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ATOMISTIC MODELLING OF 2D STRESS DISTRIBUTION  
AROUND DISCONTINUITIES 

Summary 

Molecular dynamics simulations have been used for decades to investigate continuum 
mechanics failure to give the correct distribution of stress near discontinuities, such as holes 
and crack tips. In this paper, stress distribution around elliptical holes in a sheet material has 
been examined in an atomistic and a continuum model. Atomistic interactions are described 
by the Tersoff potential tuned for carbon. Calculations were conducted for the problem of 
stress distribution around the elliptic hole in a 2D graphene sheet subjected to the gradually 
increasing uniaxial tension load. The atomistic stress is calculated as spatial average utilizing 
Hardy’s formulation. The results have been compared with the Kirsch solution for stress 
concentration at the edge of the circular hole. A quantitative measure for switching from 
atomistic to continuum model and vice versa has been proposed. Routes toward the effective 
data-driven coupling of macro- and micromechanical models where continuum mechanics 
approach fails are pointed out.  

Keywords: molecular dynamics, stress, spatial averaging, multiscale modelling 

1. Introduction 
A unified understanding of continuum physical properties across scales from the 

nanoworld of atoms to millimetre-sized grain structures has been sought by scientists for some 
time now. Simultaneous development of sophisticated physical computational models and 
computer hardware has reached the point, where our ambitions to fully understand the 
emergence of various phenomena from scale to scale is within our grasp. The apparent 
simplicity of molecular dynamics (MD) equations hinders enormous difficulties in the 
unification of the phenomena description across the scales, where we are able to reach just 
several hundred nanometres in space and nanoseconds in simulation time. Those difficulties 
were addressed with several very successful methods of multiscale (MS) simulation approaches. 
The main idea is very simple and refers to the introduction of atomistic degrees of freedom only 
in a limited part of the model space, where continuum mechanics (CM) breaks down and fails 
to correctly describe the structural phenomena. Prominent examples of such MS phenomena are 
softening, strain and stress localization, yielding damage and material fracture. However, there 
are different ways to achieve MS coupling and up to now a single approach that can treat every 
possible problem of practical importance has not yet been devised. 
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In this paper, we introduce quantitative criteria for the atomistic-to-continuum model coupling in a 
2D graphene sheet system. Standard analytically solvable CM models of stress distribution around the 
elliptic hole are considered. The mechanical conditions comprise of an infinite 2D sheet, linear response 
material and the constant tensile load imposed far away from the center of the hole. The stress 
distribution obtained within the MD calculation using the realistic interaction potential and the 
convenient averaging procedure is analyzed and compared with the standard Kirsch analytical solution. 
The goal is to develop an efficient methodology to treat parts of the model space properly when the CM 
approach fails. However, this is far from an easy task. The essence of the problem in the MS modelling it 
comes down to two scale problems: time scale and spatial resolution. In the literature, there have been 
many interesting developments in the pursuit of an accurate and effective method to account for this and 
some of them that are relevant to the present study are briefly shown here. 

In this paper, a review of the comparison between the atomistic MD model and the CM 
description in 2D structures is given. Presenting the advantages and disadvantages, we 
propose routes for effective utilization of the best features of both worlds: the atomistic 
approach for the phenomena that necessary involve discrete nature of the matter distribution 
including chemical bonding, and the efficient CM formalism, usually implemented within the 
finite elements method (FEM) with a myriad of fine-tuned tools developed through many 
years for the purpose of dealing with practical engineering problems. 

2. Multiscale modelling 
MS modelling establishes a material model that spans over several orders of magnitude 

in the time and length scales. Usually, MS methods are used to connect discreetness of atoms 
and the coarse nature of CM. By this coupling one is able to study the nanostructure of the 
localized region in the same model. Of special importance are parts of the model space where 
dynamics of individual atoms is relevant, which is appropriate for the MD approach. 
Otherwise, we are free to use computationally less expensive CM, in which deformation is 
homogenous and smooth enough. Two branches of the MS development have come into 
existence to address the issue: hierarchical and concurrent methods. 

