq. (8), transforms the surface integrals into sums of face integrals; the face integrals

and volume integrals are then approximated using the second-order accurate mid-point rule.

The spatially discretised counterpart of the momentum equation, Eq. (8), for the control volume
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VP reads:

ρ0P

[

∂

∂t

(

∂u

∂t

)]

P

VP −
∑

f

(2µf + λf )nf · (∇u)fSf =

∑

f

nf ·qfSf + ρ0PbPVP ,
(16)

where subscript P represents the cell-centre value and subscript f represents the face-centre

value.

The temporal discretisation of Eq. (16) is performed using the second-order accurate three-

time-level implicit scheme [38], referred to as the backward scheme. All terms in Eq. (16) are

evaluated at a new time instance as t[m] = t[m−1]+∆t. The acceleration ∂
∂t

(

∂u
∂t

)

and the velocity
∂u
∂t

are discretised at the new time instance using the three-time-level finite difference formula

as follows:

[

∂

∂t

(

∂u

∂t

)][m]

P

=
3
(

∂u
∂t

)[m]

P
− 4

(

∂u
∂t

)[m−1]

P
+
(

∂u
∂t

)[m−2]

P

2∆t
, (17)

(

∂u

∂t

)[m]

P

=
3u

[m]
P − 4u

[m−1]
P + u

[m−2]
P

2∆t
. (18)

The face normal gradient of displacement nf · (∇u)f is discretised using the central scheme

with non-orthogonal and skewness correction (see Fig.2):

nf · (∇u)f =
uN − uP

dfn
+

kN · (∇u)N − kP · (∇u)P
dfn

, (19)

where dfn is the normal distance between points N and P ,

dfn = nf ·df = nf · (rN − rP ), (20)

and kP and kN are the correction vectors calculated as follows:

kP = (I− nfnf) · (rf − rP ), (21)

kN = (I− nfnf ) · (rN − rf). (22)

The first term on the right hand side of Eq. (19) is treated implicitly, while the correction term

is explicit. The cell-centre displacement gradient used for the calculation of the correction term

in Eq. (19) is calculated using the vertex-based Gauss-Green method, which gives a gradient of

second-order accuracy irrespective of the mesh quality. Here, the face-centre displacement is

calculated by averaging corresponding vertex displacements.

The face-centre gradient needed for the evaluation of tensor qf in the first term on the

right hand side of Eq. (16) is calculated separately in the normal and tangential directions.

The face-centre displacement gradient in the normal direction is calculated using Eq. (19),

while the face-centre gradient in the tangential direction is calculated by applying the vertex-

based Gauss-Green method to a flat polygonal face. The vertex-based Gauss-Green gradient

calculation procedure is described in Appendix A.

The approximation of the displacement gradient at the centres of the cell faces coinciding

with the spatial domain boundary depends on the applied boundary conditions. In the case of
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OpenFOAM Finite Volume Solver for Fluid-Solid Interaction

the Dirichlet boundary condition (specified displacement ub), the displacement gradient in the

tangential direction is calculated in the same way as for the internal faces, while the gradient in

the normal direction is calculated as follows:

nb · (∇u)b =
ub − uP

dbn
−

kb · (∇u)P
dbn

, (23)

where the second term on the right hand side represents the non-orthogonal correction (see

Fig.3).

For the boundary cell faces with specified traction, the displacement gradient in the normal

direction is calculated using the constitutive relation as follows:

nb · (∇u)b =
n′

b · σb
S′

b

Sb

− nb ·qb

2µ+ λ
, (24)

where n′

b · σb is the Cauchy traction at the boundary face b, n′

b is the normal, and S ′

b is the

area of the boundary face b in the current (deformed) configuration. Displacement ub at the

traction boundary face is calculated using Eq. (23) with the displacement gradient in the normal

direction calculated from Eq (24).

dbn

P

nb

kb

P ′

b

db

Fig. 3 Displacement gradient calculation for boundary condition implementation

The vertex displacements are reconstructed from the cell-centre displacements of the cells

surrounding the vertex using the weighted least-squares method and linear fitting function. De-

scription of the vertex displacement reconstruction procedure is given in Appendix B.

When Eqs. (17), (18), and (19) are substituted into Eq. (16), the fully discretised form of

the linear momentum conservation law Eq. (8) can be written in the form of a linear algebraic

equation, which for cell P reads:

aP u
[m]
P +

∑

N

aN u
[m]
N = RP , (25)

where the diagonal coefficient aP , the neighbour coefficient aN , and the source term RP are

defined by the following expressions:

aP =
9ρ0PVP

4∆t2
+
∑

f

(2µf + λf)
Sf

dfn
, (26)

aN = −(2µf + λf)
Sf

dfn
, (27)
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RP =ρ0PVP

[

3u
[m−1]
P

∆t2
−

3u
[m−2]
P

4∆t2
+

2

∆t

(

∂u

∂t

)[m−1]

P

−
1

2∆t

(

∂u

∂t

)[m−2]

P

]

−
∑

f

(2µf + λf )
kN · (∇u)

[m]
N − kP · (∇u)

[m]
P

dfn
Sf

+
∑

f

nf ·q
[m]
f Sf +

∑

f

ρ0Pb
[m]
P VP .

