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AN INTEGRATED APPROACH OF RSM AND MOGA FOR THE 
PREDICTION OF TEMPERATURE RISE AND SURFACE 

ROUGHNESS IN THE END MILLING OF AL 6061-T6 

Cutting temperature, machining parameters, workpiece material, and cutting tool 
geometry have a significant influence on the achievement of the desired quality of product at 
a satisfactory cost. The aim of the present study was to develop an empirical model for 
predicting temperature rise (Tr) and surface roughness (Ra) in terms of spindle speed (N), 
feed rate (F), axial depth of cut (Da), radial depth of cut (Dr), and radial rake angle (γ). The 
experiment was conducted on Al 6061-T6 by using a high-speed steel (HSS) end cutter based 
on the central composite design of response surface methodology (RSM). A second order 
mathematical model in terms of machining parameters was developed. The Analysis of 
Variance (ANOVA) was used to study the performance characteristics in the machining 
process. The values of Prob>F less than 0.05 indicate that the model terms are significant. The 
experimental results indicate that the formation of surface defect in the end milling of Al 
6061-T6 results from the re-deposited tool material, plucking, feed marks, micro-pits, and 
chip layer formation. The high quality of the surface texture is obtained in the combined 
conditions of high spindle speed, optimal feed rate, lower axial and radial depths of cut, and 
radial rake angle. Multi objective genetic algorithm (MOGA) has been applied to optimize the 
machining parameters that simultaneously minimize temperature rise and surface roughness. 
A set of Pareto-optimal solutions provides flexibility to the manufacturer and the process 
engineer to select the best setting based on the quality requirements and applications. A 
verification and validation process shows that the predicted values were found to be in good 
agreement with the observed values. 
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1. Introduction 
Aircraft manufacturers use the 6061-T6 high-strength aluminium alloy to strengthen 

aluminium aircraft structures. This alloy has the best machinability which results in good 
surface finish. In the end milling process, heat energy is produced due to friction at the tool 
chip edge and between the workpiece and the tool. Most of the power used during end milling 
is converted into heat energy near the cutting edge of the tool. This results in high temperatures 
in the adjoining and deformation regions of the chip, tool, and workpiece [1]. Temperature rise 
that inevitably occurs during machining processes causes tool wear, thermal degradation, and 
expansion of the workpiece, which affects the machining accuracy and quality [2]. 
Temperature increase in the metal cutting region softens the tool material and wears it out; 
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subsequently, the softened tool material disperses into the workpiece material, which causes 
the surface finish to reduce. Hence, it is important to determine the critical value of the 
temperature for the reduction of tool wear. Temperature rise on the rake face of the tool affects 
the surface finish and metallurgical state of the machined surface [3]. El Hakim et al. [4] 
discussed the heat generated during machining as a cause of difficulties in the machining of 
alloys. Yong Feng et al. [5] investigated the generation of heat in a workpiece and found that 
the milling speed and time are responsible for the poor heat conduction between the tool and 
workpiece. The most commonly adopted method to measure cutting temperatures is to use a 
thermocouple, a device which measures the average temperature at the tool - workpiece 
interface [3]. Smart and Trent [6] measured the cutting temperature by introducing a 
thermocouple into the drilled hole of the workpiece. The values measured by the thermocouple 
are valuable for studying the effects of the machining parameters (spindle speed (N), feed rate 
(F), axial depth of cut (Dr), and radial rake angle (γ)) on the temperature and surface finish. A 
cost-effective application is required for the end milling operation in order to understand the 
relationship between temperature rise and surface finish. Hence, a most effective model is 
necessary to predict the cutting temperature. Ali Yildiz [7] suggested that optimization 
techniques are effective methods for determining the optimal solution to the problem of 
producing high quality products at lower costs. Bharathi and Baska [8] discussed the methods 
for the selection of machining parameters in a machining process. Abdalla Alrashdan et al. [9] 
analysed the most important machining parameters (spindle speed, feed rate, and depth of cut) 
which affect the machining process. Ahilana and Kumanan [10] conducted experiments based 
on the central composite design (CCD). Santos et al. [11] developed an effective second order 
mathematical model for machining parameters (spindle speed, feed rate, and depth of cut). 
Sivasankar et al. [12] modelled a machining process to map the relationship between the input 
process parameters and the output response considered in the process. Surface finish is 
determined by roughness of the machined surface measured using a surface roughness tester; it 
can be controlled by machining parameters, such as feed rate, spindle speed, and depth of cut 
[13]. Good surface roughness provides important improvements in the tribological behaviour, 
fatigue strength, corrosion resistance, and aesthetic appearance of the product [14]. 
Thanongsak and Tuğrul [15] adopted the response surface methodology (RSM), i.e. 
statistically based techniques, for modelling and analysis used to find the relationship between 
the input and output parameters; the authors also investigated the effect of cutting parameters 
on the surface roughness. Venkata Rao and Murthy [16] adopted the central composite design 
of response surface method to minimize the number of experiments without reducing the 
accuracy and, also, to analyse the output responses under the influence of several input factors. 
Kondayya and Gopala Krishna [17] developed a regression model for the prediction and 
optimization of machining parameters and response. Senthilkumar1 et al. [18] identified the 
most significant factors by developing regression models. Yuvaraj and Pradeep Kumara [19] 
suggested that research effort to handle the multi-response characteristic is preferred to the 
optimization of a single response in order to provide a greater improvement in quality and 
productivity at a low cost. Konak et al. [20] discussed the genetic algorithm as the most 
popular heuristic approach to multi-objective design and optimization problems. Sardinas et al. 
[21] adopted the genetic algorithm optimization technique in order to obtain non-dominated 
points and to build the Pareto front graph. NSGA-II is an effective multi-response optimization 
technique used to solve the multi-objective optimization problem and to predict an optimal 
setting of process parameters for multiple responses [22-23]. 