The hierarchical methods implement sequential calculations on the atomistic and the 
continuum level. Simulations are completely separated and the only necessary information is 
exchanged between the models, usually as boundary conditions. The analysis is first carried 
out on a representative volume element, which is equipped with microscopic information 
from the atomistic calculation giving us more accurate physically based constitutive relations 
for the continuum level. 

In the concurrent methods, the model space is divided into an atomistic and a continuum 
region. By using the matching procedure in the part of the system described simultaneously 
by both continuum and atomistic degrees of freedom the description is improved combining 
different scales and exchanging relevant physics information. In this case, two or more 
different scales are present simultaneously in the same model. In this approach, the atomistic 
model that is studied by using MD is usually surrounded by a finite element (FE) mesh. Some 
of the first results in the atomistic/FEM combination where obtained by Kohlhoff et al. [1]. 
Other very popular approaches are the Quasicontinuum (QC) method developed by Tadmor et 
al. [2] and Bridging Domain (BD) developed by Belytschko et al. [3]. Very important 
contribution to the atomistic part of the MS approach is a combination of the MD techniques 
(introduced in [4]) with realistic potentials, such as the Daw and Baskes embedded atom 
method [5]. 

In the QC method the coupling of the atomistic and the continuum model is achieved by 
refining the FE mesh in the "troubled" region until one node corresponds to one atom. In the 
rest of the model, one FE usually contains many atoms. In the regions described by the 
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atomistic approach the motion of nodes/atoms is determined from MD equations. In the 
regions of the continuum approach, where one FE represents a set of atoms, it is not necessary 
to track the displacement of each and every individual atom. Instead, it is sufficient to analyze 
only several atoms coincident with FE nodes. The QC method has been used to study basic 
properties of deformation in the crystalline solid, fracture and grain boundary slip. 

To make the transition from MD to CM less sudden, in the BD method the so-called 
handshake region (HR) is established, in which atomistic and continuum models meet. 
Compatibility between the atomistic and the continuum method is achieved by imposing an 
interpolated displacement field on the HR atoms. To avoid double energy counting in the HR, 
the total energy calculation as a sum of atomistic and continuum energies has to be performed 
with special care. The BD method is suitable for studying nanodefects on a higher scale, but 
the region of interest has to be far enough from the HR.  

Fig. 1 shows the basic principle of the domain partition in the BD and the QC approach. 
The atomistic domain Ωa is analyzed by MD, while the discretization of the continuum part 
Ωc is done by using the FEM. In the case of BD, both models are present and overlap in the 
HR Ωb. 

 
Fig. 1  Type of transition between atomistic and continuum models in different multiscale methods 

3. Molecular dynamics 
The strategic approach of MD is to explicitly consider every individual atom whenever 

continuum based methods, such as FEM, are not capable of capturing phenomena that are 
discrete at the fundamental level. An MD system is essentially one where all the atomic nuclei 
in the system are treated as classical Newtonian particles without internal degrees of freedom 
and all quantum many-body effects are phenomenologically imprinted in the interaction 
potential. 

If one wishes to study the system at the temperature of absolute zero it is sufficient to 
set atom velocities to vanish. By finding local energy minima of the given atomistic 
configuration one can study the energy landscape and transition paths between different meta 
stable states. Since the potential energy surface is very complicated, finding the energy 
minimum demands highly convex iterative numerical procedures, such as steepest descent, 
conjugate gradient or the Newton-Rapson method. Unfortunately, there is no guarantee that 
the found local minimum is the global minimum, so repeating the simulation and scanning 
other parts of the energy landscape is usually necessary. 

In systems at a finite temperature the velocities are nonzero and therefore atoms are 
constantly in motion. Classical Newton equations of motion can be numerically integrated by 
the Verlet algorithm [6]. Usually, the half-step velocity formulation of the algorithm is 
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implemented, which saves memory consumption since there is no need to save values from 
the previous time step. This algorithm is simple, stable, energy conservative and symplectic. 
However, finding the right value for a time step can be somewhat tricky since a too small time 
step would unnecessarily prolong the calculation time and a too large time step would cause 
the unphysical behavior of the system. When full-time evolution of the system is performed 
thus providing trajectories of the atoms we get a direct insight into the mechanics of material 
deformation under loading. The main problem of connecting properties of particles such as 
trajectories, velocities and interatomic forces from an MD simulation with a stress field within 
the CM framework is in the ambiguities since there are many ways to connect atomistic and 
continuum properties. 