(28)

Remark. The Laplacian terms in the momentum and pressure equations of the fluid model and

in the fluid mesh motion equation are discretised in the same way as the Laplacian term in the

solid momentum equation.

3.3. Solution procedure for fluid and solid models

The incompressible fluid flow model, which is discretised on a moving finite volume mesh,

is solved for velocity and pressure using the PISO algorithm [18]. A detailed description of the

fluid model solution procedure is given in [20].

For solution of the discretised solid model, Eq. (25) is assembled for all CVs in the compu-

tational mesh, resulting in the following system of linear algebraic equations:

[A] · {u} = {R}, (29)

where [A] is a sparse matrix, with coefficients aP on the diagonal and aN off the diagonal, {u}
is the solution vector consisting of displacements uP for all CVs and {R} is the right-hand side

vector consisting of source terms RP for all CVs.

The system of equations Eq. (29) is solved using a segregated algorithm, where the three

components of the displacement vector are temporarily decoupled and solved separately. Since

non-linear and coupling terms depending on the unknown displacement vector are placed in the

right-hand side vector, the system is solved in an iterative manner, where the right hand-side

vector {R} is updated at the beginning of each outer iteration by using the displacement vector

increment from the previous iteration. When the solution changes less than some pre-defined

tolerance, the system is considered to be solved. This is performed for every time-step of the

transient simulation.

The sparse matrix [A] from Eq. (29) is symmetric and weakly diagonally dominant and

the corresponding system of equations is solved using the preconditioned conjugate gradient

iterative solver [39, 40]. There is no need to solve the system to a fine tolerance since the right-

hand side vector is only an approximation based on the displacement vector increment from the

previous iteration; reduction of the residuals by an order of magnitude normally suffices.

3.4. Solution procedure for fluid-structure interaction

As mentioned earlier, the partitioned approach is adopted for the fluid-structure interaction

solution procedure, where the flow model and the structural model are solved separately using

different solvers in the FV framework. The coupled fluid-structure interaction problem is de-

composed using the Dirichlet-Neumann procedure, where the flow model is solved for a given

velocity (or displacement) of the fluid-structure interface, while the structural model is solved

for a given force exerted on the interface.

The equilibrium of the force and velocity (or displacement) on the fluid-structure interface is

enforced in each time step using a strongly coupled procedure by performing iterations between

the fluid and solid solvers. To this end, one can choose between the Gauss-Seidel iteration

scheme, with fixed relaxation or with convergence acceleration using Aitken relaxation [41,

TRANSACTIONS OF FAMENA XLII-3 (2018) 9
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42], and the interface quasi-Newton procedure, with the approximation for the inverse of the

Jacobian from a least-squares model (IQN–ILS) [43, 5]. The Aitken relaxation procedure and

the IQN–ILS procedure are preceded by two fixed-relaxation iterations.

The fluid-structure interaction solution procedure is summarised in Algorithm 1. The proce-

dure is mostly self-explanatory, except perhaps for the interface residual calculation, defined as

the difference between the solid side interface displacement, obtained by solving the structural

model, and the fluid side interface displacement, used to move the fluid mesh before solving the

fluid model:

{r}ki = {u}kS,i − {u}kF,i, (30)

where superscript k represents the iteration number, {u}F,i is the vector consisting of vertex-

displacements of the fluid side of the interface, and {u}S,i is the vector consisting of displace-

ments of the solid side of the interface mapped to the vertices of the fluid side of the interface

by a vertex-interpolation, described in the next section. The calculation procedure for the ver-

tex displacements of the fluid side of the interface, used to move the fluid mesh, depends on

the selected fluid-structure iteration procedure. If the Gauss-Seidel-type procedure is used, the

fluid side vertex displacements are calculated as follows:

{u}k+1
F,i = {u}kF,i + ωk+1{r}ki , (31)

where ωk+1 is the fixed or the dynamic under-relaxation factor, for the fixed or the Aitken

relaxation schemes, respectively. The calculation of {u}k+1
F,i using the IQN–ILS procedure is

described in [5].

At the end of each fluid–structure interaction iteration, the L2-norm of the interface residual

vector is calculated and it is checked whether a converged solution is reached.

Algorithm 1 Fluid–structure interaction iterative solution procedure

1: Switch to the next time step.

2: Predict interface displacement and calculate initial interface residual.

3: Start the FSI strongly coupled iterative procedure.

4: Switch to the next iteration.

5: Calculate the vertex-displacements of the fluid side of the interface.

6: Solve mesh motion equation.

7: Move the fluid mesh.

8: Solve the fluid model.

9: Transfer the face-centre forces from the fluid to the solid side of the interface.

10: Solve the structural model.

11: Transfer the vertex-displacements from the solid to the fluid side of the interface.

12: Calculate interface residual at the fluid side of the interface.