In the present study, slotting experiments were conducted on workpieces made of Al 
6061-T6 aluminium alloy. Five parameters, spindle speed (N), feed rate (F), axial depth of cut 
(Da), radial depth of cut (Dr), and radial rake angle (γ) are considered with three different 
levels based on the suggestion given in [15,24] for the temperature rise (Tr) and surface 
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roughness (Ra). A K-type thermocouple was used to measure the temperature rise in the 
workpiece, while the surface roughness of the workpiece was measured with a surface tester. 
RSM is utilized for experimental planning during end milling. Formation of a surface defect 
on the machined surface texture was analysed using a scanning electron microscope (SEM). 
Multi- objective optimization using genetic algorithm was performed to find the optimal 
machining parameters related to a minimum temperature rise and surface roughness. The most 
important parameters influencing the performance characteristics listed above were 
investigated using ANOVA. 

2. Experimental methodology and materials 

2.1 Experimental setup 
The experiments were performed under wet cutting condition on a MAKINO CNC Vertical 

Machining Centre equipped with a spindle characterized by a speed of 4000 rpm and a 
maximum torque of 45 N-m at 1200 rpm, positioning accuracies within ±0.001 mm, and a 
rapid speed on axis of 5.1 m/min. The tool used for carrying out the end milling operation was 
a high speed steel end mill cutter (4 - Flute, 45 degree helix angle) catalogue no 
F3AH31500AEK45 as recommended by the tool manufacturer (Kenna metal). The workpiece  
was an aluminium metal matrix (Al 6061-T6) square block with dimensions of 
50mm×50mm×50mm.The hardness (Brinell) value of 73 BHN was found during the testing 
under a 500 g load applied by a10 mm ball. The chemical composition of Al 6061-T6 is as 
follows: Al - 97.5 max, Si - 0.20 - 0.60, Fe- 0.35 max, Cu - 0.1 max, Mn - 0.1 max, Mg - 0.45-
0.9, Cr - 0.1 max, Zn -0.1max, Ti - 0.09. The experimental setup for the workpiece operation is 
shown in Fig. 1a and 1b. 