In the atomistic simulation, the standard numerical infrastructure of LAMMPS (stands 
for Large-scale Atomic/Molecular Massively Parallel Simulator and provides a de facto 
standard in robust MD equations integration) has been used [7]. LAMMPS is a classical MD 
simulation code that models an ensemble of particles in various matter states including a high 
level of flexibility in terms of extending and adapting the system for a specific task. 

3.1 Interaction potential 
Forces between atoms are derived from empirical interatomic potentials that are 

obtained by adjusting free parameters to material properties (e.g., lattice constant, elastic 
constants, vacancy-formation energy, etc.) from experimental data or ab initio quantum 
mechanics calculations. In the case of graphene, we use the very well established Tersoff 
interatomic potential for carbon from [8]. Physicist J. Tersoff developed a convenient 
approach to effective interactions by first abandoning the traditional many-body route and 
proposing a simple idea that the strength of pair potential depends upon the local atomic 
environment in such a way that an increasing number of neighbours weakens the bonds. In 
this way he was able to develop highly successful models first for silicon and then for carbon. 
The model that we use here proves to be very good for an accurate description of migration 
barriers, elastic constants and phonon frequencies. 

Theoretically, the interaction between the atoms is infinite in range, however, the 
screening effect of the interaction in many-body systems usually causes finite range 
interactions among neutral atoms. Therefore, after certain distance the contribution of an atom 
that is further away is negligible compared to the surrounding atoms. This fact can be utilized 
for the computation time reduction without loss of accuracy. Only interactions with atoms 
within certain cutoff radius rcut (shown in Fig. 2) are included and all other interactions are 
discarded. 

 
Fig. 2  Graphic representation of the cutoff radius 

 
Fig. 3  Bond angle between atoms 

The used potential contains two- and three-body interactions which determine properties 
and behavior during deformation loading. Three-body interactions are essential for a 
quantitative model of the structural graphene properties such as the angle of 120° between the 
bonds on the tips of the hexagonal lattice structure. The total potential energy Ep of the system 
with N atoms is the sum of interactions as shown in equations (1)-(5). Vij is the potential 
energy of pairwise interactions of atoms i and j, where rij = ri - rj is the distance between 
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them. Three-body interactions are implemented in the potential by function zij which contains 
angle θijk between vectors rij and rik as shown in Fig. 3. A more detailed description of the 
potential can be found in [9] and the parameter values for the carbon system in [8]. 

p
1 1 1

0.5
N N N

i ij
i i j

j i

E E V
= = =

≠

= = ⋅   (1) 

( ) ( ) ( )1 2exp( ) expij ij c ij ij ij ijV r f r A r B rλ λ = ⋅ − − −   (2) 

( )0 exp /ij ijB B z b= −  (3) 

( ) ( ) ( )
1 1 1

/ exp cos
N N N n

ij ik ij ijk
i j k

j i k j

z w r w r c d θ
= = =

≠ ≠

   = × + −     (4) 

( ) ( ) ( )2expij c ij ijw r f r rλ= −  (5) 

3.2 Ensemble theory 
Many-body problems are ubiquitous in describing natural phenomena. On the other 

hand, they present one of the most difficult challenges to the scientific community. One very 
successful answer to these questions is the statistical physics approach. The number of atoms 
in MD simulations is anywhere in the range of several million to even billions but 
nonetheless, that is an almost unthinkably small number in comparison with macroscopic 
systems since one gram of carbon contains an order of 1023 atoms. The sheer magnitude of 
this number makes any attempt to describe a macroscopic system in terms of mechanical 
properties of its microscopic constituents extremely difficult. At the heart of the usefulness of 
the MD simulation is the framework of ensembles – "imaginary copies" of the system under 
the same physical constraints. In accordance with an ergodic hypothesis, the main idea is to 
replace ensemble averages with time averages from the MD simulation for the calculation of 
thermodynamic observables. Common textbook ensembles in statistical physics are 
microcanonical (NVE), canonical (NVT) and isothermal-isobaric (NpT) ensembles. Here we 
calculate equilibrium properties during loading of the sheet of material in the NpT ensemble 
since this one usually corresponds to the experimental conditions for condensed matter.  