13: if converged then

14: Go to next time step (line 1)

15: else

16: Go to next iteration (line 4)

17: end if

3.5. Interpolation at the fluid-structure interface

Traction (pressure and viscous forces) calculated at the boundary faces of the fluid side of

the interface must be transferred to the boundary faces of the solid side of the interface; it is
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applied as the boundary condition for the solid model. In general, meshes at the solid and fluid

side of the interface are not conformal and an interpolation procedure between the models is

required. To this end, two different interpolation techniques are used:

1. face-interpolation procedure for the interpolation from the boundary cell faces of the fluid

side of the interface to the boundary cell faces of the solid side of the interface,

2. vertex-interpolation procedure for the interpolation of the vertex-displacement field from

the solid side of the interface to the vertices of the fluid side of the interface.

3.5.1. Face-interpolation

Interpolation of face-centre fields between the fluid and solid side of the interface is per-

formed using the Generalised Grid Interface (GGI) interpolation [44]. A face-centre value at

the solid side of the interface is calculated using face-centre values at the fluid side of the inter-

face as follows:

φS,j =
∑

k

wj,kφF,k, (32)

where φS,j is the value of the field at the centre of the solid face j and φF,k is the value of the

field at the centre of the fluid face k. Summation is performed over all fluid side faces k which

have an intersection with the solid side face j. The weighting factor wj,k for the fluid face k is

defined as

wj,k =
SS,j ∩ SF,k

SS,j

, (33)

where SS,j ∩ SF,k is the surface intersection area between the solid face j and the fluid face k
and SS,j is the area of the solid face j.

The surface intersection area is calculated using the Sutherland-Hodgman algorithm [45]

which is fast, robust, and can operate on any convex n-sided polygon. The face neighbourhood

determination is performed using the Axis Aligned Bounding Box quick rejection test [46] and

the Separating Axis Theorem algorithm [47]. The face interpolation procedure is conservative

in a sense that it preserves the total force at the two sides of the interface.

3.5.2. Vertex-interpolation

Interpolation of vertex displacements from the solid to the fluid side of the interface is

performed using the following procedure:

1. Polygonal faces at the solid side of the interface are decomposed into triangles using an

additional central point (centroid of the polygonal face).

2. Vertices at the fluid side of the interface are projected to the nearest triangle at the solid

side of the interface.

3. Displacement values at the projection points are calculated by linear interpolation using

known displacements at the triangle vertices.

Searching the nearest triangle for each vertex at the fluid side of the interface is substantially

accelerated using the neighbourhood determined by the GGI interpolation.

TRANSACTIONS OF FAMENA XLII-3 (2018) 11
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3.6. Parallelisation

Parallel computing in OpenFOAM is performed using the domain decomposition approach.

Fluid and solid meshes and fields are split into a number of sub-domains, which are allocated

to separate processors (see Fig. 4(a)). Solvers are run in parallel on separate sub-domains and

communication between processors is performed using the Message Passing Interface com-

munication protocol [48]. In order to allow independent decomposition of the fluid and solid

models in the FSI simulation, the global face zone concept is introduced, where the entire fluid

and solid sides of the interface (all interface points and faces) are present on all processors (see

Fig. 4(b) and (c)). Prior to the exchange of data between fluid and solid models, interface fields

(point or face-centre fields) are reconstructed on all processors so that interpolation can be per-

formed on each processor independently. Interface field reconstruction is performed using the

gather-scatter procedure. Here, each processor sends its part of the interface field to the master

(zero) processor, where the entire interface field is reconstructed and sent back to the remaining

processors.

FLUID

SOLID

PROC-0

PROC-1
PROC-0 PROC-1

(a) Fluid and solid domains decomposed

independently into two sub-domains.

FLUID

SOLID

PROC-0

PROC-0

(b) Fluid and solid sub-domains on

processor 0.

PROC-1
PROC-1

FLUID

SOLID

(c) Fluid and solid sub-domains on

processor 1.

Fig. 4 Parallel fluid-structure interaction computed using the domain decomposition and the global

interface face zones to exchange information between the fluid and the solid at the interface.

4. Numerical results

4.1. Flat plate with a circular hole subjected to uniform tension

This case is used to investigate the spatial accuracy of the structural part of the numeri-

cal model proposed in the paper. The model is compared to the one given by Demirdžić and

Muzaferija [22], which may still be considered as the state-of-the-art model for numerical stress

analysis based on the cell-centred (collocated) finite volume method supporting arbitrary poly-
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hedral meshes. It is also compared to the numerical model given by Jasak and Weller [24],

which can be considered as an OpenFOAM implementation of the model given by Demirdžić

and Muzaferija.

Spatial domain

y

b

a b

tx

x

tx
E, ν

Fig. 5 Geometry of the spatial computational domain for the flat plate with a circular hole (a = 0.5 m,

b = 2 m, E = 1× 107 Pa, ν = 0.3, tx = 10 kPa).

A plate with a circular hole in its centre is loaded by uniform tension in one direction (Fig.

5). The analytical solution to this plane stress linear elastic problem, obtained for an infinitely

large plate, can be found in [49]. Due to the symmetry of the problem, only a quarter of the

plate is modelled, as shown in the figure (darker area). Following [50], the exact solution

corresponding to tx = 10 kPa is prescribed on all traction specified boundaries (top and right

dashed boundaries) to remove the effects of the finite size of the computational domain.