  
Fig. 1a  Measurement of the workpiece temperature 

(30 °C) before machining 
Fig. 1b  Maximum temperature of the workpiece  

(65 °C) measured during machining 

2.2 Experimental Procedures 
In the end milling process, a slotting path of machining operation was made on the 

workpiece to investigate the temperature rise (Tr) and surface roughness (Ra). The response 
variables selected for this study are temperature rise (Tr) and surface roughness (Ra). During 
the experiments, temperature rise (Tr) was measured by inserting a thermocouple probe into 
the hole drilled in the workpiece. A digital K-type thermocouple is a type of thermometer 
used to measure high temperatures. The temperature was measured by using a CRAL model - 
4172 thermal indicator with a K-type thermocouple measuring a range of up to 1200 °C with 
accuracy of 0.1°C. By using a digital K-type thermocouple, the initial workpiece temperature 
was noted (shown in Fig 1a), and the maximum temperature was measured during machining 
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(shown in Fig.1b); the difference between the maximum and the initial temperature gave the 
temperature rise. The data acquired are noted to obtain the second order mathematical model. 
Surface roughness (Ra) is an important parameter for evaluating the quality of a machining 
product. In this study, a surface tester, SJ – 210, shown in Figure 1c, was used to measure the 
machined surface at three different positions; the average surface roughness (Ra) is noted in 
microns. The ranges of machining parameters and the tool radial rake angle were selected 
from the preliminary research and from the recommendation in the machining data handbook 
(Hindustan Machine Tools, 2001) 

 
Fig. 1c  Surface roughness tester SJ-201 

2.3 Experimental Design  
Response Surface Methodology (RSM) is the most effective method for the analysis of 

the results obtained from factorial experiments, [19]. It is an effective tool for the modelling 
and analysis of engineering problems and it also provides more information with a lower 
number of experiments. The experiments were conducted to identify the temperature rise and 
surface roughness by considering the machining parameters such as spindle speed, feed rate, 
axial and radial depths of cut, and radial rake angle; those were optimized using the RSM.  

Table 1  Machining and geometrical parameters and their values 

Sl.
No 

Machining and geometrical 
parameters 

Factorial Levels 
-1 0 1 

1 Spindle speed (N)-rpm 1400 2500 3600 
2 Feed rate ( F)-mm/rev 0.04 0.08 0.12 
3 Axial depth of cut (Da)-mm 0.4 0.7 1 
4 Radial depth of cut (Dr)-mm 0.4 0.7 1 
5 Radial rake angle (γ)- ° 12 18 24 

The response Tr and Ra can be expressed as a function of machining parameters, such as 
spindle speed (N), feed rate (F), axial depth of cut (Da), radial depth of cut (Dr), and 
geometrical parameters such as radial rake angle (γ) 
 Tr = ϕ (N, F, Da, Dr, γ) + eui  
 Ra =µ (N, F, Da, Dr, γ) + eui 

where ϕ is the response surface, e is the residual, u is the number of observations in the 
factorial experiment, and i represents the level of the ith factor in the uth observation. When the 
mathematical forms of ϕ, µ are unknown, Tr and Ra can be approximated satisfactorily within 
the experimental region by polynomials in terms of the machining parameter variable. Central 
composite design methods will certainly minimize the number of experiments without 
reducing the accuracy [15]. 
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Table 2  Experimental values with responses 