3.3 The problem of stress at an atomistic level 
The subject of interpreting highly successful CM models in terms of atomistic degrees 

of freedom proves to be a formidable task that started with the pioneering work of J. C. 
Maxwell [10], followed by Irvin and Kirkwood [11], Hardy [12] and Tsai [13]. It is important 
to state that the subject is still an active area of research [14], [15], [16], [17]. Basic 
knowledge of the subject is given in the papers of famous physicists J.C Maxwell [10] and R. 
Clausius. Their results came simultaneously with the development of statistical mechanics, 
where they successfully developed a connection between virial expansion and continuum 
stress formulation besides other physical quantities. It is not only important to give a proper 
explanation of statistical averaging that leads to CM but also to inform macroscale models in 
very important macrophenomena that are governed by atomistic scale physics. The examples 
are plastic deformation and failure of the material that, as is shown, operate at a full range of 
scales. The advent of modern computers motivated Irvin and Kirkwood to formulate the first 
practical models of stress calculation in terms of underlying atomistic degrees of freedom [11] 
(equation (6)). Further development is presented in the paper by Hardy [12], who 
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quantitatively introduced the fact that atoms occupy volumes with some space distributions 
and this approach is applicable for inhomogeneous systems as presented in the expression for 
the Cauchy stress tensor of the atomistic model (equation (7)). 
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Here Hardy introduces ψ and B distribution functions normalized to unity that effectively 
takes the fact that atoms (electron cloud) overlap in solid state systems into consideration. The 
approach of Hardy is similar to the Irving and Kirkwood procedure, but formal expressions 
are more naturally implemented in MD simulations. 

3.4 Stress averaging procedure 
For calculating stress value in an arbitrary position of space the first step is to choose an 

appropriate averaging radius which determines the maximum distance of atoms that 
contribute to the stress value at a particular position as shown in Fig. 4. Choosing an 
averaging radius is not completely arbitrary since a too small value would result in a 
meaningless per atom stress value and a too large averaging radius value would decrease the 
relevant atomistic contribution spoiling the spatial resolution so that possibly important local 
complex stress variations will be smeared out to such an extent that they are no longer visible. 

 
Fig. 4  Determination of the averaging radius 

(all atoms within the circle are taken into 
account for the stress averaging procedure) 

 
Fig. 5  Representation of the Voronoi tessellation used for 

volume per atom determination 

Upon choosing the optimal value of the averaging radius, the procedure goes as follows: 
1. define a representative set of points in space to conveniently calculate the stress 

distribution 
2. choose one point in space and identify all atoms within the averaging radius around 

that point 
3. add up all stress contributions per chosen atoms with the following equation (this is a 

variant of expression (6) only without the volume Ω) 
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The tilde above the stress symbol points out that the measurement for this stress is in Nm 
since it is not divided by the volume. The second term is the contribution of the pairwise 
interactions where κ loops over Np neighbours of the atom within the cut off radius, rκ,1 and 
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rκ,2 are the positions of the atoms in pair interactions and fκ,1 and fκ,2 are the interaction forces. 
In a similar way, Na is the number of angle-dependent interaction contributions, where r and f 
are atom positions and interaction forces, respectively. 

4. divide thus the obtained cumulative stress with the total volume (area in our 2D case) 
summing the volumes per identified atoms to give the final stress distribution 
expression as follows: 
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Herein N is the number of the atoms within the volume, Ωα is the volume obtained by 
partitioning the space utilizing the Voronoi tessellation procedure and σα stress of the atom. 
Fig. 5 shows the results of the Voronoi tessellation for the ideal graphene structure for one 
atom and all atoms within the averaging radius. 