Fig. 6 Discretised spatial domain for a plate with a hole case with the yy-component of Cauchy stress.

Grid sensitivity study is performed by simulations on four systematically refined grids, con-

sisting of 1 000, 4 000, 16 000, and 64 000 quadrilateral cells1. The coarsest grid, consisting of

1In reality, the mesh is 3-D and consists of one layer of prismatic cells with quadrilateral base.
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Fig. 7 Maximum displacement error as a function of average cell size for the present model and the

models given by Demirdzic and Muzaferija [22] (D-M) and Jasak and Weller [24] (J-W).

0.01 0.1

Average cell size, m

0.1

1

10

100

1000

10000

M
ax

im
u
m

 s
tr

es
s 

er
ro

r,
 P

a

σ
xx

σ
xx

, D-M

σ
xx

, J-W

σ
xy

σ
xy

, D-M

σ
xy

, J-W

σ
yy

σ
yy

, D-M

σ
yy

, J-W

1
st

 order

2
nd  order

Fig. 8 Maximum stress error as a function of average cell size for the present model and the models

given by Demirdzic and Muzaferija [22] (D-M) and Jasak and Weller [24] (J-W).

1 000 cells, is shown in Fig. 6 together with the yy-component of the Cauchy stress distribu-

tion. For each grid, a maximum error is calculated for the cell-centre displacement field and the

face-centre Cauchy stress field at the hole surface with respect to the corresponding analytical

solution.

Figure 7 shows maximum error of the cell-centre displacement field as a function of average

cell size, while the maximum error of the face-centre Cauchy stress components at the hole

surface is shown in Fig. 8. It can be noticed that the cell-centre displacement error reduces

at a second-order rate for all three numerical models considered, with the smallest error for

the present model (it also seems that the present model follows the second-order trend best).

It is interesting to notice that the numerical model given by Jasak and Weller gives a greater

displacement error than the model by Demirdzic and Muzaferija. This can be attributed to

the inconsistency between the discretisation of the implicit and explicit parts of the traction

force at the cell boundary in the Jasak-Weller model. The maximum stress error at the hole
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surface reduces at the second-order rate for the present model, but at the first-order rate for

the Demidzic-Muzaferija and Jasak-Weller models. This can be attributed to the second-order

approximation of the displacement gradient in the tangential direction to the boundary cell face

obtained by applying the vertex-based Gauss-Green method at the boundary cell faces, although

the displacement gradient in the normal direction is approximated with first-order accuracy.

The present numerical model also gives a substantially smaller stress error for the same grid

resolution.

4.2. Channel flow over a cavity with a flexible bottom

The first FSI case considered is laminar flow of incompressible fluid through a two-dimensional

channel with a cavity in the bottom wall of the channel. This case is proposed in [51] and it is

extended for the purpose of the presented FSI solver validation by adding a flexible wall at the

cavity bottom. The geometry of the fluid and solid parts are shown in Fig. 9. The height of the

channel for all performed calculations is H = 1 m.

A fluid with a density of 1 kg/m3 and a kinematic viscosity of 0.01 m2/s enters the channel

from the left-hand side with a parabolic velocity profile. The mean inlet velocity is 1 m/s, cor-

responding to a Reynolds number of 100 with respect to the channel height. A constant pressure

is imposed at the outlet of the channel and a no-slip boundary condition is applied to the channel

walls. The elastic plate has a density of 1000 kg/m3, Young’s modulus of 500 N/m2, Poisson’s

ratio of 0.4 and its deformation is described by the Saint Venant-Kirchhoff constitutive model

with the plane strain assumption. The coupling between the fluid and the solid is performed

using the Gauss-Seidel iteration scheme with the Aitken relaxation.

H
H

8H

0
.4
H

x

y

0.
25
H

0.25H

2H

Inlet Outlet

4H

Fluid

Solid

A

Fig. 9 Geometry of the spatial computational domain for the channel flow over a cavity with a flexible

bottom.

Fig. 10 Discretised spatial domain for the channel flow over a cavity with flexible bottom.

Spatial accuracy is demonstrated by calculating the steady-state solution with different finite

volume mesh resolutions. Four block-structured meshes are used with cell sizes of 0.1 m,

0.05 m, 0.025 m, and 0.0125 m (Fig. 10 shows the coarsest mesh). The steady state velocity

field and equivalent stress in the plate, calculated on the third mesh, can be seen in Fig. 11.