S.No N 
rpm 

F  
mm/rev 

Dr 
mm 

Da 
mm 

γ 
° 

Tr-exp 
ºC 

Ra-exp
µm 

Tr-pred 
ºC 

Ra-Pred 
µm 

1.  2500 0.08 0.7 1 18 26 0.51 28.16 0.50 
2.  1400 0.12 1 1 12 33 0.64 32.99 0.64 
3.  3600 0.04 1 0.4 24 34 0.46 33.36 0.47 
4.  2500 0.08 0.7 0.4 18 26 0.45 24.60 0.44 
5.  3600 0.04 0.4 1 24 34 0.51 33.47 0.51 
6.  3600 0.04 0.4 0.4 12 18 0.43 18.27 0.42 
7.  3600 0.12 0.4 1 12 34 0.41 33.69 0.41 
8.  2500 0.08 1 0.7 18 25 0.52 27.60 0.48 
9.  2500 0.08 0.7 0.7 18 24 0.45 24.83 0.48 
10.  2500 0.08 0.4 0.7 18 25 0.43 23.16 0.45 
11.  1400 0.12 1 0.4 24 32 0.53 32.08 0.54 
12.  1400 0.04 1 0.4 12 17 0.61 17.58 0.61 
13.  1400 0.04 0.4 1 12 15 0.53 15.69 0.52 
14.  1400 0.12 0.4 0.4 12 14 0.52 14.99 0.52 
15.  3600 0.12 0.4 0.4 24 32 0.5 31.77 0.51 
16.  2500 0.08 0.7 0.7 18 22 0.45 24.83 0.48 
17.  2500 0.08 0.7 0.7 18 23 0.45 24.83 0.48 
18.  3600 0.08 0.7 0.7 18 25 0.44 28.82 0.42 
19.  2500 0.08 0.7 0.7 24 26 0.55 27.82 0.51 
20.  1400 0.12 0.4 1 24 27 0.71 27.19 0.71 
21.  1400 0.08 0.7 0.7 18 23 0.53 19.93 0.53 
22.  1400 0.04 1 1 24 17 0.63 16.77 0.63 
23.  2500 0.04 0.7 0.7 18 20 0.55 19.82 0.57 
24.  2500 0.08 0.7 0.7 18 26 0.48 24.83 0.48 
25.  1400 0.04 0.4 0.4 24 15 0.53 15.77 0.53 
26.  3600 0.12 1 0.4 12 31 0.45 30.58 0.46 
27.  3600 0.04 1 1 12 30 0.52 29.27 0.52 
28.  3600 0.12 1 1 24 35 0.51 33.77 0.52 
29.  2500 0.08 0.7 0.7 12 25 0.45 23.93 0.47 
30.  2500 0.08 0.7 0.7 18 26 0.46 24.83 0.48 
31.  2500 0.08 0.7 0.7 18 31 0.52 24.83 0.48 
32.  2500 0.12 0.7 0.7 18 26 0.63 26.93 0.59 

3. Development of Response Surface Model 
A central composite design is the most commonly used response 

surface designed experiment. For example, for a three-factor and one response surface 
experiment, the following second-order model is the standard model for CCD. [5] The 
quadratic polynomial developed, which gives the relation between the response surface y and 
the process variable x under investigation, is given by  

Y=β0+β1x1+β2x2+β3x3+β11x12+ β22x22+ β12x          (1) 

where β0 is the constant, β1, β2, β3 are the linear term coefficients, β11, β22 are the quadratic 
term coefficients and β12 is the interaction term coefficient. Regression equations were 
formed using the values of the polynomial coefficients. 

A statistical software design expert V.10 was used to calculate the values of these 
coefficients. The second order mathematical model is developed using the experimental 
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values and responses to predict the temperature rise (Tr) and the surface roughness (Ra); they 
are given below in equation 2 and 3. 
Tr = - 32.4409 + 0.008742 * N + 296.03 * F + 30.18071 * Da + 11.17397 * Dr + 0.42642 * γ`- 
0.03693 * N * F - 0.00303 * N * Da + 0.000758 * N * Dr + 0.0000947 * N * γ + 41.66667 * F 
* Da + 41.66667 * F * Dr- 1.5625 * F * γ - 20.8333 * Da * Dr - 0.69444 * Da * γ - 1.11111 * 
Dr * γ – 0.000000372 * N ² - 906.375 * F² + 6.108898 * Dr² + 17.22001 * Dr² + 0.029161 * γ² 
     (2) 