The stress distribution of the material with holes of elliptical shape is described using 
the proposed method within the framework of the combined MD and CM description. The 
values of the free parameters in the implementation have to be adjusted in the regions far from 
the hole where both models give an essentially identical result. In this way we are able to 
obtain limits of the CM approach since the scanning of the model space identifies regions of a 
significant discrepancy between the CM and the MD results. 

4. Numerical computation 

4.1 Simulation model 

 
Fig. 6  Geometry of the 2D plate with an elliptic hole  

subjected to tension and stress distribution along the x-axis  

A strategic approach to investigate the continuum/atomistic discrete correspondence is 
chosen to be simple, but on the other hand, large enough to provide clear signatures of critical 
features signaling a CM failure. The system of carbon atoms arranged in a graphene 2D 
honeycomb structure with an elliptic hole in the middle has been prepared with common 
realistic features provided by the interatomic potential. Fig. 6 shows the system with 
characteristic features, load and stress distribution. Table 1 contains values of the model 
properties used in the numerical calculation. Initial thermalization of the system was done at 
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the desired temperatures: at 10 and 300 K for 20 ps. After that, the graphene sheet was pulled 
in the y-direction by simultaneously imposing the NpT ensemble conditions with a finite 
value of temperature and pressure at the edges of the simulation cell for a sufficient length of 
time so that full system thermalization is achieved. Calculations were performed for two 
temperatures: 10 and 300 K by coupling the system to the standard Nosé–Hoover thermostat 
[18], [19] ensuring canonical distributions during the simulation. 

Table 1  Properties of the atomistic model 

sheet size (before loading) 
lx = 174 nm 
ly = 172 nm 

ellipse size and proportion 
a = 34, 26, 18, 10, 2 nm 
a/b = 1, 2, 30 

temperature T = 10, 300 K 
initial thermalization time ttherm = 20 ps 

external load pext = 150 GPa 
loading time tload = 100 ps 

number of atoms Natoms ≈ 1.1 million (depends on the hole dimensions) 
averaging radius rave = 1.8 nm 

average number of atoms within an average radius Nave ≈ 287 

4.2 Results 
As a didactic example, we prepared a simple model with only 1984 atoms so that the 

movement of individual atoms can be followed more easily. Fig. 7 shows the initial unloaded 
configuration. Please note that the hole is only approximately elliptical since the discrete 
nature of the atomistic system gives jagged edges with unsymmetrical atom bonds.  

 
Fig. 7  Initial unloaded configuration 

 
Fig. 8  Per atom σy stress distribution on the deformed 

configuration at a temperature of 300 K 

This is the region where the most pronounced discrepancy between the continuum and the 
atomistic model results is to be expected due to the boundary effects which play a significant 
role in the graphene properties as shown in [20]. Fig. 8 shows the per atom stress distribution 
with a clear indication that the edge atoms are weakly bounded. Figs. 7 and 8 were generated 
by using OVITO [21] (Open Visualization Tool). From the figures, it is clear that in this case 
there is a narrow region around the hole where the CM results break down at the atomic scale 
since they are unable to catch the discrete nature of atomic bonding. This will have a major 
impact in the presence of nanoscale defects in graphene. Particularly important is the realistic 
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case where defects can be distributed in a myriad of ways and have a significant impact on 
mechanical properties. Since the sheet of graphene can be treated as an isotropic material 
when subjected to the in-plane loading, as suggested in [22], a suitable analytical solution for 
comparison is the Kirsch solution [23]. The most prominent feature of the solution is an 
increase in the stress from the remote loading value σ∞ to the three times higher peak value at 
the edge of the hole as shown in Fig. 6 (σy,max = 3σ∞). The convenience of this model is the 
existence of an analytic solution and nontrivial stress distribution with interesting edge 
features that are very different as we go down to the atomistic scale of atomic bonding. 