Convergence of the y-component of the displacement at the point A (see Fig. 9) and the y-

component of the total force at the interface with regard to the cell size is shown in Fig. 12(a)
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Fig. 11 Velocity field in the fluid and equivalent stress in the solid part of the spatial computational

domain at steady state for the channel flow over a cavity with a flexible bottom.

with the corresponding relative errors (Fig. 12(b)). The relative error is calculated with respect

to the results from the finest mesh. The order of spatial accuracy is calculated as [52]:

p =
ln
[

φ3−φ2

φ2−φ1

]

ln(r)
(34)

where φ1, φ2, and φ3 are the numerical solutions with the three finest meshes, refined using

the constant refinement ratio r = ∆x2/∆x1 = ∆x3/∆x2 = 2. The order of spatial accuracy

calculated using the y-component of displacement is 1.85, whereas it is 1.91 when calculated

using the y-component of total force; this is in good agreement with the expected second-order

spatial accuracy of the fluid and solid models.
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Fig. 12 Calculating spatial accuracy for the channel flow over a cavity with a flexible bottom – displace-

ment of point A and force at the plate.

4.3. Elastic plate behind a rigid cylinder

Elastic plate behind a rigid cylinder is a well known benchmark FSI case documented in

[53]. The geometry (Fig. 13) consists of a horizontal channel of 0.41 m in height and 2.5 m
in length, containing a rigid cylinder with a radius of 0.05 m; the centre of the cylinder is

positioned 0.2 m away from the bottom and inlet (left) boundaries of the channel. An elastic

plate of 0.35 m in length and 0.02 m in height is attached to the right-hand side of the rigid

cylinder.
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Fig. 13 Computational domain with a structural detail for the elastic plate case. All dimensions are in

m.

Fluid enters the channel from the left-hand side with a parabolic velocity profile. A constant

pressure is imposed at the outlet of the channel and a no-slip boundary condition is applied on

the walls. The fluid flow is assumed to be laminar. Deformation of the elastic plate is described

by the Saint Venant-Kirchhoff constitutive model with the plane strain assumption. Unsteady

variants of this case, designated as FSI2 and FSI3 in [53], are considered. Properties of the fluid

and elastic plate material are given in Table 1 together with the mean inlet velocity.

Table 1 Fluid and solid properties and mean inlet velocity u for the elastic plate behind a rigid cylinder:

ρF is the fluid density, νF is the fluid kinematic viscosity, ρS is the solid density, ES is Young’s modulus

and νS is Poisson’s ratio.

FSI2 FSI3

ρF , kg/m
3 1000 1000

νF ,m
2/s 0.001 0.001

u,m/s 1 2

ρS , kg/m
3 10000 1000

ES ,Pa 1.4× 106 5.6× 106

νS 0.4 0.4

Figure 14 shows a section of the discretised spatial domain. The fluid part of the mesh con-

sists of 21 344 quadrilateral finite volumes, while the solid part consists of 328 finite volumes.

The numerical solution is obtained with a time step size ∆t = 1.5 × 10−3 s for the FSI2 case

and ∆t = 0.75× 10−3 s for the FSI3 case.

In order to quickly reach the periodic motion of the plate, the inlet velocity profile is applied

without a gradual increase in the mean velocity and the coupling between the fluid and the solid

is activated after 2 s. The coupling between the fluid and the solid is performed using the IQN-

ILS procedure. The residual ‖r‖2 is reduced in each time step by six orders of magnitude with

respect to its maximum value.

Figure 15 shows simulation snapshots for the FSI2 case at the instant of time when the plate

tip point (A) is at its highest position. Temporal variation in the plate tip point displacement,

after the periodic solution has been reached, is shown in Figs. 16 and 18. On the other hand,

temporal variation in the total force exerted on the plate and cylinder in the same time frame

is shown in Figs. 17 and 19. A quantitative comparison with the corresponding benchmark

solutions is given in Table 2. Mean values and amplitudes are calculated using the maximum

and the minimum values after the periodic solution has been reached (around 7 s for the FSI2
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Fig. 14 Discretised spatial domain for the elastic plate case.

(a) Deformed mesh. (b) Pressure field in the fluid and the equivalent

stress field in the solid.

Fig. 15 FSI2 case – plate tip point at its highest position.

case and 4 s for the FSI3 case), where frequencies are calculated using the Fast Fourier Trans-

form algorithm. The difference between the calculated and the benchmark results is around 3%
in average for the amplitude and frequency of force and displacement. The relative difference

for the mean value of the force y-component goes up to 40%, which can be attributed to the

difficulty in calculating the mean value in the case when it is close to zero.

4.4. Wave propagation in an elastic tube

Wave propagation in an elastic tube is a standard FSI case intended to demonstrate the

capability of the numerical model to predict blood flow in large arteries [5]. The spatial com-

putational domain consists of a straight flexible tube with a radius (r) of 0.005 m, a length (L)

of 0.05 m, and a thickness (t) of 0.001 m. The tube wall is the Saint Venant-Kirchhoff material

with a density (ρS) of 1200 kg/m3, Young’s modulus (E) of 3× 105 N/m2, and Poisson’s ratio

(νS) of 0.3. The tube is clamped in all directions at the inlet and outlet. The fluid is incompress-

ible, with a density (ρF ) of 1000 kg/m3, and a dynamic viscosity (νF ) of 0.003 Pa s. Both the

fluid and the structure are initially at rest. During the first 0.003 s, a uniform overpressure of

1333.2 N/m2 is applied at the inlet.

Figure 20 shows the spatial domain discretised by a hexahedral finite volume mesh. The

fluid part of the mesh consists of 449 600 finite volumes, while the solid part consists of 288 000
finite volumes. The numerical solution presented here is obtained using the time step size

∆t = 5× 10−5 s. FSI coupling in this case is performed using the IQN-ILS procedure.