Ra = + 0.452928 + 0.000034 * N - 9.09448 * F + 0.746547 * Da + 0.210015 * Dr -0.000874 * 
γ - 0.000213 * N * F - 0.00000568182 * N * Da - 0.000040 * N * Dr + 0.000000662879 * N * 
γ - 1.19792 * F * Da + 0.572917* F * Dr + 0.049479 * F * γ + 0.048611 * Da * Dr - 0.015625 
* Da * γ + 0.008681 * Dr * γ - 0.0000000946627 * N2 + 58.46614 * F2 - 0.238380 * Da 2 - 
0.182824 * Dr 2 + 0.000098 * γ2  (3) 

3.1 ANOVA for Temperature Rise  
In this study, ANOVA was performed at a 95% confidence level. The significance of 

the model was tested using the analysis of variance (ANOVA) technique. The F-value of 4.63 
developed by the model (shown in Tab. 3) implies that the model is significant for 
temperature rise. There is only a 0.61 % chance that an F-value this large could occur due to 
noise. Values of Prob > F of less than 0.05 indicate the significance of model terms. The Lack 
of Fit F-value of 4.33 implies that the Lack of Fit is not significant relative to the pure error. 
There is a 6.46 % chance that a Lack of Fit F-value this large could occur due to noise. The R2 
value and the predicted R2 value of the temperature rise are 0.91 and - 3.12, respectively. The 
value of coefficient of variation (CV) is equal to 12.08 %. 

Table 3 Adequacy of the model for Tr 

Source Sum of squares DF Mean squares F 
calculated 

P-Value 
Prob > F 

R2 Adequacy of the model 

Model 1039.334 20 51.96668 5.463106 0.003025 0.91 adequate 
Residual 104.6352 11 9.512294     

Lack of fit 53.3019 6 8.883651 0.865291 0.574654  inadequate 

3.2 ANOVA for Surface Roughness  
ANOVA was performed at a 95% confidence level. The F-value of 5.88 developed by the 

model (shown in Tab. 4) implies that the model is significant for surface roughness. There is 
only a 0.22 % chance that an F-value this large could occur due to noise. Values of Prob > F 
of less than 0.05 indicate the significance of model terms. The Lack of Fit F-value of 2.33 
implies that the Lack of Fit is significant relative to the pure error. There is a 22.665% chance 
that a Lack of Fit F-value this large could occur due to noise. The R2 value and the predicted 
R2 value of surface roughness are 0.91 and - 3.05, respectively. The value of coefficient of 
variation (CV) is equal to 6.81 %. 

Table 4 Adequacy of the model for Ra 

Source Sum of squares DF Mean squares F 
calculated 

P-Value 
Prob > F R2 Adequacy of the model 

Model 0.142786 20 0.007139 5.876527 0.002201 0.86 adequate 
Residual 0.013364 11 0.001215     

Lack of fit 0.00948 6 0.00158 2.034424 0.226471  Inadequate 
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4. Results and Discussion 

4.1 Response Surface Method 

4.1.1 Interaction and direct effects of machining parameters on temperature rise  
Figure 2a and 3a depict the interaction effect and the direct effect of spindle speed on 

temperature rise. The figure showing the interaction effect proves that the spindle speed and 
the feed rate have a significant effect on the temperature rise of the milling process. Figure 2a 
illustrates the fact that the increase in spindle speed resulted in an increased temperature rise; 
it is minimal in the spindle speed range of 1400 to 2000 rpm. An increase in the spindle speed 
increases the rate at which energy is dissipated through plastic deformation and friction. Thus, 
the rate of heat generation in the cutting zone increases, which results in a high cutting 
temperature. Figures2b-c and 3c-d illustrate that an increase in the axial depth of cut increases 
the temperature rise. Increases in axial and radial depths of cut of 0.7 to 1 mm cause a larger 
amount of workpiece material to be removed; this in turn increases the cutting temperature. 
The Scanning Electron Microscopy (SEM) analyses showed that at lower values of axial and 
radial depths of cut of 0.4 - 0.69 mm, at lower spindle speeds of 1400-2000 rpm, less tool 
material adheres to the machined surface of workpiece than in the case of higher values of 
depth of cut shown in Figure 6a. 