 
Fig. 9  Comparison of σy stress distribution for different averaging radii 

 
Fig. 10  Maximal σy stress at the hole edge for different averaging radii 

All calculations of the spatially averaged stress were performed at a temperature of  
300 K. In Fig., the results of the σy stress calculation along the x-axis for different averaging 
radii are shown. The unsymmetrical values of stresses on the left-hand and right-hand side of 
the hole despite the symmetrical loading and geometry is a consequence of the unsymmetrical 
atom bonds around the hole as it can be seen in Fig. 7. In addition to the obvious smearing out 
of the fluctuations, the graph shows a systematic reduction in the peak stress value that is 
shown in Fig. 10 with a visible step like a drop effect approximately every 0.5 nm 
(experimental nearest neighbour distance of carbon atoms in graphene is 0.142 nm). The 
origin of this effect is a discrete jump in the number of atoms included in the calculation as 
we increase the averaging circle radius. The maximum stress drop is less and less pronounced 
since the fraction of the new bunch of atoms that join the circle is smaller and smaller. The 
averaging and determination of a proper statistical procedure is actually situation dependent. 
The main obstacle in coupling different models is visible from the characteristic length and 
time scales as it is usually a fact in MD simulations.  
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Let us illustrate the problem by comparing different length scales in the case of simple 
uniaxial loading. For a realistic system at the atomic scales, a typical vibration period is 
around fs (10-15 s), so in order to utilize the standard computational MD method of Alder and 
Wainwright [4], one is forced to impose strain rates of the order at least 106 s-1 in comparison 
to the typical experimental values 10-4 s-1. So the standard mechanical test strain rate is ten 
orders of magnitude separated from what is computationally achievable in the MD simulation. 
The point is that the MD simulation is localized on a very tiny part of the experimental 
specimen so the information about the applied tension is not uniform across the volume at the 
atomistic time scale. From the atomistic perspective, the tensile test can be considered as a 
quasi-static process for a myriad connected atomistic systems and one of the routes to connect 
the two worlds is hybrid modelling [24]. 

 
Fig. 11  Normal stress σy distribution along the x-axis for different ratios of the ellipse dimensions  

compared to an exact analytical solution in the continuous limit for a = 34 nm at temperature of 10 K 

 
Fig. 12  Normal stress σy distribution along the x-axis for different ratios of the ellipse dimensions  

compared to an exact analytical solution in the continuous limit for a = 34 nm at temperature of 300 K 

Here we have chosen a different route and examined a simple averaging procedure but 
with a variable averaging circle diameter with no temporal averaging. In this way we present 
results at a specific microscopic moment. In the end, we would like to develop more elaborate 
approaches, so here we are trying to be as simple as possible keeping relevant information. 
Fig. 11 shows the σy stress along the x-axis for different elliptical eccentricities. It is 
interesting to note that the thermal signature on the trend is the increase in fluctuations. So for 
the same averaging radius the fluctuations are much more pronounced for the loading at 300 
K than for the loading at 10 K. A relatively small number of particles in the averaging circle is 
the reason why the time fluctuations are visible at a higher temperature (only spatially 
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averaged stress). As can be seen from Figs. 11 and 12, the atomistic and the continuous model 
show remarkable overall agreement of the stress distribution in the Kirsch problem. Similar 
results have been obtained for other values of parameter a with the only difference that a 
smaller hole results in a lower maximal stress. This shows that the stress distribution around 
the hole is mainly a topological feature in which the hole size determines only the peak value. 

If it is taken into consideration that the Tersoff realistic interatomic potential is capable 
of describing very important microscopic mechanical properties, such as phonon dispersion 
curves [25] and elastic properties [26] (for experimental values see for example [27]), we are 
inspired to look for an effective model to join the continuum and the atomistic-level approach. 
We propose that void-like structures in realistic 2D materials can be concurrently modelled by 
using CM formalism away from void edges and the MD simulation within the properly 
chosen region close to the hole edges. As can be seen from Figs. 11 and 12, the continuum 
model overestimates stress at the very edge of the hole. This is caused by artificial 
propagation of the continuum picture of matter down to the atomistic scale, failing miserably 
to capture the reality that shows weakly bonded atoms with low-stress values. In the real 
atomistic system, the stress is at its maximum value slightly in the interior of the material, 
giving precise information where the stress concentration is critical. 