Figure 21 shows the velocity field both in the fluid and solid parts of the spatial domain at

time instant 0.005 s, while Fig. 22 shows the pressure field in the fluid part and the equivalent
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Fig. 16 Displacement of the plate tip point A for the elastic plate behind a rigid cylinder case (FSI2).
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Fig. 17 Force on the plate and the cylinder for the elastic plate behind a rigid cylinder case (FSI2).
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Fig. 18 Displacement of the plate tip point A for the elastic plate behind a rigid cylinder case (FSI3).
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Fig. 19 Force on the plate and the cylinder for the elastic plate behind a rigid cylinder case (FSI3).

Table 2 Displacement and force for the elastic plate behind a rigid cylinder case. The values are given in

the same format as in the benchmark paper [53] (mean ± amplitude [frequency]).

ux × 10−3 [m] uy × 10−3 [m]

FSI2

Benchmark −14.58± 12.44[3.8] 1.23± 80.6[2.0]
Calculated −14.26± 12.34[3.9] 1.22± 80.2[1.95]

FSI3

Benchmark −2.69± 2.53[10.9] 1.48± 34.38[5.3]
Calculated −2.72± 2.58[11.07] 1.67± 33.84[5.53]

Fx [N] Fy [N]

FSI2

Benchmark 208.83± 73.75[3.8] 0.88± 234.2[2.0]
Calculated 211.34± 75.59[3.9] 1.23± 238.35[1.95]

FSI3

Benchmark 457.3± 22.66[10.9] 2.22± 149.78[5.3]
Calculated 459.18± 24.86[11.07] 1.59± 155.9[5.53]

Fig. 20 Discretised spatial domain for the elastic tube case.
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stress in the solid part of the spatial domain at the same time instant.

Fig. 21 The field of velocity magnitude in the fluid and the solid part of the spatial computation domain

at the time instant 0.005 s for the elastic tube case.

Fig. 22 Pressure field in the fluid and the equivalent stress in the solid part of the spatial computational

domain at the time instant 0.005 s for the elastic tube case.

Pressure and axial velocity histories along the pipe axis for a few time instants are shown in

Figs. 23 and 24. Using the procedure described in [17], one can obtain the simulated pressure

wave speed of 4.54 m/s. The analytical solution of the pressure wave speed, cF , can be found

in [54]; for an incompressible fluid it reads:

cF =

√

Et

2ρF r

[

t

r
(1 + νS) +

2r

2r + t

]

−1

(35)

Taking into account axial stress waves in the tube wall, the final expression for the analytical

wave speed can be calculated as [17]:

c̃F = cF

√

√

√

√

√

1−
ν2
S

1−
tρF
2rρS

(36)
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Fig. 23 Pressure variation along the tube axis as a function of time for the elastic tube case.
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Fig. 24 Axial velocity variation along the tube axis as a function of time for the elastic tube case.

Using the case data, a value of 4.81 m/s can be obtained, which is in good agreement with

simulation.

In order to evaluate the temporal accuracy of the method, the calculation is carried out

for three different time step sizes: 1 × 10−4 s, 5 × 10−5 s, and 2.5 × 10−5 s, and the radial

displacement is monitored at the inner side of the tube midsection. Results are shown in Fig.

25. Temporal accuracy is evaluated for the time instant when the radial displacement reaches

its maximum. The order of temporal accuracy is calculated using Eq. (34) and its value is 3.11,

i.e. above the theoretical order of accuracy for the backward temporal discretisation scheme.

In order to estimate the efficiency of parallel calculation, the same calculation is performed

on a various number of processors and execution times are compared to the execution time

on a single processor. Figure 26 shows the simulation speed-up as a function of the number

of processors. Parallel performance is firstly tested for the fluid and the solid part separately,

where one can see that the solid solver scales better than the fluid solver. By analysing the

parallel performance of the FSI solver, it may be concluded that parallel scaling is actually

limited by the fluid solver.
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Fig. 25 Calculating temporal accuracy – the inner wall at the midsection of the tube.
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Fig. 26 Parallel calculation performance.

4.5. Channel flow over an elastic thick plate

Channel flow over an elastic thick plate is a steady-state three-dimensional FSI case, used

in this study to show the performance of the proposed FSI solver on unstructured polyhedral

meshes. The case, originally proposed by Richter [55], consists of an elastic thick plate attached

to the bottom surface of a rectangular channel. The geometry of the spatial domain is given in

Fig. 27. Due to symmetry, only half of the spatial domain is considered. An incompressible

viscous fluid with a density of 1000 kg/m3 and a kinematic viscosity of 0.001 m2/s enters the

channel from the left-hand side with a parabolic velocity profile. The peak inlet velocity is

0.2 m/s, corresponding to a Reynolds number of 40 with respect to the plate height (h = 0.2
m). The peak inlet velocity is gradually increased from zero at t = 0 s to its maximum value at

t = 4 s using the following transition function: 0.2 [1− cos(πt/4)] /2. A constant pressure is

applied at the outlet of the channel and a no-slip boundary condition is applied to the channel

walls. The elastic plate has a density of 1000 kg/m3, Young’s modulus of 1.4 × 106 N/m2 (a

shear modulus of 5× 105 N/m2), Poisson’s ratio of 0.4, and its deformation is described by the

Saint Venant-Kirchhoff constitutive model.