 

   
Fig. 2a-d  3D plot of machining parameters over temperature rise 

This adhesion of tool material to the work piece causes poor surface finish. From Fig. 2d and 
3e one can see that the radial rake angle has a significant effect on the temperature rise of the 
milling process. Figure 3d show that a smaller radial rake angle (12° to 15°) would decrease 
the temperature rises. 
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 a)   b)  c) 

    
 d) e) 

     
Fig. 3a-e  Direct effect plots for machining parameters over temperature rise 

The cutting temperature is significantly affected by the radial rake angle: the bigger the 
radial rake angle is, the greater the deformation and the cutting force are and more heat will 
be generated in chip formation. A larger radial rake angle (20° to 24°) makes the tool sharper 
and more pointed; this decreases the strength of the tool and may cause the formation of a 
chip layer shown in the SEM in Fig. 6b. The selection of a smaller radial rake angle helps in 
the formation of continuous chips in ductile materials and reduces the formation of an edge. 
Thus the formation of continuous chips promotes better heat removal between the cutting tool 
and the workpiece. The heat removal intensity is predominant, leading to a reduction in the 
cutting temperature; the cutting temperature decreases with a decrease in the radial rake angle 
(12° to 16°) of the tool. The temperature rises on the rake face of the tool affect the surface 
finish and the metallurgical state of the machined surface shown in the SEM in Fig.6a. 

4.1.2 Interaction and direct effects of machining parameters on surface roughness 
From Fig. 4a, it has been observed that the machining parameters have significant effects 

on the responses. Figure 5a-b shows that the spindle speed and the feed rate are inversely 
proportional with surface roughness. Surface roughness decreases with an increase in the 
spindle speed; better surface roughness can be achieved between 3000 and 3600 rpm. The 
change in the feed rate from 0.06 to 0.1 mm/rev at a higher spindle speed reduces the surface 
roughness (from 0.71 to 0.4 µm). If the feed rate increases gradually from 0.051 to 0.06 
mm/rev with an increase in the spindle speed from 1400 to 2400 rpm, the surface roughness 
value increases proportionally. Hence, it has been concluded that the lower surface roughness 
(0.4 µm) can be achieved if the optimum change in the feed rate is between 0.07 and 0.09 
mm/rev. From Fig. 4b-c and 5c-d, it is evident that the axial and the radial depth of cut show 
an inverse relationship with the spindle speed. Surface roughness increases with an increase in 
the axial depth of cut; this is due to the fact that a higher depth of cut increases the cutting 
force, this makes the tool and the workpiece unstable, with a final result of increased surface 
roughness. The change in depth of cut from 0.4 to 0.6 mm at a higher spindle speed does not 
affect the surface roughness significantly, whereas the same change at a lower spindle speed 
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produces a high torque which causes inaccurate axial loading on the machining surface; thus, 
the change in the depth of cut at a lower speed has a significant effect on the surface 
roughness. If the depth of cut increases gradually from 0.61 to 1 mm and the spindle speed 
increases from 1400 to 2500 rpm, the surface roughness value increases proportionally. Hence, 
it has been concluded that at a higher spindle speed, a lower depth of cut has to be preferred in 
order to obtain quality surface finish. From Fig. 4d and 5e, it has been observed that at the 
radial rake angle of 12° to 13°, the machining process will produce good surface roughness. 
The radial rake angle of less than 12.5° has to be preferred for good surface finish in the end 
milling process. The surface roughness significantly increases at radial rake angles from 14°to 
24° at a lower spindle speed; the change in the radial rake angle from 12° to 13° at a lower 
depth of cut and a higher spindle speed does not significantly affect the surface roughness. 