 
Fig. 13  Comparison of the continuum (left-hand part of the model) and  

spatially averaged stress atomistic stress distribution (right-hand part of the model)  

In Fig. 13 we show a comparison of the σy stress distribution over the whole model space 
calculated by spatial atomistic averaging and the analytical CM results. The space averaging 
circle radius is chosen to indicate inhomogeneity of the averaged atomistic stress. Since the 
problem is symmetric, the left half of Fig. 13 presents the CM while the right part presents the 
atomistic results. Motivated by this correspondence we propose a quantitative measure 
identifying the region where one should switch from CM to the atomistic description and this 
is the ratio of the atomistic to the continuum stress around a hole.  
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.  

Fig. 14  Spatial averaged atomistic to continuum stress ratio distribution around the hole  
quantitatively indicating discrepancy of the results 

We propose the following quantitative criteria that can be conveniently adjusted to suit the 
practical problem at hand: 

1-α < σa/σc < 1+α  continuum mechanics 
1-2α < σa/σc < 1+2α  combined (e.g. handshaking region) 
rest atomistic 

where α is some small positive constant estimated close to 0.15. This threshold parameter can 
be further optimized depending on the problem complexity and corresponding computational 
cost. The main aim of the MS approach is to solve complex mechanics problems and in this 
case it comes down to judiciously reconcile physical quantities at the atomistic level that carry 
out vast quantities of information to macroscopic quantities, such as stress, by using a suitable 
averaging procedure. The main routes are given by standard statistical physics theories but the 
problem is that they are usually too general and need fine tuning to a specific problem in 
materials engineering. Switching from coarser to finer algorithms and keeping the necessary 
physical information in the model is a rather subtle subject. This is because matching such a 
different models that disagree even upon the basic structure of matter proves to be challenging 
[16]. In Fig. 14 we show how we can easily identify regions of the sheet where the atomistic 
and the CM stress distribution do not match. Fortunately, the regions are clearly localized 
indicating that vast portions of the model space can be described within the CM framework. 
Once the regions are clearly and effectively identified we can choose some of the standard 
atomistic to CM coupling approaches [3]. One of the problems to be solved is the topology of 
the system identification and geometry analysis that has to be effective enough to give the 
computational and physical description advantage. Motivated by the previously shown results 
we propose the following two-step procedure: 

1. topology scanning – holes identification and atomistic region definition 
2. self-consistent calculation of the stress distribution within the CM and the atomistic 

regions of the model space 
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Here we have chosen the self-consistent calculation that involves systematic 
refinements and matching of the stress distribution at each iteration step. Generalization to the 
fracture mechanics and other more complicated applications is straightforward since the high-
stress concentration is a precursor to plasticity and this is exactly indicated by this proposal. 

5. Conclusions 
In this paper, we have analyzed the Kirsch problem of a circular hole in a 2D material 

and the generalization including elliptical shapes with different eccentricities, namely the CM 
and the atomistic-based modelling approaches. We have used a standard description of an 
ideal graphene sheet with the realistic microscopic interatomic potential and room 
temperature conditions. We point out that other 2D materials with appropriate interatomic 
potentials could be treated in a similar way. 

The atomistic stress distribution is compared to the continuum limit solution of the 
benchmark Kirsch problem by examining different conditions and averaging parameters. The 
differences and the failure of the continuum approach in the area of highest stress 
concentration were investigated. In order to characterize the loaded system, we reported 
detailed studies including a variation of the hole geometrical properties. In order to 
characterize the loaded system, a detailed comparison study of the CM and the atomistic 
stress distribution was performed. Our quantitative findings clearly show that regions of the 
CM/MD discrepancy are only within the zones of high-stress concentration in the proximity 
of the very edge of the hole and are realized at the atomic scale. 

In conclusion, we also propose simple quantitative criteria for switching from the CM to 
the MD modelling approach as well as identifying the parts of the model space where the 
smooth parameterized transition from the CM to the MD modelling is optimal. The main 
results of this paper are the presentation of the well-known results from CM and a comparison 
with the MD atomistic description obtained by a suitable averaging procedure. The 
quantitative comparison factor (CM to atomistic ratio) is a basis for detecting suitable 
locations for the switch between the models during the material loading simulation process. 
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