The spatial computational domain is discretised using an arbitrary polyhedral mesh consist-
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ing of 273 539 cells in the fluid part of the domain and 6 661 cells in the solid part of the domain.

The structure of the mesh at the bottom wall, symmetry plane, and fluid-solid interface can be

seen in Fig. 28 together with the velocity and displacement fields at a steady state. These results

are obtained in the same way as in [7], where an increased peak inlet velocity (0.3 m/s) and a

reduced Young’s modulus (104 N/m2) are used in order to show that the presented numerical

model can handle large solid displacements.

Fig. 27 Geometry of the spatial domain for the channel flow over an elastic thick plate case [55]. All

dimensions are in m.

Displacement of the interface point A (see Fig. 27) and the total fluid force acting on the

plate are shown in Tab. 3 together with the corresponding benchmark solutions [55].

Table 3 Comparison of the calculated and benchmark [55] displacements of the interface point A and

the total forces on the plate.

ux [m] uy [m] Fx [N] Fy [N]

Calculated 5.93× 10−5 2.40× 10−5 1.31 0.1055

Benchmark 5.95× 10−5 - 1.33 -

To demonstrate the temporal accuracy, the simulation is performed with four different time-

step sizes: 0.005 s, 0.0025 s, 0.00125 s, and 0.000625 s. The accuracy analysis is carried out at

the time instant t = 0.08 s for the x-component of the displacement of point A (see Fig. 27). It

has to be noted that in this analysis the same transition function was used, but the peak velocity

was set to be reached after 0.1 s. Figure 29(a) shows the convergence of the solution with

the time-step size. The order of temporal accuracy is calculated using Eq. (34) with the three

finest time-step sizes and the refinement ratio r = ∆t1/∆t2 = ∆t2/∆t3 = 2. The calculated

temporal accuracy is 2, corresponding to the formal order of accuracy of the backward temporal

discretisation scheme. This is also graphically demonstrated in Fig. 29(b), where the relative

error is calculated against the results with the smallest time-step size.

5. Conclusions

A self-contained parallel fluid-structure interaction solver based on the FV discretisation

method and strongly coupled partitioned approach is presented in this paper. Both the fluid and

solid models are discretised in space using the second-order accurate cell-centred finite volume

method, while the numerical integration of the models in time is performed using a second-

order accurate implicit method. Details of the gradient calculation and the vertex field value
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Fig. 28 Fluid velocity magnitude field and solid displacement magnitude field for the channel flow over

an elastic thick plate case. In order to obtain a larger beam deformation, an increased peak inlet velocity

of 0.3 m/s and reduced Young’s modulus of 104 N/m2 have been taken in this case. The calculated

displacement of point A in a steady state is (0.01463, 0.005,−0.000447).
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Fig. 29 Calculating temporal accuracy for the channel flow over an elastic thick plate case.
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reconstruction on a polyhedral mesh with special attention paid to parallel computing are also

given.

The solver has been tested in four FSI benchmark cases, where the spatial and the tempo-

ral accuracy for the solid part together with the parallel computing performance are evaluated

(accuracy analysis for the fluid part has been omitted here and can be found in [20]). However,

the spatial accuracy is investigated in more detail in the standalone stress analysis case, where

the performance of the presented stress model is compared with the existing models in the FV

stress analysis. It has been demonstrated that the present model is more accurate and follows the

second-order trend better than the existing models when both the displacement and stress fields

are analysed. In addition, the spatial accuracy of the solid part has been analysed in the chan-

nel flow FSI case, with the overall accuracy corresponding well to the employed second-order

accurate scheme.

In terms of temporal accuracy of the solid part, the order of accuracy has been shown to

be the same or better than the employed second-order accurate backward scheme for the two

cases analysed (see Sections 4.4 and 4.5). The better performance has been demonstrated in the

elastic tube case, where the influence of other frequency modes may have caused discrepancies.

A quantitative analysis of two well known FSI cases has been presented, namely, the elastic

plate behind a rigid cylinder (Section 4.3) and the channel flow over an elastic thick plate (Sec-

tion 4.5), where the available results are compared. The latter case has been used to demonstrate

the performance of the solver on unstructured polyhedral meshes. In general, excellent agree-

ment has been achieved. It has also been shown that the parallel efficiency is not reduced by

introducing an additional parallel exchange of information at the fluid-solid interface but only

limited by the parallel efficiency of the fluid solver.
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A. Vertex-based Gauss-Green gradient calculation procedure

The field gradient ∇φ at the centre of the polyhedral finite volumes (cells) and the surface

field gradient ∇sφ at the centre of the polygonal faces are calculated using the Gauss theorem

and the cell-vertex field values. At this point, it is assumed that the field values at the cell

vertices are known. The procedure for their calculation using the cell-centre field values is

presented in Appendix B.