 

 
Fig. 4  3D plots of machining parameters over surface roughness 

 a)   b)  c) 
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 d) e) 

     
Fig. 5a-e  Direct effect plots for machining parameters over surface roughness 

4.2 Surface defects 
SEM micrographs of the machined surface with a combination of different milling 

parameters are shown in Fig. 6.The micrographs show the main forms of surface damage in 
the machining of 6061-T6 aluminium: re-deposited tool material, tearing surface, feed marks, 
and the chip layer formation on the surface as a result of milling (Fig. 6a-d). The increase in 
the magnitude of the cutting force due to improper selection of machining and geometrical 
parameters induces a higher cutting temperature, which produces surface deformation on the 
machined surface and hence creates the worst surface finish.  

   

   

Fig. 6a-d  SEM micrographs of the surface machined under different milling conditions:  
(a) N =1400 rpm, F =0.12 mm/rev, Da =1 mm, Dr =0.4 mm, γ = 24°,  

(b) N = 2500 rpm, F = 0.08 mm/rev, Da = 0.7 mm, Dr = 0.7 mm, γ = 24°  
(c) N = 2500 rpm, F = 0.12 mm/rev, Da = 0.7 mm, Dr = 0.7 mm, γ = 18° 

(d) N = 1400 rpm, F = 0.04 mm/rev, Da = 1 mm, Dr = 1 mm, γ = 24° 

It was observed that a higher range of spindle speed (2400 to 3600 rpm) causes the 
cutting temperature to rise during the machining process; the higher cutting temperature 
causes the tool to soften. Those were the main reasons for the cutting tool inclusion in the 
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surface texture. The cutting tool inclusion in the workpiece material would produce poor 
surface texture and burrs on the machined surface shown in Fig.6a. Feed mark defects occur 
due to the combination of spindle speed and feed direction in the tool motion during milling. 
Figure 6c indicates that the major feed mark occurs due to the large values of feed mark. In 
the surface micrographs one can note a small amount of plucking on the machined surface at 
high axial and radial depths of cut. In Fig. 6d one can note a large number of scratches on the 
machined surface at an axial depth of cut of 1 mm. 

4.3 Multi objective genetic algorithm (MOGA) 
In this study, MOGA has been employed for multi objective optimization with 

parameter limits. A second order mathematical model has been developed to observe the 
optimal relationship between the machining parameters, such as spindle speed, feed rate, axial 
and radial depths of cut, and radial rake angle, and the responses, such as temperature rise and 
surface roughness. This function was input into the GA Toolbox of MATLAB 2010a as the 
objective function  

Find: N, F, Da, Dr, γ  
To minimize: Tr, Ra 
Subjected to constraints: Tr ≤ Tr limit, Ra ≤ Ra limit 
Within parameter ranges: 

1500 ≤ N ≤ 3500 rpm          (4) 
0.02 ≤ F ≤0.06 mm/rev   (5) 
0.4 ≤ Da ≤ 1 mm             (6) 
0.4 ≤ Dr ≤ 1 mm            (7) 
12 ≤ γ ≤ 24 °  (8) 

where Tr limit and Ra limit indicate the lower and upper limits that need to be satisfied for 
responses. The critical parameters in MOGA are: selected population size of 100, mutation 
rate of 0.1, crossover fraction of 0.8, generation of 1000, and population fraction of 0.35. 

Fig.7 shows the Pareto optimal frontier distributed points generated from the 
optimization of responses. The parameter combinations of eighteen sets of non-dominated 
Pareto optimal solutions are presented in Tab. 5. From the investigation, it has been observed 
that all the solutions generated from MOGA are equally good. It should be noted that the 
choice of a selection of Pareto optimal solutions depends mostly upon the process engineer’s 
expectation and manufacturer requirements. 

 
Fig. 7  Pareto-optimal frontier chart 
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Table 5  Pareto-optimal solutions 

N /rpm F / mm/rev Dr / mm Da / mm γ / ° Tr-Pred / ºC Ra-Pred / µm 
1740.566 0.068 0.418 0.412 12.396 12.747 0.417 
1691.598 0.045 0.422 0.415 12.403 9.131 0.479 
3274.741 0.079 0.405 0.930 12.280 29.516 0.347 
3274.741 0.079 0.405 0.993 12.280 31.266 0.341 
2409.863 0.073 0.407 0.406 12.378 16.287 0.388 
2993.473 0.077 0.407 0.410 12.279 19.036 0.360 
3273.700 0.078 0.405 0.440 12.263 20.394 0.347 
3135.322 0.074 0.407 0.445 12.357 19.796 0.358 
1865.770 0.054 0.417 0.422 12.421 11.666 0.442 
2628.220 0.074 0.405 0.412 12.362 17.361 0.378 
1690.819 0.044 0.422 0.423 12.347 9.121 0.481 
1697.515 0.049 0.420 0.418 12.573 9.969 0.463 
2869.979 0.073 0.407 0.410 12.349 18.287 0.369 
1694.938 0.054 0.419 0.414 12.403 10.594 0.447 
2087.900 0.070 0.409 0.444 12.386 14.880 0.407 
1819.763 0.060 0.422 0.477 12.415 12.719 0.438 
1925.908 0.065 0.413 0.419 12.404 13.334 0.416 
1700.943 0.057 0.420 0.432 12.539 11.225 0.443 

4.4 Verification experiment for optimization 
Three sets of predicted Pareto-optimal solutions are considered for verification. From the 

comparison between the predicted and actual solutions, it has been observed that the percentage 
of error lies between 1.5 to 2 %, which shows the validity of the model. The predicted Pareto 
optimal solutions shown in bold type in Tab. 5 were validated, and it was found that the 
percentage of error is within ± 2%. The experiment results show good agreement with predicted 
responses, such as Tr and Ra, and optimum machining parameters such as N, F, Da, Dr, γ. 

5. Conclusion 
The experiments were performed on Al 6061-T6 to measure temperature rise (Tr) and 

surface roughness (Ra). Statistical models have been developed for responses using the 
central composite design with three level factors. The second order mathematical models 
developed are used to determine the optimum machining parameters in order to achieve 
minimum Tr and Ra. Analysis of variance was used to study the effects of machining 
parameters on the responses. Response surface-based MOGA was used to predict and 
optimize the machining parameters and responses. From this investigation into the interaction 
effect and direct effect surface plots, the following conclusions have been drawn:  

• The key forms of surface defect in the end milling of Al 6061-T6 are feed marks, 
scratch marks, adhered material particles, tearing surface, and chip layer formation. 
The usual feed marks in end milling are intermediate similar lines. The aggressive 
feed marks can be reduced by selecting lower feed rate values.  

• Re-deposited tool material and burrs are confirmed to appear at the low spindle speed 
condition, while tearing surfaces and scratches occur at the larger value of axial and 
radial depths of cut condition. The formation of plucking confirms the major influence 
of radial rake angle on the cutting tool.  

• In the analysis of temperature rise (Tr), it was found that the minimum Tr can be achieved 
at minimal spindle speed (1400 to 2000) rpm, feed rate of less than 0.05 mm/rev, axial and 
radial depths of cut of less than 0.6 mm and radial rake angle of 12° to 13°. 
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• In the analysis of surface roughness (Ra), it was found that the minimum surface 
roughness can be achieved at spindle speeds of 3000-3600 rpm, feed rate of 0.04 to 
0.06 mm/rev, axial and radial depths of cut of less than 0.6 mm, and radial rake angle 
of less than 12.5°  

• Based on multi objective optimization by non-dominated sorted genetic algorithm, the 
parameter combination of eighteen sets of non-dominated Pareto optimal solutions are 
obtained; it has been determined that all the solutions generated from MOGA are 
equally good. 

• It should be noted that the choice of Pareto optimal solutions entirely depends upon 
the manufacturer and the process engineer expectations, and requirements.  

Nomenclature 
N= Spindle speed (rpm) 
F= Feed rate (mm/rev) 
Da= Axial depth of cut (mm) 
Dr= Radial depth of cut (mm) 
 γ= Radial rake angle (°) 

Tr= Temperature rise (°C) 
Ra= Surface roughness (µm) 
DF=Degree of freedom 
Exp=experimental 
Pred=prediction 
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