For the cell-centre gradient calculation, each polygonal face is decomposed into triangles

using the average central point (point c in Fig. 1) and the gradient is calculated using the

discretised Gauss-Green theorem as follows:

(∇φ)P =
1

VP

∑

τ

nτφτSτ , (37)

where Sτ is the triangle area, nτ is the triangle unit normal vector, and the summation is per-

formed over all triangles enclosing the considered finite volume (cell). The field value φτ at the

triangle centre is calculated as an average of the values at the triangle vertices and the field value

at the central triangle vertex (f or c in Fig. 1) is calculated as an average of the corresponding

polygonal face vertex field values. The volume VP of the polyhedral cell is also calculated using

the Gauss-Green formula:

VP =
1

3

∑

τ

nτ · rτSτ , (38)
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Fig. 1 Polyhedra finite volume (cell) bounded by polygonal faces.

where rτ is the position vector of the triangle centroid.

The surface field gradient at the polygonal face centre is calculated by using the Gauss-

Green theorem discretised on a flat convex polygonal face f as follows:

(∇sφ)f =
1

Sf

∑

e

meφeLe, (39)

where Sf is the face area, Le is the face edge length, me is the face edge unit bi-normal, and φe

is the field value at the face edge centre calculated as an average of the end points field values

(see [20] for more details).

B. Vertex field value reconstruction procedure

Field values at cell vertices are calculated from the cell-centre values using the weighted

least squares method with the linear interpolation function. Without loss of generality, the in-

terpolation procedure will be explained on a two-dimensional mesh, shown in Fig. 1, where

interpolation stencils for the internal (i) and the boundary (b) vertices are given. The interpola-

tion stencil of the internal vertex i consists of all cells sharing the vertex, whereas in the case of

boundary vertex b, the boundary faces sharing the corresponding vertex are also included into

the stencil. The following linear interpolation function is assumed in the neighbourhood of each

vertex i (the same is valid for b with a slightly different notation):

φ(r) = φi0 +Ci · (r− ri0), (40)

where Ci is the unknown coefficient vector (three components), and the reference position ri0
and the field value φi,0 can be calculated directly as the weighted average of cell-centre positions

and cell-centre field values:

ri0 =

∑n

j=1wijrij
∑n

j=1wij

, φi,0 =

∑n

j=1wijφij
∑n

j=1wij

, (41)

where rij is the centre of cell j in the interpolation stencil of the vertex i, φij is the field value

in the centre of cell j in the interpolation stencil of the vertex i, and wij is the weighting factor

calculated as the inverse square distance between the centre of cell j and the position of vertex

i. The unknown coefficient vector is determined using the weighted least squares method by

inverting the matrix of normal equations:

Ci =
[

(XTWX)−1XTW
]

·Φi, (42)

TRANSACTIONS OF FAMENA XLII-3 (2018) 27
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where Φi is the vector consisting of quantity (φij − φi0) for all cells in the interpolation stencil

of the vertex i, W is the diagonal matrix consisting of weighting factors for all cells in the

interpolation stencil of the vertex i, and X is the n×3 matrix whose row j is the position vector

(rij − ri0) of the cell j in the interpolation stencil of the vertex i.

In the case of parallel calculations, special attention should be devoted to the vertices at the

processor boundary. For example, the interpolation procedure for the vertex i at the processor

boundary (see Fig. 1) is performed independently on two processors, but the field value ob-

tained in such a way should be exactly the same. To accomplish this, all cell-centre field values

in the interpolation stencil must be present on both processors. A parallel data exchange in

OpenFOAM is performed across inter-processor boundary faces allowing access to the neigh-

bour processor cell-centre field values only for the cells sharing the inter-processor boundary

faces with the local processor. Therefore, when the field value is calculated for the vertex i on

the processor PROC-1, the cell-centre field values for the cells i1 and i4 from the neighbour

processor PROC-0 can be accessed, but the cells i2 and i3 cannot because the corresponding

cells do not share a face with the inter-processor boundary (see Fig. 1). For these cells, an

additional inter-processor data exchange has to be introduced in order to ensure the same vertex

reconstructed values on both sides of the inter-processor boundary. A similar problem exists

in the case of the boundary vertex b at the inter-processor boundary because the boundary field

values from the neighbour processor required for performing the vertex field reconstruction are

not available.

i

b

i1

i0

i5

i4

i3

i2

b4 b3

b1

b2b0

PROC-0 PROC-1

Fig. 1 Two-dimensional FV mesh with an interpolation stencil for the vertex field value reconstruction.

The interpolation stencil is given for the internal vertex i and the boundary vertex b, which are also

positioned at the inter-processor boundary.
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[37] Jasak, H., Tuković, Ž., Automatic mesh motion for the unstructured finite volume method, Transactions of

FAMENA 30 (2) (2006), pp. 1–20.
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